JPS5836383A - Prevention of biohazard by ozone - Google Patents

Prevention of biohazard by ozone

Info

Publication number
JPS5836383A
JPS5836383A JP13384981A JP13384981A JPS5836383A JP S5836383 A JPS5836383 A JP S5836383A JP 13384981 A JP13384981 A JP 13384981A JP 13384981 A JP13384981 A JP 13384981A JP S5836383 A JPS5836383 A JP S5836383A
Authority
JP
Japan
Prior art keywords
ozone
biohazard
factors
present
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13384981A
Other languages
Japanese (ja)
Other versions
JPS5825437B2 (en
Inventor
Nariko Jinriki
神力 就子
Kozo Ishizaki
石崎 紘三
Akira Ikehata
池畑 昭
Toru Ueda
亨 上田
Kazunobu Miura
三浦 一伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13384981A priority Critical patent/JPS5825437B2/en
Publication of JPS5836383A publication Critical patent/JPS5836383A/en
Publication of JPS5825437B2 publication Critical patent/JPS5825437B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To prevent biohazard simply and efficiently, by introducing an ozone gas into a closed space to be used for the research of microbiological engineering, genetic engineering, etc., a sterilizing and decomposing biohazard factors. CONSTITUTION:Ozone-containing air is introduced from the ozonizer 1 through the line 7 to the safety cabinet 2, the biobox 3, the device 4 for treating waste water, etc., and biohazard factors are sterilized and decomposed. Ozone in an exhaust gas is removed with active carbon in the device 5 for eliminating ozone. Since guanine, thymine, etc. are subjected to cleavage of double bond and decomposed, DNA (deoxyribonucleic acid) will not be repaired by a repair enzyme, so this method has high biohazard preventing effect.

Description

【発明の詳細な説明】 本発明は、微生物工学、遺伝子工学などの研究に使用さ
れる安全キャビネット及び安全実験室、あるいはそれら
からの排水のバイオハザードを防イ岬 、ヰするための新規な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for preventing biohazards in safety cabinets and safety laboratories used in research in microbial engineering, genetic engineering, etc., or in wastewater from them. It is related to.

さらに詳しくいえば、本発明は、オゾンを使用してバイ
オハザード因子を滅菌、分解することにより、簡単かつ
効率よ(バイオハザードを防御する方法に関するもので
ある。
More specifically, the present invention relates to a simple and efficient method for preventing biohazards by using ozone to sterilize and decompose biohazardous agents.

近年、分子生物学や遺伝子工学などの発展にともない、
遺伝子組換え技術を駆使した研究、例えば細胞内の遺伝
情報を担’)DNA(デオキシリポ核 、酸)を切断し
、一方別種の生物細胞のDNA (プラスミドなど)を
切断して、これらの異種のDNA同士を再結合し、この
組換えDNAを宿主細胞〔大腸菌など〕に導入すること
により、自然界に存在しない遺伝子をもった生物を作る
といった研究などが盛んに行われるようになっている。
In recent years, with the development of molecular biology and genetic engineering,
Research using gene recombination technology, for example, cutting the DNA (deoxyliponuclear, acid) that carries genetic information in cells, and cutting the DNA (plasmids, etc.) of biological cells of different species, By recombining DNA and introducing this recombinant DNA into host cells (such as Escherichia coli), research is actively being conducted to create organisms with genes that do not exist in nature.

それに伴なって、どれまで存在しなかった病原性微生物
を作り出す危険性も増大しており、そのため、この遺伝
子粗角え実験には内容に応じて徹底したバイオハザード
防御対策が求められている。
Along with this, the risk of creating pathogenic microorganisms that did not exist before is increasing, and therefore, thorough biohazard protection measures are required depending on the content of these genetic experiments.

また、従来から実施されてきた病原性微生物に関する研
究についても、例えばラッサ熱をひき起すような極めて
危険性の高い病原体や、あるいは未知の病原体を取り扱
う研究などがあり、バイオ・・ザード防御対策は不可欠
となっている。
In addition, regarding research on pathogenic microorganisms that has been carried out in the past, for example, there is research that deals with extremely dangerous pathogens such as those that cause Lassa fever, or with unknown pathogens. It has become essential.

したがって、その対策として最近では安全キャビネット
の使用や、実験室そのものに安全対策設備を備えたP3
.P、  レベルの実験室(組換えDNA実験指針、内
閣総理大臣、昭和54年8月27日付)の使用が義務づ
けられている。
Therefore, recent countermeasures include the use of safety cabinets and the use of P3s equipped with safety equipment in the laboratory itself.
.. The use of a P. level laboratory (Recombinant DNA Experiment Guidelines, Prime Minister, August 27, 1978) is required.

ところで、現在バイオハザード防御施設で用いられてい
る滅菌、消毒法は、実験器具や廃棄物については高圧蒸
気法、排水については煮沸(]330°C法であり、ま
た、安全キャビネットや安全実験室の滅菌、消毒に関し
てはホルマリン(ん蒸法が指定されている(組換えDN
A実験指針)。
By the way, the sterilization and disinfection methods currently used in biohazard protection facilities are the high-pressure steam method for laboratory equipment and waste, and the boiling (330°C) method for wastewater. For sterilization and disinfection, formalin (fumigation method) is specified (recombinant DNA
A experimental guideline).

しかしながら、高圧蒸気法は小型のものには適用しうる
が、大型のものには適用が困難で、その上試験体を封じ
こめである容器の滅菌、消毒には不適尚である。また排
水の煮沸法についても、φ量の場合にのみ使用可能で、
多量の場合は使用しに(いという欠点を有している。
However, although the high-pressure steam method can be applied to small-sized objects, it is difficult to apply to large-sized objects, and furthermore, it is unsuitable for sterilizing and disinfecting containers in which test specimens are contained. Also, regarding the boiling method for wastewater, it can only be used when the amount is φ.
It has the disadvantage that it is difficult to use in large quantities.

一方、安全キャビネットや安全実験室内のホルマリン(
ん蒸法は、(ん蒸装置を別途持ち込む必要があって簡便
ではな(、シかもホルムアルデヒドの滅菌、消毒力が比
較的強(ないために、ホルムアルデヒド7000 pp
mに60分間さらすという高濃度、長時間の処理を要求
している。さらに滅菌、消毒後のホルムアルデヒドは多
くの場合は大気に放出されており、このことはホルムア
ルデヒドの有毒性の点から問題があり、また仮にホルム
アルデヒドを水に吸収させて除去するとしても、その排
液の処理が再び必要となって煩雑である。
On the other hand, formalin (
The fumigation method is not easy as it requires bringing in a separate fumigation equipment, but the sterilizing and disinfecting power of formaldehyde is relatively strong (7000 ppp of formaldehyde is not required).
It requires high-concentration and long-time treatment, such as exposure to m for 60 minutes. Furthermore, formaldehyde after sterilization and disinfection is often released into the atmosphere, which poses a problem in terms of the toxicity of formaldehyde, and even if formaldehyde is removed by absorption into water, the waste water This process is necessary again, which is complicated.

こttr−、の理由からこのホルマリンくん蒸法は必ず
しも満足しうる方法とはいえない。
For these reasons, this formalin fumigation method cannot necessarily be said to be a satisfactory method.

また、補助的滅菌、消毒法として併用されている紫外線
照射法は、物体の陰の部分に対して有効ではなく、しか
も試験体を封じ込めている容器がガラスであれば、試験
体を破壊する恐れがあるなどの欠点を有している。
In addition, ultraviolet irradiation, which is used in conjunction with supplementary sterilization and disinfection, is not effective against the shadows of objects, and if the container containing the test object is glass, there is a risk of destroying the test object. It has some disadvantages such as.

本発明者らは、このような欠点を克服すべ(、操作が簡
単で効果的な新しいバイオハザード防御方法の開発につ
いて鋭意研究を重ねた結果、オゾンはバイオハザード因
子に対する滅菌、分解力が優れている上に、空気と電力
から容易に製造することができ、しかもその制御が簡単
であり、これを用いた滅菌、分解法は大気系、水系いず
れにおいても自動化が可能で操作が簡単であること、残
留オゾンは活性炭で除去することが可能であり、大気を
汚染しないこと、及びオゾンはガス体であるため紫外線
と異なり滅菌、消毒されない部分を生じることがなく、
また容器の中に封じ込めである試験体を損う恐れがない
ことなどの点に着目し、本発明を完成するに至った。
The inventors of the present invention have conducted extensive research into developing a new biohazard protection method that is easy to operate and effective, and have found that ozone has excellent sterilization and decomposition power against biohazard factors. In addition, it can be easily manufactured from air and electricity, and its control is simple, and the sterilization and decomposition methods using it can be automated and are easy to operate in both atmospheric and water systems. , Residual ozone can be removed with activated carbon and does not pollute the atmosphere, and since ozone is a gas, unlike ultraviolet rays, it does not leave parts unsterilized or disinfected.
Furthermore, the present invention was completed by paying attention to the fact that there is no risk of damaging the test specimen, which is sealed inside the container.

すなわち、本発明方法に従えば、安全キャビイ・ット、
安全実験室のような密閉系空間又はそれからの排水に、
オゾンを導入し、バイ矛ノ・ザード因子を滅菌、分解す
ることにより、効果的なバイオハザードの防御を行うこ
とができる。
That is, according to the method of the present invention, a safe cabin,
For closed spaces such as safety laboratories or drainage from them,
By introducing ozone to sterilize and decompose the biohazard factor, effective biohazard protection can be achieved.

本発明のバイオハザード防御方法は、分子生物学や遺伝
子工学などにおける遺伝子組換え技術の駆使によってで
きた組換え体のもつ危険性や、あるいは病原性微生物特
にウィルスなどによって生ずる危険性の排除を対象とし
ており、したがって、従来の滅菌の概念を越えた強力な
滅菌、分解による防御方法である。すなわち、従来の滅
菌処理においては、一定時間後の細菌数が一定基準値以
下に達したところをもって処理終了とみなしているが、
本発明のバイオハザード防御方法においては、バイオハ
ザード因子の細胞膜やエンベロープ、カプシドが破壊さ
れて中にある遺伝情報を有するDNAが破壊さネ1、シ
かも破壊されたDNAは再生不可能となる。
The biohazard prevention method of the present invention is aimed at eliminating the dangers of recombinant organisms created by making full use of genetic recombination techniques such as molecular biology and genetic engineering, or the risks caused by pathogenic microorganisms, especially viruses. Therefore, it is a powerful sterilization and decomposition defense method that goes beyond traditional sterilization concepts. In other words, in conventional sterilization treatment, the treatment is considered to have ended when the number of bacteria reaches a certain standard value or less after a certain period of time.
In the biohazard protection method of the present invention, the cell membranes, envelopes, and capsids of biohazard factors are destroyed, and the DNA containing genetic information therein is destroyed, and the destroyed DNA cannot be reproduced.

本発明方法に用いるオゾンは、空気と電力から容易に製
造することができ、その制御も簡単であり、しかもバイ
オハザード物に対して、従来用いられているホルムアル
デヒドに比べて優れた滅菌、分解、不活性化力を有して
いる。例えばタバコモザイクウィルスの核酸の場合、オ
ゾンの不活性化力はホルムアルデヒドのそれの約] 0
00倍に近い。
The ozone used in the method of the present invention can be easily produced from air and electricity, and its control is simple. Moreover, it has superior sterilization, decomposition, and It has inactivating power. For example, in the case of the tobacco mosaic virus nucleic acid, the inactivating power of ozone is about that of formaldehyde] 0
Close to 00 times.

一方、ホルムアルデヒドによる遺伝子の不活性化メカニ
ズムについては、核酸の中のグアニン、シトシン、アデ
ニンなどのアミノ基がホルムアルデヒドによって、モノ
又はジメチロール誘導体に変化することが知られている
が、このように単に核酸塩基がその類縁体に転化した程
度では、修復酵素により修復されて元の活性を再現する
可能性があることが、現在判明している。
On the other hand, regarding the mechanism of gene inactivation by formaldehyde, it is known that amino groups such as guanine, cytosine, and adenine in nucleic acids are changed by formaldehyde into mono- or dimethylol derivatives; It is now known that to the extent that a base is converted to its analogue, it can be repaired by repair enzymes to restore its original activity.

本発明者らはオゾンによるDNA破壊メカニズムについ
て検討した結果、その破壊がグアニン塩基全中心とする
ものであること、すなわち、グアニンは4.5位の二重
結合の開裂からさらに数種類の化合物に分解し、またチ
ミンも同程度の速さで分解し、遂には分子鎖切断に至る
との知見を得た。
The present inventors investigated the mechanism of DNA destruction caused by ozone and found that the destruction occurs at the center of all guanine bases, that is, guanine is further decomposed into several types of compounds from the cleavage of the double bond at the 4.5-position. However, we also found that thymine decomposes at a similar rate, eventually leading to molecular chain scission.

このようなオゾンによるDNA破壊メカニズムではDN
Aの修復は不可能で、したがってバイオ・・ザード防御
対策にオゾンを用いることは、殺菌、不活性化の速度と
効果において極めて有効であるといえる。
In this DNA destruction mechanism caused by ozone, DN
It is impossible to repair A. Therefore, the use of ozone as a biozard defense measure is extremely effective in terms of the speed and effectiveness of sterilization and inactivation.

本発明方法においては、オゾンガスを密閉系の安全キャ
ビネット又は安全実験室に通ずることによって、空気中
に浮遊するバイオ・・ザード因子や、粘着、固着してい
るバイオハザード因子を容易に滅菌、分解することがで
き、従来の高圧蒸気法、ホルマリン(ん蒸法、紫外線照
射法による滅菌、消毒法より効果的な方法である。
In the method of the present invention, by passing ozone gas through a closed safety cabinet or safety laboratory, bio-zard factors floating in the air and biohazard factors that are sticky or fixed can be easily sterilized and decomposed. This method is more effective than conventional sterilization and disinfection methods such as high-pressure steaming, formalin vaporization, and ultraviolet irradiation.

さらに、本発明方法においては、安全キャビネットや安
全実験室からの排水にオゾンガスを通じることによって
、その中に存在しているバイオハザード物を効果的に滅
菌、分解することができる。
Furthermore, in the method of the present invention, by passing ozone gas through the waste water from a safety cabinet or safety laboratory, biohazardous materials present therein can be effectively sterilized and decomposed.

次に添付図面に従って本発明をさらに詳細に説明する。The present invention will now be described in more detail with reference to the accompanying drawings.

図面は本発明方法のフローシートの一例であって、]は
空気よりオゾンを発生させるためのオゾン発生機、2は
安全キャビネット又は安全実験室、3はバスボックス(
安全キャビネットの場合はない)、4は安全キャビネッ
ト又は安全実験室からの排水を処理するための排水処理
装置及び5は排ガス中のオゾンを除去するための活性戻
光てん排オゾン除去装置である。
The drawing is an example of a flow sheet of the method of the present invention, where ] is an ozone generator for generating ozone from air, 2 is a safety cabinet or safety laboratory, and 3 is a bath box (
4 is a wastewater treatment device for treating wastewater from a safety cabinet or a safety laboratory, and 5 is an activated backlight evacuation ozone removal device for removing ozone in exhaust gas.

空気をライン6よりオゾン発生機1に供給してオゾンを
発生させ、得られたオゾン含有空気はライン7を通って
安全キャビネット又は安全実験室2、バスボックス3(
安全キャビネットの場合はない)及び排水処理装置4に
導かれ、室内や排水中に存在しているバイオハザード物
を滅菌、分解する。安全キャビネット又は安全実験室、
バスボックス及び排水処理装置から出た排オゾン含有空
気は、それぞれライン8,9及び10を通って排オゾン
除去装置5に導かれ、この中に充てんされている活性炭
によってオゾンが除去されたのち、無害の空気となって
ライン】1を通って大気に放出される。
Air is supplied from line 6 to ozone generator 1 to generate ozone, and the ozone-containing air obtained passes through line 7 to safety cabinet or safety laboratory 2, bath box 3 (
(In the case of a safety cabinet, there is no such thing) and wastewater treatment equipment 4, which sterilizes and decomposes biohazardous substances present indoors or in wastewater. safety cabinet or safety laboratory;
The exhaust ozone-containing air discharged from the bus box and the waste water treatment equipment is led to the exhaust ozone removal equipment 5 through lines 8, 9 and 10, respectively, and after the ozone is removed by activated carbon filled in this equipment, It becomes harmless air and is released into the atmosphere through line 1.

本発明方法においては、オゾンを、密閉空間内の雰囲気
中にioo ppmの濃度で導入する場合、処理時間は
60分間で十分であるが、濃度をあげれば処理時間は短
縮できる。
In the method of the present invention, when ozone is introduced into the atmosphere in a closed space at a concentration of ioo ppm, a treatment time of 60 minutes is sufficient, but the treatment time can be shortened by increasing the concentration.

本発明のオゾンによるバイオノ・ザード防御方法は、密
閉系の安全キャビネットや安全実験室内に存在するバイ
オ・・ザード因子や、それからの排水中に存在するバイ
オノ・ザード因子を効果的に滅菌、分解して完全に不活
性化し、またその防御システムは容易に自動化が可能で
、操作も極めて簡単であるという利点がある。
The biono-zard protection method using ozone of the present invention effectively sterilizes and decomposes the biono-zard factors present in closed safety cabinets and safety laboratories, as well as the biono-zard factors present in the wastewater from them. It has the advantage that it is completely inert, and its defense system can be easily automated and is extremely simple to operate.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 安全キャビネット大の密閉チェノ、<−(IXIXl 
m )の底面に大腸菌を散布し1こシャーレ(直径12
 cm )数個を静置した後、オゾン0 、3 W/l
 、< 140ppm )又は1.0 rn9/ll 
(470I)1)m)を含む空気を流速1 、5 m’
/minで送りこみ、一定時間後、清浄空気を10分間
通じ、チェンバー内のオゾンを完全に追い出した後、シ
ーヤーレをとり出し、37°C,1夜培養して、その生
存数を測定した。大腸菌散布のサンプルシャーレは次の
A、Bの2通りを用いた。
Example Safety cabinet-sized airtight chino, <-(IXIXl
Spray E. coli on the bottom of a petri dish (12 mm in diameter).
cm) After leaving several pieces still, ozone 0,3 W/l
, < 140ppm) or 1.0 rn9/ll
(470I) 1) m) at a flow rate of 1,5 m'
/min, and after a certain period of time, clean air was passed through the chamber for 10 minutes to completely drive out the ozone in the chamber, and the seaweed was taken out and cultured overnight at 37°C, and the number of survivors was measured. The following two sample petri dishes, A and B, were used for E. coli dispersion.

A:寒天培地に大腸菌懸濁液100μlをのせ、ガラス
棒で表面−面に拡げた後、37°C,1時間培養したも
の B:Aと同様に大腸菌を寒天培地−面に拡げた後、その
上に薄く寒天培地を゛のせ(厚さ帆02m+n)、大腸
菌をとじこめた後、37℃、1時間培養したもの オゾンを140pI)m導入した場合に得られたオゾン
接触時間と生存率との関係を第2図に示す。この図から
明らかなよづに、オゾンとの接触を困難にした極端な条
件CB)においても、従来用し・られてし・るホルムア
ルデヒドによる滅菌よりも低濃度、短時間で滅菌しつる
A: 100 μl of E. coli suspension was placed on the agar medium, spread on the surface with a glass rod, and then cultured at 37°C for 1 hour. B: After spreading E. coli on the agar medium in the same manner as in A. A thin layer of agar medium was placed on top of the agar medium (thickness: 02 m + n) to confine E. coli, and the bacteria was cultured at 37°C for 1 hour. The relationship is shown in Figure 2. As is clear from this figure, even under extreme conditions (CB) that make contact with ozone difficult, sterilization can be achieved at a lower concentration and in a shorter time than the conventional sterilization using formaldehyde.

また、サンプルAについて、オゾン濃度ヲ140ppm
 (実線)及び470 ppm (破線)において同様
に試験した結果を第3図に示す。どの図から明らかなよ
うに、オゾン濃度の高い方が処理時間を短縮することが
できる。
Also, regarding sample A, the ozone concentration was 140 ppm.
(solid line) and 470 ppm (dashed line), the results of similar tests are shown in FIG. As is clear from the figures, the higher the ozone concentration, the shorter the processing time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法のフローシート、第2図及び第3図
は本発明の実施例におけるオゾン接触時間と大腸菌の生
存率の関係を示すグラフである。 図中符号lはオゾン発生機22は安全キャビネット又は
安全実験室、3はパスボックス、4は排水処理、装置、
5は除去装置である。 特許出願人 工業技術院長 石 坂誠 −指定代理人 
工業技術院北海道工業開発試験所長佐  藤  俊  
夫 第1図 第2図 一〇 第3図 0     5     10    15  、オゾ
ン接触時間(分)
FIG. 1 is a flow sheet of the method of the present invention, and FIGS. 2 and 3 are graphs showing the relationship between ozone contact time and E. coli survival rate in Examples of the present invention. In the figure, symbol l indicates the ozone generator 22 is a safety cabinet or safety laboratory, 3 indicates a pass box, 4 indicates a wastewater treatment device,
5 is a removing device. Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Designated agent
Shun Sato, Director, Hokkaido Industrial Development Testing Institute, Agency of Industrial Science and Technology
Figure 1 Figure 2 10 Figure 3 0 5 10 15 Ozone contact time (minutes)

Claims (1)

【特許請求の範囲】[Claims] 1密閉系空間のバイオハザードを防御する方法において
、該空間内にオゾンを導入し、バイオハザード因子を滅
菌、分解することを特徴とする方法。
1. A method for preventing biohazards in a closed system space, which comprises introducing ozone into the space to sterilize and decompose biohazard factors.
JP13384981A 1981-08-25 1981-08-25 Biohazard protection method using ozone Expired JPS5825437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13384981A JPS5825437B2 (en) 1981-08-25 1981-08-25 Biohazard protection method using ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13384981A JPS5825437B2 (en) 1981-08-25 1981-08-25 Biohazard protection method using ozone

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP894584A Division JPS6037977A (en) 1984-01-20 1984-01-20 Apparatus for protecting from biohazard

Publications (2)

Publication Number Publication Date
JPS5836383A true JPS5836383A (en) 1983-03-03
JPS5825437B2 JPS5825437B2 (en) 1983-05-27

Family

ID=15114464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13384981A Expired JPS5825437B2 (en) 1981-08-25 1981-08-25 Biohazard protection method using ozone

Country Status (1)

Country Link
JP (1) JPS5825437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652494A (en) * 1992-07-30 1994-02-25 Mitsubishi Electric Corp Bus service management device
CN101966421A (en) * 2010-09-03 2011-02-09 清华大学 Method for optimizing long-term operating performance of VOC gas biological filtration device by utilizing ozone
CN107920496A (en) * 2015-03-31 2018-04-17 兴盛生物科技股份有限公司 Device is grown in automatic cytological culture training

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652494A (en) * 1992-07-30 1994-02-25 Mitsubishi Electric Corp Bus service management device
CN101966421A (en) * 2010-09-03 2011-02-09 清华大学 Method for optimizing long-term operating performance of VOC gas biological filtration device by utilizing ozone
CN107920496A (en) * 2015-03-31 2018-04-17 兴盛生物科技股份有限公司 Device is grown in automatic cytological culture training
JP2018512889A (en) * 2015-03-31 2018-05-24 スライブ バイオサイエンス, インコーポレイテッド Automatic cell culture incubator
US11319523B2 (en) 2015-03-31 2022-05-03 Thrive Bioscience, Inc. Automated cell culture incubator
US11920121B2 (en) 2015-03-31 2024-03-05 Thrive Bioscience, Inc. Automated cell culture incubator

Also Published As

Publication number Publication date
JPS5825437B2 (en) 1983-05-27

Similar Documents

Publication Publication Date Title
Laroussi Sterilization of contaminated matter with an atmospheric pressure plasma
Guzel-Seydim et al. Use of ozone in the food industry
Heckert et al. Efficacy of vaporized hydrogen peroxide against exotic animal viruses
US6984361B2 (en) Use of continuous flow of Ox to control biological pathogens in mail and shipping parcels
Sharma et al. Bacterial inactivation in open air by the afterglow plume emitted from a grounded hollow slot electrode
WO2019114749A1 (en) Method for removing antibiotic resistance gene by using ionizing radiation
Vélez-Colmenares et al. Effect of recirculation and initial concentration of microorganisms on the disinfection kinetics of Escherichia coli
Rickloff An evaluation of the sporicidal activity of ozone
SE507526C2 (en) Sterilization method for closed packages
JPH07502911A (en) How to dispose of infectious waste
Lan et al. Investigation of reduction in risk from antibiotic resistance genes in laboratory wastewater by using O3, ultrasound, and autoclaving
McDonald et al. The development of photosensitized pulsed and continuous ultraviolet decontamination techniques for surfaces and solutions
Epelle et al. Ozone decontamination of medical and nonmedical devices: an assessment of design and implementation considerations
Kawamura et al. Evaluation of bactericidal effects of low‐temperature nitrogen gas plasma towards application to short‐time sterilization
JPS5836383A (en) Prevention of biohazard by ozone
US20040052680A1 (en) Treatment of environmental unit atmosphere and/or interior with generation of radicals
JP5758006B2 (en) Treatment of residual nucleic acids present on the surface of expendables for testing and testing
US20100119654A1 (en) Method for reducing the virus and micro-organism content of biological extracts which contain solids and extract produced according to the method
Rodriguez et al. Escherichia coli survival in plasma‐treated water and in a gas–liquid plasma reactor
CN113197199B (en) Instrument disinfectant, and preparation method and application thereof
JPS6037977A (en) Apparatus for protecting from biohazard
Ramsay et al. The synergistic effect of excimer and low-pressure mercury lamps on the disinfection of flowing water
Shartooh et al. Increasing Sterilization Efficiency of Shredder Autoclave on Medical Waste Using Ultraviolet Light Device
Nickelsen et al. Disinfection of Foods, Waste Residuals and Homeland Defense Materials with Accelerated Electron Injection
JPH01503197A (en) Method for inactivating biological activity of DNA