JPS5836736B2 - Volatile substance measurement method - Google Patents

Volatile substance measurement method

Info

Publication number
JPS5836736B2
JPS5836736B2 JP53035907A JP3590778A JPS5836736B2 JP S5836736 B2 JPS5836736 B2 JP S5836736B2 JP 53035907 A JP53035907 A JP 53035907A JP 3590778 A JP3590778 A JP 3590778A JP S5836736 B2 JPS5836736 B2 JP S5836736B2
Authority
JP
Japan
Prior art keywords
electrode
microbial
volatile substances
current
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53035907A
Other languages
Japanese (ja)
Other versions
JPS54128393A (en
Inventor
武夫 安田
基彦 引馬
樹 久保
征夫 軽部
春夫 小花
周一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP53035907A priority Critical patent/JPS5836736B2/en
Publication of JPS54128393A publication Critical patent/JPS54128393A/en
Publication of JPS5836736B2 publication Critical patent/JPS5836736B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は微生物電極を用いる揮発性物質の選択的測定法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively measuring volatile substances using microbial electrodes.

発酵原料としてエタノール、メタノール、酢酸等の揮発
性物質が用いられているが、これら発酵液中の揮発性物
質の測定ζこは従来ガスクロ法や半導体式検知法等が用
いられて来た。
Volatile substances such as ethanol, methanol, and acetic acid are used as fermentation raw materials, and gas chromatography and semiconductor detection methods have conventionally been used to measure these volatile substances in fermentation liquids.

しかしながら発酵液や排水等のように不揮発性物質が多
量含まれている場合、ガスクロ法ではカラム中に不揮発
性物質が蓄積し、長期間の測定が困難になる等の欠点が
有った。
However, when a large amount of non-volatile substances are contained, such as in fermentation liquid or waste water, the gas chromatography method has the drawback that the non-volatile substances accumulate in the column, making long-term measurements difficult.

又装置が複雑化するため管理のオンライン化が容易でな
い。
Moreover, since the equipment becomes complicated, online management is not easy.

一方半導体式検知法についても、その安定性Cこ問題が
有り、オンライン管理用としては信頼性に欠けることが
指摘されている。
On the other hand, the semiconductor detection method also has problems with its stability, and it has been pointed out that it lacks reliability when used for online management.

そこで本発明者等は簡単で、安定性、信頼が高く、シか
もオンライン管理に適した測定法について鋭意研究を重
ねた結果、揮発性物質を資化し酸素を消費する微生物を
酸素電極の隔膜とこれを覆う揮発性物質透過性膜の間に
封入又は固定化した微生物電極を用いることによりかか
る目的に適した揮発性物質の選択的測定法を開発するに
至った。
As a result of extensive research into a measurement method that is simple, stable, reliable, and suitable for on-line management, the inventors of the present invention have found that microorganisms that utilize volatile substances and consume oxygen can be detected using the diaphragm of the oxygen electrode. By using a microbial electrode sealed or immobilized between a volatile substance-permeable membrane covering the membrane, we have developed a method for selectively measuring volatile substances suitable for this purpose.

即ち本発明は上記微生物電極を揮発性物質を含有する被
験液に接触せしめ該微生物電極の電流の減少速度を測定
し、該電流の減少速度と被験液中の揮発性物質濃度との
間の比例関係を利用して被験液中の揮発性物質の濃度を
選択的に測定するものである。
That is, the present invention brings the microbial electrode into contact with a test solution containing a volatile substance, measures the rate of decrease in current of the microbial electrode, and calculates the proportionality between the rate of decrease in current and the concentration of the volatile substance in the test solution. This method uses the relationship to selectively measure the concentration of volatile substances in a test solution.

本発明の方法は極めて簡単であり、しかも2〜10分間
という極めて短時間に、無試楽でしかも再現性良く安定
に揮発性物質を選択的に測定することのできる新しい測
定法である。
The method of the present invention is extremely simple, and is a new measuring method that can selectively measure volatile substances stably and with good reproducibility, in an extremely short time of 2 to 10 minutes, without any trial or effort.

以下本発明の方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明で使用する微生物は揮発性物質を資化し同時lこ
酸素を消費する能力を有する微生物で有れば良く、例え
ばトリコスポロン・ブラシカエ、サツカロミセス・セレ
ビシエー等の酵母、プレビバクテリューム・フラブムA
TCC14067,21 475等の細菌あるいは種々
の微生物の混合物である各種活性汚泥等が使用される。
The microorganisms used in the present invention may be microorganisms that have the ability to assimilate volatile substances and simultaneously consume oxygen, such as yeasts such as Trichosporon brassicae and Satucharomyces cerevisiae, and Plevibacterium flavum A.
Various activated sludges containing bacteria such as TCC14067, 21 475, or a mixture of various microorganisms are used.

揮発性物質透過性膜としてはシリコーン膜が最も良く、
ポリエチレン膜、ポリブタジエン膜、ポリプロピレン膜
、ポリエステル膜、テフロン(登録商標名)膜等も使用
できる。
Silicone membranes are the best volatile substance permeable membranes.
Polyethylene membranes, polybutadiene membranes, polypropylene membranes, polyester membranes, Teflon (registered trademark) membranes, etc. can also be used.

要は、溶存酸素と揮発性物質を選択的に透過するもので
、ある程度の透過性があり、溶存酸素の移動速度に比べ
揮発性物質の移動速度の大きいものが望ましい。
The point is that it selectively permeates dissolved oxygen and volatile substances, and it is desirable to have a certain degree of permeability and a movement speed of volatile substances that is higher than that of dissolved oxygen.

酸素電極はガルパニック型、ポーラロ型いずれでも良く
市販のものを使用することができる。
The oxygen electrode may be either a Galpanic type or a Polaro type, and any commercially available one can be used.

本発明の微生物電極は次のようにして製作される。The microbial electrode of the present invention is manufactured as follows.

まず、前記微生物を通常の栄養培地で通常の方法で培養
し、培養液から微生物菌体を分離し、ぺ一スト状の菌体
懸濁液とする。
First, the microorganism is cultured in a conventional nutrient medium using a conventional method, and the microbial cells are separated from the culture solution to form a paste-like suspension of the bacterial cells.

電素電極の隔膜上に菌体を塗布し、要すればこれを支持
するため、ナイオン綱等で支持しこの上を前記揮発性物
質透過性膜で覆い、輪ゴム等でしっかりと電極に取りつ
ければ第1図に示すような微生物電極が得られる。
Apply the bacterial cells on the diaphragm of the electrolytic electrode, and if necessary, support it with a nionic wire or the like, cover it with the volatile substance permeable membrane, and securely attach it to the electrode with a rubber band or the like. A microbial electrode as shown in FIG. 1 can be obtained.

第1図はガルパニックタイプの酸素電極を用いた微生物
電極であり、第1図中1は微生物層、2は支持層、3は
揮発性物質透過性膜、4は酸素電極の隔膜、5は白金カ
ソード、6はアルミニュームアノード、7は塩化カリュ
ーム液、8.8’は輪ゴムを示す。
Figure 1 shows a microbial electrode using a galpanic type oxygen electrode, in which 1 is a microbial layer, 2 is a support layer, 3 is a volatile substance permeable membrane, 4 is a diaphragm of the oxygen electrode, and 5 is a A platinum cathode, 6 an aluminum anode, 7 a potassium chloride solution, and 8.8' a rubber band.

第1図中の1の微生物層の代りに固定化微生物膜を用い
ても良く、微生物をコラーゲン、ポリアクリルアミドゲ
ル等で通常の酵素の包括固定化法に順じて固定化して固
定化微生物膜を作り、これを適当な大きさに切って封入
すれば良l/)。
An immobilized microbial membrane may be used instead of the microbial layer 1 in Figure 1, and the immobilized microbial membrane is obtained by immobilizing microorganisms with collagen, polyacrylamide gel, etc. according to the usual enzyme entrapment immobilization method. All you have to do is make one, cut it to an appropriate size, and enclose it.

ただし効果は固定化微生物膜を用いても全く変らないの
で特に固定化微生物膜を使う必要はない。
However, the effect does not change at all even if an immobilized microbial membrane is used, so there is no particular need to use an immobilized microbial membrane.

本発明の方法の原理は次のように説明される。The principle of the method of the invention is explained as follows.

上記微生物電極を不揮発性物質を含有する被験液に接触
せしめる。
The microbial electrode is brought into contact with a test solution containing a non-volatile substance.

シリコーン膜等の揮発性物質透過性膜は沸点の低いエタ
ノール、メタノール、酢酸、低級ケトン類等を透過する
が、糖類、アミノ酸、有機酸塩、無機塩類等は透過せず
、その透過速度はその物質の蒸気圧に比例する。
Volatile substance permeable membranes such as silicone membranes allow ethanol, methanol, acetic acid, lower ketones, etc. with low boiling points to pass through, but sugars, amino acids, organic acid salts, inorganic salts, etc. do not pass therethrough; Proportional to the vapor pressure of a substance.

従って菌体層へは酸素及び揮発性物質のみが到達し得る
Therefore, only oxygen and volatile substances can reach the bacterial cell layer.

微生物は揮発性物質を消費(資化)シ、同時に酸素を消
費するからそれに比例して隔膜近傍の溶存酸素濃度が減
少しその結果、該微生物電極の電流が減少する。
Since microorganisms consume (assimilate) volatile substances and at the same time consume oxygen, the dissolved oxygen concentration near the diaphragm decreases in proportion to this, and as a result, the current at the microorganism electrode decreases.

微生物電極の電流の減少速度とその微生物によって消費
・資化される有機物の濃度との間には比例関係が成立す
ることが知られているが、本発明の微生物電極の電流の
減少速度も被験液中の揮発性物質濃度に良く比例する。
It is known that a proportional relationship exists between the rate of decrease in current in a microbial electrode and the concentration of organic matter consumed and assimilated by the microorganism, but the rate of decrease in current in the microbial electrode of the present invention was also tested. It is well proportional to the concentration of volatile substances in the liquid.

従って、この電流の減少速度を測定することにより、揮
発性物質の濃度を知ることができる。
Therefore, by measuring the rate of decrease in this current, the concentration of volatile substances can be determined.

第2図は本発明の方法を連続的に実施する場合の実施態
様の1つを示すものである。
FIG. 2 shows one embodiment in which the method of the invention is carried out continuously.

第2図中1は微生物電極、2はゴムパッキング、3はフ
ローセル(内容2〜10mA!)、4はマグネチツクス
クーラー 5は攪拌子、6はレコーダー、γは空気注入
口、8は水(キャリアー液)注入口、9はサンプル注入
口を示す。
In Figure 2, 1 is a microbial electrode, 2 is a rubber packing, 3 is a flow cell (content: 2-10 mA!), 4 is a magnetic cooler, 5 is a stirrer, 6 is a recorder, γ is an air inlet, 8 is water ( carrier liquid) injection port, and 9 indicates a sample injection port.

第2図のシステムにそって本発明の方法を説明すると、
まず、キャリアー液として酸素で飽和した水をポンプで
測定セル(フローセル二6)内を通して置く、サンプル
をサンプラーで0.5〜2.0分間一定間隔(10〜2
0分間)で注入口12から注入するとサンプルはキャリ
アー液で適度に希釈され(0.01〜1%)フローセル
内に入り微生物電極1と接触する、フローセル中のサン
プルの揮発性物質と溶存酸素のみが揮発性物質透過膜を
透過し、微生物層に達し、微生物により資化され酸素が
消費される。
The method of the present invention will be explained along the system shown in FIG.
First, water saturated with oxygen as a carrier liquid is pumped through the measurement cell (flow cell 2), and the sample is placed in the sampler at regular intervals (10 to 2
When the sample is injected from the injection port 12 for 0 minutes), the sample is diluted appropriately with the carrier liquid (0.01-1%) and enters the flow cell, where it comes into contact with the microbial electrode 1. Only the volatile substances and dissolved oxygen of the sample in the flow cell are present. permeates the volatile substance permeable membrane, reaches the microbial layer, is assimilated by the microorganisms, and consumes oxygen.

従って酸素濃度が減少し微生物電極電流が減少し、レコ
ーダー9に減少した電流のピークが記録される(第4図
参照)。
Therefore, the oxygen concentration decreases, the microbial electrode current decreases, and the peak of the decreased current is recorded on the recorder 9 (see FIG. 4).

測定する物質の濃度とピークの高さの関係を求めておけ
ば、このピークの高さから濃度を簡単に知ることができ
る。
By determining the relationship between the concentration of the substance to be measured and the peak height, the concentration can be easily determined from the peak height.

一方、本発明の方法をバッチ式で測定する場合には、微
生物電極をサンプル液に接触し、一定時間(0.5〜5
分間)に於る電流の減少量を求めるか又は平衡電流値を
測定すれば良い。
On the other hand, when performing batch measurements using the method of the present invention, the microbial electrode is brought into contact with the sample solution for a certain period of time (0.5 to 5
The amount of decrease in current per minute) or the equilibrium current value may be measured.

測定中被験液中の溶存酸素濃度を一定に保って測定する
場合、測定時間が長くなると電流値は一定になり平衡状
態に達する。
When measuring while keeping the dissolved oxygen concentration in the test liquid constant during measurement, the current value becomes constant and reaches an equilibrium state as the measurement time increases.

この平衡時の電流値又は電流の減少値も又被験液中の揮
発性物質濃度に比例するので、平衡電流の減少量から求
めることもできる。
Since the current value or the current decrease value at equilibrium is also proportional to the volatile substance concentration in the test solution, it can also be determined from the amount of decrease in the equilibrium current.

測定の条件は用いる微生物の活動に適した条件下で行う
ことが望ましく、通常PH4〜8.01温度15〜45
℃の条件で行えば良い。
It is desirable to carry out the measurement under conditions suitable for the activity of the microorganisms used, usually pH 4-8.01 and temperature 15-45.
It is sufficient to perform this under the conditions of ℃.

微生物電極とサンプルとの接触時間は微生物の反応が早
いため0.5〜10分間で十分である。
Since the reaction of microorganisms is fast, a contact time of 0.5 to 10 minutes between the microorganism electrode and the sample is sufficient.

このようにサンプルとの接触時間が短いことは単に測定
時間が短縮できることのみならず使用する微生物電極の
汚染も少くてすみ、長期間の使用が可能となる。
This short contact time with the sample not only shortens the measurement time, but also reduces contamination of the microbial electrode used, making it possible to use it for a long period of time.

本発明の方法によって酢酸を測定する場合には、測定時
のpHを酸性CpH4以下)にして測定することに容易
に測定することができる。
When measuring acetic acid by the method of the present invention, it can be easily measured by adjusting the pH at the time of measurement to an acidic pH of 4 or less.

又使用する微生物の種類によってエタノール、メタノー
ルを分離して測定することもできるし、さらにはメタン
、水素等のガス成分の分析も可能である。
Depending on the type of microorganism used, it is also possible to separate and measure ethanol and methanol, and it is also possible to analyze gas components such as methane and hydrogen.

上述の如く本発明は、不揮発性物質が多量に含まれてい
る発酵液又は排水に含まれている揮発性物質を選択的に
測定する優れた測定方法を提供するものである。
As described above, the present invention provides an excellent method for selectively measuring volatile substances contained in fermentation liquid or waste water containing a large amount of non-volatile substances.

実施例 1 ポテト・デキストロース寒天フラント培地(pH6.0
)上に25℃で3日間スラント培養したトリコスポロン
・ブラシカエ(Trichosporonbrassi
cae) CBS 6 3 8 2の微生物菌体←白金
耳を径10間のミリポアフィルターに塗布し、これをガ
ルパニックタイプの酸素電極の隔膜上に貼りその上をシ
リコーン膜(DCO2センサー用、si I icon
e Fi lm ,Radiome ter, Cop
enha −gen)で覆い、輪ゴムで電極に固定し第
1図に示すような微生物電極を作製した。
Example 1 Potato dextrose agar Frant medium (pH 6.0
Trichosporon brassicae (Trichosporonbrassi
cae) CBS 6 3 8 2 microbial cells ←Apply a platinum loop to a Millipore filter with a diameter of 10 mm, paste it on the diaphragm of a galpanic type oxygen electrode, and cover it with a silicone membrane (for DCO2 sensor, si I). icon
e Film, Radiometer, Cop
enha-gen) and fixed to the electrode with a rubber band to prepare a microbial electrode as shown in FIG.

この微生物電極を用いて第2図に示す連続測定システム
を組立て以下の実験を行った。
Using this microbial electrode, we assembled the continuous measurement system shown in Figure 2 and conducted the following experiments.

まず系内にキャリアー液として溶存酸素飽和の水を通し
(流量3.OTILl/mi n )電極電流をレコー
ダーに記録する(ベースライン)、ベースラインが安定
した後サンプル注入口から一定濃度のエタノール溶液を
30分間隔で順次注入した(パルス巾1.5分間)。
First, water saturated with dissolved oxygen is passed through the system as a carrier liquid (flow rate: 3.OTIL/min), and the electrode current is recorded on a recorder (baseline). After the baseline is stabilized, an ethanol solution with a constant concentration is injected from the sample injection port. were injected sequentially at 30 minute intervals (pulse width 1.5 minutes).

第3図のたて軸は得られた電極電流の減少のピークの高
さを示し、横軸はフローセル内に於るエタノールの濃度
を示すものであるが、第3図に於でエタノール濃度とピ
ークの高さは良く比例している。
The vertical axis in Figure 3 shows the peak height of the decrease in the obtained electrode current, and the horizontal axis shows the concentration of ethanol in the flow cell. The peak heights are well proportional.

全く同様にしてエタノール、グルコースとエタノール、
及びグルコース水溶液を順次注入してグ/I,/コース
の影響を調べたがグルコースの影響は全く見られなかっ
た。
In exactly the same way, ethanol, glucose and ethanol,
The influence of G/I,/course was examined by sequentially injecting aqueous solutions of glucose and glucose, but no influence of glucose was observed.

実施例 2 サツカロミセス・セレビシエ−CBS 1 1 7 2
を次に示す培地を用いて30℃で35時間フラスコ振盪
培養を行った。
Example 2 Satucharomyces cerevisiae - CBS 1 1 7 2
was subjected to flask shaking culture at 30° C. for 35 hours using the following medium.

培養液を遠心分離して除菌し得られる上清液にエタノー
ルを添加しエタノール濃度が0.1〜1.0%のサンプ
ルを作った。
The culture solution was centrifuged to remove bacteria, and ethanol was added to the resulting supernatant to prepare samples with an ethanol concentration of 0.1 to 1.0%.

これを実施例1と全く同様の方法で測定し、ガスクロ法
で測定したフローセル中のアルコール濃度に対して電極
電流のピークの高さをプロットした。
This was measured in exactly the same manner as in Example 1, and the peak height of the electrode current was plotted against the alcohol concentration in the flow cell measured by gas chromatography.

これは第3図に白丸で示した。This is shown as a white circle in Figure 3.

第3図はこの測定法が不純物によって全く影響を受けな
いことを示している。
Figure 3 shows that this measurement method is completely unaffected by impurities.

実施例 3 1.6%のグルコース水溶液に酢酸ソーダを0.4%〜
2.0%添加し、そのpHをリン酸で4.0に調節した
Example 3 Sodium acetate is added from 0.4% to 1.6% glucose aqueous solution
2.0% and the pH was adjusted to 4.0 with phosphoric acid.

これを実施例1と全く同様にしてパルス巾10分間でフ
ローセル内に注入し電圧出力を測定した。
This was injected into the flow cell with a pulse width of 10 minutes in exactly the same manner as in Example 1, and the voltage output was measured.

フローセル中のサンプルの酢酸の濃度と電極電流のピー
クとの間には第4図に示す直線関係が見られた。
A linear relationship as shown in FIG. 4 was observed between the acetic acid concentration of the sample in the flow cell and the peak of the electrode current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図4本発明の微生物電極の概略図、第2図は微生物
電極を用いる揮発性物質測定システムの略図、第3図は
純系に於るエタノールの濃度と電極電流の関係を示すグ
ラフ、第4図は酢酸の濃度と電極電流との関係を示すグ
ラフである。
Figure 1 is a schematic diagram of the microbial electrode of the present invention, Figure 2 is a schematic diagram of a volatile substance measurement system using the microbial electrode, Figure 3 is a graph showing the relationship between the ethanol concentration and electrode current in a pure system, and Figure 4 is a graph showing the relationship between acetic acid concentration and electrode current.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素電極の隔膜とこれを覆う揮発性物質透過性膜の
間に、揮発性物質を資化し酸素を消費する微生物を封入
してなる微生物電極を被験液に接触せしめ、該電極電流
の減少速度又は平衡電流を測定し、これら電流の減少速
度又は平衡蕾流と揮発性物質の濃度との間の比例関係を
利用して揮発性物質を測定することからなる揮発性物質
の測定方法。
1. A microbial electrode consisting of a microorganism that assimilates volatile substances and consumes oxygen is sealed between the diaphragm of the oxygen electrode and the volatile substance permeable membrane covering it, and the microbial electrode is brought into contact with the test liquid, and the rate of decrease in the electrode current is measured. Or, a method for measuring volatile substances, which comprises measuring equilibrium currents and measuring volatile substances using the rate of decrease of these currents or the proportional relationship between the equilibrium bud current and the concentration of volatile substances.
JP53035907A 1978-03-28 1978-03-28 Volatile substance measurement method Expired JPS5836736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53035907A JPS5836736B2 (en) 1978-03-28 1978-03-28 Volatile substance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53035907A JPS5836736B2 (en) 1978-03-28 1978-03-28 Volatile substance measurement method

Publications (2)

Publication Number Publication Date
JPS54128393A JPS54128393A (en) 1979-10-04
JPS5836736B2 true JPS5836736B2 (en) 1983-08-11

Family

ID=12455091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53035907A Expired JPS5836736B2 (en) 1978-03-28 1978-03-28 Volatile substance measurement method

Country Status (1)

Country Link
JP (1) JPS5836736B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660342A (en) * 1979-10-23 1981-05-25 Ajinomoto Co Inc Determination method of nitrous acid by microbe electrode

Also Published As

Publication number Publication date
JPS54128393A (en) 1979-10-04

Similar Documents

Publication Publication Date Title
Hikuma et al. Microbial electrode sensor for alcohols
US4517291A (en) Biological detection process using polymer-coated electrodes
US5177012A (en) Biosensor containing immobilized Zymomonas mobilis cells for measuring glucose, fructose and sucrose
CN111398386A (en) Immobilized enzyme electrode, immobilized enzyme sensor and enzyme membrane anti-interference detection method thereof
Dixon et al. The control and measurement of ‘CO2’during fermentations
Karube et al. Microbial electrode sensor for vitamin B12
US4604182A (en) Perfluorosulfonic acid polymer-coated indicator electrodes
Karube et al. Microbial sensors for volatile compounds
Strohm et al. Dissolved oxygen measurement in yeast propagation
JPH052306B2 (en)
Karube et al. Amperometric determination of sodium nitrite by a microbial sensor
Meyerhoff et al. Simultaneous enzymatic/electrochemical determination of glucose and l‐glutamine in hybridoma media by flow‐injection analysis.
Karube et al. Application of microbiological sensors in fermentation processes
CN116577394A (en) Carbon dioxide microsensor based on copper catalysis and preparation method thereof
JPS5836736B2 (en) Volatile substance measurement method
SU1034618A3 (en) Electrochemical transducer for determining concentration of substances in solutions
JPH01237446A (en) Biosensor
CN211955306U (en) Immobilized enzyme electrode and immobilized enzyme sensor
Buehler et al. Applications of Electrochemical Sensors
JPS56140898A (en) Novel method for determination of number of living bacterial cell
Walker Polarographic measurement of oxygen
Rosenberg Use of a glass electrode for measuring rapid changes in photosynthetic rates
Qian et al. Combined amperometric sensors for simultaneous measurement of carbon dioxide and oxygen
Karube et al. Microbial sensors for ethyl alcohol, acetic acid and ammonia
Osborne et al. On-line, real time measurement of extracellular brain glucose using microdialysis and electrochemical detection