JPS5835965A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5835965A
JPS5835965A JP13571981A JP13571981A JPS5835965A JP S5835965 A JPS5835965 A JP S5835965A JP 13571981 A JP13571981 A JP 13571981A JP 13571981 A JP13571981 A JP 13571981A JP S5835965 A JPS5835965 A JP S5835965A
Authority
JP
Japan
Prior art keywords
resistor
resistance
laser
poly
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13571981A
Other languages
Japanese (ja)
Inventor
Koichi Kugimiya
公一 釘宮
Shigenobu Akiyama
秋山 重信
Haruhide Fuse
玄秀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13571981A priority Critical patent/JPS5835965A/en
Publication of JPS5835965A publication Critical patent/JPS5835965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce resistance to predetermined value, and to obtain a poly Si resistor, a secular change thereof is small, by partially increasing the grain-size of poly Si through the irradiation of a laser to the resistor, etc. CONSTITUTION:When a poly Si film 13 with 0.5mum thickness is formed to an SiO2 12 on an Si wafer 11 through a CVD method, B ions are implanted through an ion implantation method having excellent controllability and the CW-Ar laser is irradiated under the conditions of 8W output, an approximately 15mum spot diameter and 10cm/sec scanning speed, the temperature of a substrate reaches 350 deg.C, the grain-size is increased extending over 10-15mum width and 80-120mum length, prescribed sheet resistance is obtained, and reproducibility is improved in addition to the small change of resistance value to the quantity of doping. A secular change is also small. Al electrodes 14 are attached to the film 13, and the stable polycrystalline metallic resistor having high accuracy is completed.

Description

【発明の詳細な説明】 本発明は半導体装置に関し、特性が優れかつ高精度の多
結晶抵抗体を有した半導体装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and provides a semiconductor device having a polycrystalline resistor with excellent characteristics and high precision.

従来より、6ビツトや8ビツトの並列形い変換器等に用
いられる基準抵抗などでは、非常に高精度なものが要求
されている。第1図は従来の薄膜抵抗体を示すものであ
る。同図において、1は基板、2は基板1上に形成され
た絶縁膜であシ、3は薄膜抵抗体である。尚、4は薄膜
抵抗体3の両端電極である。従来の抵抗体においては、
この薄膜抵抗体3の抵抗値を所定値に設定するため、レ
ーザートリミング等が用いられていた。
Conventionally, reference resistors used in 6-bit and 8-bit parallel converters have been required to have extremely high precision. FIG. 1 shows a conventional thin film resistor. In the figure, 1 is a substrate, 2 is an insulating film formed on the substrate 1, and 3 is a thin film resistor. Note that 4 represents electrodes at both ends of the thin film resistor 3. In conventional resistors,
In order to set the resistance value of the thin film resistor 3 to a predetermined value, laser trimming or the like has been used.

このトリミング法を第1図の上面図である第2図(&)
 、 (b)を用いて説明する。大きな抵抗値修正を行
う時には、第2図(IL)のように横断的に切断部分5
と、残った狭い接続部分5′に電流集中が生じ発熱する
恐れが大きいため、第2図(b)に示すようにL字型に
切断部分6を形成して、この障害を防ぐように工夫して
いる。また、例えば通常よく用いられている不純物拡散
を行ったポリシリコンを抵抗体として用いた場合のよう
に、トリミング調整直後は所定値になっているが、86
°C300時間の加速テストで明らかにされるように、
5o。
This trimming method is shown in Figure 2 (&) which is a top view of Figure 1.
, (b). When making a large resistance value correction, cut the section 5 transversely as shown in Figure 2 (IL).
In this case, there is a great possibility that current concentration will occur in the remaining narrow connection part 5' and heat will be generated. Therefore, as shown in Fig. 2 (b), an L-shaped cut part 6 is formed to prevent this problem. are doing. In addition, for example, when polysilicon with impurity diffusion, which is commonly used, is used as a resistor, the predetermined value is set immediately after trimming adjustment, but 86
As revealed by accelerated testing of 300 hours at °C,
5o.

〜s o o o ppmの抵抗変化が認められる。こ
のような特性変化は、さらに高精度のム/D変換器(例
えば10ビツト)に適用するのは困難である。
A resistance change of ˜sooo ppm is observed. Such a characteristic change is difficult to apply to a highly accurate MU/D converter (for example, 10 bits).

又、トリミングして狭くなった部分での電流集中による
過渡的な過大電流に対して弱点となっている。
In addition, it is vulnerable to transient excessive current due to current concentration in the narrowed portion after trimming.

本発明は、このような不安定性を改良した多結晶金属抵
抗体を有した半導体装置を提供せんとするものである。
The present invention aims to provide a semiconductor device having a polycrystalline metal resistor that improves such instability.

本発明者らは、多結晶金属抵抗体に高エネルギービーム
を照射し、その抵抗変化を検討していたが、現在知られ
ているようなレーザーアニール法などで粒成長させると
抵抗が下がるという現象以外に、抵抗の経時変化が小さ
くなるという新しい現象を見い出した。本発明はこのよ
うな現象にかんがみて、レーザーを多結晶抵抗体に照射
する等によシ多結晶の粒径を部分的に大きくすることに
より、所定値に抵抗を下げると同時に経時変化の少ない
抵抗体を形成せんとするものである。すなわち、本発明
は従来と異なり抵抗を下げることにより、所定抵抗値に
抵抗を設定するものである。
The inventors investigated the change in resistance by irradiating a polycrystalline metal resistor with a high-energy beam, but found that the resistance decreases when grains are grown using the currently known laser annealing method. In addition, we discovered a new phenomenon in which the change in resistance over time becomes smaller. In view of this phenomenon, the present invention partially increases the grain size of the polycrystalline resistor by irradiating the polycrystalline resistor with a laser, thereby lowering the resistance to a predetermined value and at the same time reducing the change over time. The purpose is to form a resistor. That is, the present invention sets the resistance to a predetermined resistance value by lowering the resistance, unlike the conventional method.

以下、本発明を図面を用いて説明する。第3図は本発明
の一実施例に係る抵抗体を示すもので、同(”)は断面
図、同(b)は上面図を示す。同図において11は種々
の回路を形成したたとえば半導体基板で、この基板11
上に絶縁膜12を設けである。
Hereinafter, the present invention will be explained using the drawings. FIG. 3 shows a resistor according to an embodiment of the present invention, where ('') is a cross-sectional view and (b) is a top view. On the board, this board 11
An insulating film 12 is provided thereon.

13は薄膜抵抗体であり多結晶金属薄膜を例えば鼻着、
CVDなどにより形成されて構成される。
13 is a thin film resistor, and a polycrystalline metal thin film is used, for example, as a nose cloth.
It is formed and configured by CVD or the like.

14はム1等により構成された電極配線でめ−る。Reference numeral 14 denotes an electrode wiring made up of the wires 1 and the like.

多結晶金属としては、不純物を含有したシリコン。Silicon containing impurities is a polycrystalline metal.

Mo、Wなどの高融点金属を用いる。尚、抵抗体13の
抵抗値調整は電極14に印加する電圧値をモニターしな
がら、抵抗値を調整して行う。抵抗値調整は、レーザー
光や電子線を径1〜100μmに絞シ、抵抗体13の中
央付近にスポット状15又はストライプ状16に照射し
、照射部分の抵抗値を低下させることによって行う。こ
れは、従来のレーザートリミングなどの抵抗値を上昇さ
せて値を調整するのとは全く逆である。レーザー光とし
ては使用する金属によって使用に適した波長が異なるが
、概して短波長側が吸収や透過距離を考えれば好ましい
。例えばムrレーザーやYAGレーザーの倍波長を用い
る。出力としては数Wで十分である電子線を用うる場合
においても10〜100kaマ、10〜10ooμムで
十分である。
A high melting point metal such as Mo or W is used. Note that the resistance value of the resistor 13 is adjusted by monitoring the voltage value applied to the electrode 14 and adjusting the resistance value. The resistance value adjustment is performed by focusing a laser beam or an electron beam to a diameter of 1 to 100 μm and irradiating the resistor 13 near the center in a spot shape 15 or stripe shape 16 to lower the resistance value of the irradiated portion. This is completely opposite to conventional laser trimming, which adjusts the resistance value by increasing it. The suitable wavelength for laser light differs depending on the metal used, but in general, shorter wavelengths are preferable in terms of absorption and transmission distance. For example, a double wavelength of a MU laser or a YAG laser is used. Even when using an electron beam, for which an output of several watts is sufficient, an output of 10 to 100 ka or 10 to 100 μm is sufficient.

以下、本発明に係る抵抗体の特性等について実施例に基
づき説明する。
Hereinafter, the characteristics and the like of the resistor according to the present invention will be explained based on examples.

〔実施例1〕 3″のSiウェハー上に絶縁膜12としてCVD5iO
□を0.6μm形成し、さらに0.6μm厚のG V 
D pony Si膜を薄膜抵抗体13として形成した
。このSi膜に制御性のよいイオン注入によりボロンイ
オンを、1o12,1013,1o14,1015/c
11のドーズ量で導入した。これらを1o00°C,3
0分N2中で焼鈍した所、粒径を調べたところ0.05
〜0.1 pm (7) pony−8iからなってお
り、四端子法によるシート抵抗値は、第4図の曲線イに
示す通りであり、ドーズ量に対して、抵抗値の急激な変
化がみられた。
[Example 1] CVD5iO was deposited as the insulating film 12 on a 3″ Si wafer.
□ with a thickness of 0.6 μm, and a G V with a thickness of 0.6 μm
A D pony Si film was formed as the thin film resistor 13. Boron ions were implanted into this Si film by ion implantation with good controllability.
A dose of 11 was introduced. These are 1o00°C, 3
After annealing in N2 for 0 minutes, the grain size was found to be 0.05.
~0.1 pm (7) It consists of pony-8i, and the sheet resistance value measured by the four-probe method is as shown in curve A in Figure 4, and there is a rapid change in resistance value with respect to the dose amount. It was seen.

これに対して、上記の如く不純物注入したpOly−8
iにCW−ムrレーザー照射した所、粒径は概略中とし
て10〜15μm、長さ80〜120μmと大きくなり
、そのシート抵抗は曲線口に示す通シになり、ドーズ量
に対する抵抗変化が小さく、抵抗値の再現性がよいこと
を示している。なお、レーザー照射条件は、レーザ出力
8W照射スポツト径約16μm1走査速度1oα/ s
ec 、基板温度350’Cであった。以上の様に、従
来の抵抗体では、不純物濃度のわずかな変化で抵抗値が
急変するのに対して、本発明によればその変化は小さく
安定することを示している。
On the other hand, pOly-8 implanted with impurities as described above
When I was irradiated with CW-mura laser, the particle size became large, approximately 10 to 15 μm, and the length was 80 to 120 μm, and the sheet resistance became the same as shown at the curved line, and the resistance change with respect to the dose was small. , indicating good reproducibility of resistance values. The laser irradiation conditions are: laser output: 8 W; irradiation spot diameter: approximately 16 μm; scanning speed: 1 oα/s
ec, and the substrate temperature was 350'C. As described above, it has been shown that in the conventional resistor, the resistance value changes suddenly due to a slight change in impurity concentration, whereas according to the present invention, the change is small and stable.

〔実施例2〕 3″の石英板(厚み2ff)上に膜13として0.45
μm厚(7) CV D poly−5i膜を形成し、
5×1()15/dのボロンを注入した。焼鈍法として
、従来の電気炉による方法(1000’C,30分、N
2中)、レーザーアニール法(レーザー出力4〜8W、
照射スポット径16〜60μm、走査速度3〜1oCI
R/就、基板温度200〜350°Cの種々の条件)で
行った所、粒径が0.05〜200μmでシート抵抗が
103〜1o7Q/口のpoly−8i 抵抗膜を得た
。その結果を第6図に示す。同図より、粒径0.05〜
0.1μmの時、シート抵抗107Ω7全弱(第6図イ
の部・分)のものが粒径0.3〜0.6μmに成長する
と、106ルも弱(第6図口の部分)のシート抵抗と約
1桁の抵抗減少があることが認められる。
[Example 2] 0.45 as the film 13 on a 3″ quartz plate (thickness 2ff)
Form a μm thick (7) CVD poly-5i film,
5×1()15/d of boron was implanted. As an annealing method, a conventional electric furnace method (1000'C, 30 minutes, N
2), laser annealing method (laser output 4-8W,
Irradiation spot diameter 16-60μm, scanning speed 3-1oCI
Poly-8i resistive films having grain sizes of 0.05 to 200 μm and sheet resistances of 10 3 to 10 7 Q/hole were obtained under various conditions including a substrate temperature of 200 to 350°C. The results are shown in FIG. From the same figure, the particle size is 0.05~
When the sheet resistance is 0.1 μm, when the sheet resistance is 107Ω7 total (the part in Figure 6 A), when it grows to a grain size of 0.3 to 0.6 μm, the sheet resistance is just under 106Ω (the opening part in Figure 6). It is observed that there is a decrease in sheet resistance of approximately one order of magnitude.

〔実施例3〕 実施例1で得たpony Si粒径が0.1μm以下の
各種の試料を用い中130μm1長さく電極間)600
μmのpoly−8i低抵抗を形成し、電極にムl配線
をし、4oO°Cでモニターした後所定値にトリミング
し、86°Cの寿命テスト機に入れ、3oO時間にわた
る抵抗値変化を調べた。その結果を、第6図に示す。同
図において、曲線イは従来法による結果、曲線口は本発
明による方法による結果を示す。尚、従来のトリミング
法として、ノ(シスYAGレーザーを約1μmのスポッ
ト径に絞り、第2図(b)に示すように切断したものと
した。本発明にかかるトリミング法としては、第3図1
6に示すように、CW−krv−ザー6Wを約10μm
に絞り、基板温度300°Cで、10m/!1ieCに
走査する条件でスクライブ状に照射した。この照射によ
り粒径は約20μmに成長していた。
[Example 3] Various samples with pony Si particles obtained in Example 1 having a particle size of 0.1 μm or less were used to prepare samples with a length of 130 μm (between electrodes) of 600 μm.
Form a poly-8i low resistance of μm, wire the electrode with mulch, monitor it at 4oO°C, trim it to a specified value, put it in a life tester at 86°C, and examine the resistance change over 3oO hours. Ta. The results are shown in FIG. In the figure, curve A shows the results obtained by the conventional method, and curve A shows the results obtained by the method according to the present invention. In addition, as a conventional trimming method, a cis YAG laser was focused to a spot diameter of about 1 μm and cut as shown in FIG. 2(b).As a trimming method according to the present invention, 1
As shown in Figure 6, the CW-krv-zer 6W is approximately 10 μm thick.
At a substrate temperature of 300°C, 10m/! It was irradiated in a scribe shape under scanning conditions of 1ieC. As a result of this irradiation, the particle size had grown to about 20 μm.

本実施例に示した様に、本発明に係るものでは基板を8
6°Cに保持し300時間経過した後においても、抵抗
変化は約10ppmにすぎないのに対し、従来では10
oOppH1にも達していることがわかる。これは、従
来法によるものでは、融断という苛酷な加工を施してい
るためと推定される。
As shown in this embodiment, the substrate according to the present invention is
Even after being kept at 6°C for 300 hours, the resistance change was only about 10 ppm, compared to the conventional
It can be seen that oOppH1 has also been reached. This is presumed to be due to the harsh process of fusing and cutting in the conventional method.

本発明においては、抵抗値調整直後拡散等を生じない6
00〜850’Cの温度で焼鈍すればさらに安定化する
In the present invention, diffusion etc. do not occur immediately after resistance value adjustment6.
It is further stabilized by annealing at a temperature of 00 to 850'C.

さらに、本発明の例では、抵抗値を下げるために電流集
中によって発熱の生ずる恐nは全くないのに対し、従来
の例では、高抵抗部の部−分で発熱する恐扛があり、使
用にあたっては十分の注意が必要である。又、従来では
融断するため、溶融した破片や溶融している最中、その
前後の汚染が大きな問題となっており(これも不安定性
の一因になっていると推定されてる)、また従来では溶
断するために表面上に保護膜を形成しても幾分の改良し
か得られない。これに対し、本発明にかかる方法ては、
例えば5i02やSi3N4のような保護膜を表面に覆
った状態でできるため、全く汚染の恐れがなく、特性の
向上に寄与している。
Furthermore, in the example of the present invention, there is no risk of heat generation due to current concentration in order to lower the resistance value, whereas in the conventional example, there is a risk of heat generation in high resistance parts, making it difficult to use. Sufficient care must be taken when doing so. In addition, since the conventional method involves melting and cutting, contamination caused by melted debris and before and after melting is a major problem (this is also estimated to be a cause of instability), and Conventionally, even if a protective film is formed on the surface for fusing, only some improvement can be obtained. In contrast, the method according to the present invention
For example, since the surface is covered with a protective film such as 5i02 or Si3N4, there is no risk of contamination, contributing to improved characteristics.

〔実施例4〕 実施例1で得た不純物を注入したpoI17−8i膜上
に、さらにCVD−3iO2を0.2μvn形成し、実
施例1と同様の処理を行った所、実施例1とほぼ同じ結
果を得た。このCVD−8iO□膜は、レーザー照射の
前後における汚染を防ぐ上から有用である。
[Example 4] On the poI17-8i film into which the impurities obtained in Example 1 were implanted, 0.2 μvn of CVD-3iO2 was further formed and the same treatment as in Example 1 was performed. Got the same result. This CVD-8iO□ film is useful for preventing contamination before and after laser irradiation.

又、5i02の代りに513N4形成しても同じ効果が
認められた。
Furthermore, the same effect was observed when 513N4 was formed instead of 5i02.

〔実施例6〕 実施例1で得た不純物を注入したpoly−8iに50
key100μムの電子ビームを照射した。ビーム径は
3μmで試料移動速度は2〜憧であった。
[Example 6] Poly-8i injected with the impurity obtained in Example 1 was
An electron beam with a key of 100 μm was irradiated. The beam diameter was 3 μm, and the sample movement speed was 2 to 100 m.

粒径は約6μmに成長し、レーザー照射と類似の効果を
示した。
The particle size grew to about 6 μm, showing an effect similar to that of laser irradiation.

〔実施例6〕 実施例1におけるpoly−8i膜形成と同様にMO膜
を絶縁膜上に0.4μm蒸着した。1000’030分
Ar中で焼鈍した所、 シート抵抗は、1oル名に低下
していた。粒径は約0.05μmであった。
[Example 6] Similar to the poly-8i film formation in Example 1, an MO film was deposited to a thickness of 0.4 μm on the insulating film. When annealed in Ar for 1000'030 minutes, the sheet resistance was reduced to 1000 mol. The particle size was approximately 0.05 μm.

これを、実施例2で示すような各種の条件でレーザー照
射を施した所、粒径は0.3〜2μmと成長し、抵抗A
〜14に低下した。
When this was irradiated with laser under various conditions as shown in Example 2, the grain size grew to 0.3 to 2 μm and the resistance was A.
It decreased to ~14.

0 本実施例の如くMOなどのような高融点金属を用いた時
も類似の現象が生ずる。この時抵抗変化は、粒径が大き
くなっても抵抗値は3倍程度しか変化せず、はぼバルク
に近い抵抗値を示すようになる。このようなバルクに近
い抵抗値を示す粒径は、やはり6倍程度に粗大化してい
る。その他の特性は以上に説明したポリシリコンにおけ
る現象と同様である。
0 A similar phenomenon occurs when a high melting point metal such as MO is used as in this embodiment. At this time, the resistance value changes only by about three times even if the particle size increases, and the resistance value comes to be close to that of the bulk. The grain size exhibiting such a resistance value close to that of the bulk is also about 6 times larger. Other characteristics are similar to the phenomenon in polysilicon described above.

以上説明した様に、本発明に係る多結晶抵抗体を有した
半導体装置は、制御性、安定性等の面で、従来にない顕
著な効果を有しており、工業的価1(1は極めて高い。
As explained above, the semiconductor device having the polycrystalline resistor according to the present invention has unprecedented effects in terms of controllability, stability, etc., and has an industrial value of 1 (1 Extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の薄膜抵抗体を示す図、第2図(a)。 (b)は従来のトリミング状態を示す図、第3図(a)
。 (b)は本発明の一実施例にかかる抵抗体の断面図。 正面図、第4図はドース量に対する抵抗値の変化を示す
特性図、第6図は結晶の粒径と抵抗値との関係を示す図
、第6図は抵抗の経時変化状態を示す図である。 11・・・・・・基板、12・・・・・・絶縁体膜、1
3・・・・・・抵抗体、16・・・・・・スポット状、
16・・・・・・ストライプ状。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 第3図
FIG. 1 is a diagram showing a conventional thin film resistor, and FIG. 2(a). (b) is a diagram showing the conventional trimming state, and Figure 3 (a)
. (b) is a sectional view of a resistor according to an embodiment of the present invention. The front view, Fig. 4 is a characteristic diagram showing the change in resistance value with respect to dose amount, Fig. 6 is a diagram showing the relationship between crystal grain size and resistance value, and Fig. 6 is a diagram showing the change in resistance over time. be. 11...Substrate, 12...Insulator film, 1
3...Resistor, 16...Spot shape,
16... Striped. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 体を有することを特徴とする半導体装置。A semiconductor device characterized by having a body.
JP13571981A 1981-08-28 1981-08-28 Semiconductor device Pending JPS5835965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13571981A JPS5835965A (en) 1981-08-28 1981-08-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13571981A JPS5835965A (en) 1981-08-28 1981-08-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5835965A true JPS5835965A (en) 1983-03-02

Family

ID=15158275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13571981A Pending JPS5835965A (en) 1981-08-28 1981-08-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5835965A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196114A (en) * 1987-08-21 1989-04-14 Unilever Nv Dentifrice
JPH029160A (en) * 1988-06-28 1990-01-12 Toshiba Corp Semiconductor device
JPH03148167A (en) * 1989-11-02 1991-06-24 Rohm Co Ltd Semiconductor device with built-in resistor
JP2012503327A (en) * 2008-09-19 2012-02-02 アギア システムズ インコーポレーテッド Silicon allotropes or morphology changes induced by electromagnetic radiation for resistance tuning of integrated circuits

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196114A (en) * 1987-08-21 1989-04-14 Unilever Nv Dentifrice
JPH0196113A (en) * 1987-08-21 1989-04-14 Unilever Nv Dentifrice
JPH01104005A (en) * 1987-08-21 1989-04-21 Unilever Nv Dentfrice
JPH029160A (en) * 1988-06-28 1990-01-12 Toshiba Corp Semiconductor device
JPH03148167A (en) * 1989-11-02 1991-06-24 Rohm Co Ltd Semiconductor device with built-in resistor
JP2012503327A (en) * 2008-09-19 2012-02-02 アギア システムズ インコーポレーテッド Silicon allotropes or morphology changes induced by electromagnetic radiation for resistance tuning of integrated circuits

Similar Documents

Publication Publication Date Title
JP3938147B2 (en) Lithium tantalate substrate and manufacturing method thereof
JPH0587986B2 (en)
JP3184320B2 (en) Diamond field effect transistor
SE511816C2 (en) A resistor comprising a polycrystalline silicon resistor body and a method for producing one
US6436846B1 (en) Combined preanneal/oxidation step using rapid thermal processing
JPS5835965A (en) Semiconductor device
Kittl et al. Time‐resolved temperature measurements during rapid solidification of Si‐As alloys induced by pulsed‐laser melting
EP0535633B1 (en) Method of fabricating nano-size thin wires and devices made of such thin wires
JPH0656839B2 (en) Method for manufacturing semiconductor device
JPS5834931B2 (en) Handout Thailand
KR930010093B1 (en) Forming method of semiconductor thin film
EP3366816A1 (en) Method for producing lithium niobate single crystal substrate
JPH02119122A (en) Manufacture of low resistive polycrystalline semiconductor thin film
US5387549A (en) Process for fabricating ohmic contact
RU2169411C1 (en) High-power semiconductor resistor and its manufacturing process
JPS63164354A (en) Method of trimming resistor
JP2019094224A (en) Method for growing silicon single crystal
Bujatti et al. Multiply scanned electron beam annealing of Si implanted GaAs
EP3312315A1 (en) Lithium niobate single crystal substrate and method for producing same
US20180135204A1 (en) Lithium niobate single crystal substrate and method of producing the same
JPH11268997A (en) Heat treatment of gallium-arsenic single crystal and gallium-arsenic substrate
US10301742B2 (en) Lithium niobate single crystal substrate and method of producing the same
EP1328003B1 (en) Field emission-type electron source
JPH04130623A (en) Manufacture of semiconductor device
JPH01268047A (en) Formation of polysilicon resistor