JPS5835425A - Liquid crystal polarization meter - Google Patents

Liquid crystal polarization meter

Info

Publication number
JPS5835425A
JPS5835425A JP13508081A JP13508081A JPS5835425A JP S5835425 A JPS5835425 A JP S5835425A JP 13508081 A JP13508081 A JP 13508081A JP 13508081 A JP13508081 A JP 13508081A JP S5835425 A JPS5835425 A JP S5835425A
Authority
JP
Japan
Prior art keywords
liquid crystal
sample
electric field
light
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13508081A
Other languages
Japanese (ja)
Inventor
Tetsuo Sueda
末田 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13508081A priority Critical patent/JPS5835425A/en
Publication of JPS5835425A publication Critical patent/JPS5835425A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To make it possible to measure the phase difference, double refraction quantity, and the like of an anisotropic sample in a simple structure, by attaching a liquid crystal cell which is driven by an electric field. CONSTITUTION:The light transmitted through the sample 3 becomes the elliptically polarized light in general and inputted into the liquid crystal cell 4. The abnormal light refractive index of the liquid crystal cell 4 is varied by the electric field applied to electrodes 12 and 13. Therefore, the light transmitted through the liquid crystal cell becomes the linearly polarized light in the same vibrating direction as that of a polarizer 2 by adjusting the electric field. With the amount of light in an observing system 6 being observed, the electric field to be applied to the liquid crystal cell 4 is adjusted so that the light is not inputted into the observing system. At the same time, the temperature of a crystal 14 is detected by a temperature sensor 18. The phase delay of the liquid crystal 4 and the phase delay or double refraction quantity of the sample 3 can be found from the values of the electric field and the temperature at this time. In this way, the phase difference, double refraction quantity, and the like of the sample can be measured by the simple structure.

Description

【発明の詳細な説明】 本発明は、電界により複履綺量#変化す為液晶セkを層
いた液晶偏光計に関す為ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal polarimeter in which a liquid crystal polarizer is layered so that the polarization value can be changed by an electric field.

試料の位相遅れ、璽履祈量、旋光度1!どを測定するた
め偏光計がamされる。偏光計の測定原理は種々−もれ
ているが、例えば複履贋量NOR知の物質又はツァラデ
ー勅曇或いはホッケ身ス効果を有する物質を用いて、試
料とは逆の方向に位相遅れを生じさ昔て補償し、この補
償に用いた物質の位mにより、試料が有す為固有の複麿
祈量Elllllする位相遅れを測定するものがあ墨、
補償に用い為物質としては、水晶を平板に形成したもの
或い鯰−状に形成したものが使用され、・胃一部分が不
可欠であり自動計測を行なうには不向会な場合が多い。
Sample phase delay, rotation amount, optical rotation 1! A polarimeter is used to measure the amount of light. The measurement principle of a polarimeter varies, but for example, it uses a material known for double-counterfeiting, or a material that has a glazing effect or a Hockey effect, which causes a phase lag in the opposite direction to the sample. A long time ago, there was a technique that compensated for the material used for this compensation and measured the phase delay inherent to the sample due to the compound amount.
The material used for compensation is a quartz crystal formed into a flat plate or catfish-shaped. - A portion of the stomach is essential and is often unsuitable for automatic measurement.

又、自動計測を行ない得ゐファラデー七ル或いはポッケ
ルス竜6!用いると、装置が大祭りて高価になるとか高
電圧を必要とするという欠点がある。
Also, you can automatically measure Faraday 7 or Pockels Dragon 6! However, there are disadvantages in that the device is expensive and requires high voltage.

本発明の目的は、上述の従来例の欠点を除去し、従来か
ら履#を本の温度依存性が高いために偏光計等には不向
会と婁れていた液晶を使用し、その温度による屈折率を
櫨正しながら、夷精度で自動計測に遣した安価な液晶偏
光計を提供す為ことにあり、その内容は、試料の複jI
!jlt量等を露定するための偏光計に於いて、試料と
同一光路に、−一する電界により複屈折量が変化す為温
度セyφ仲の液晶セルを挿入し、試料の有すゐ時性を、
電界、S変を基とする既知の液晶セにの時性と比曖す為
ことにより測定することを時機とするものである。
The purpose of the present invention is to eliminate the drawbacks of the conventional example described above, and to use a liquid crystal, which has traditionally been considered unsuitable for use in polarimeters etc. due to its high temperature dependence. The purpose is to provide an inexpensive liquid crystal polarimeter that can be used for automatic measurement with high accuracy while correcting the refractive index of the sample.
! In a polarimeter for exposing the amount of jlt, etc., a liquid crystal cell with a temperature in the middle of yφ is inserted in the same optical path as the sample, since the amount of birefringence changes due to the electric field. of,
The timing of this measurement is different from that of the known liquid crystal display based on the electric field and S variation.

本発明を図示の実施例に基づいて詳細に議明する。The invention will be explained in detail on the basis of illustrated embodiments.

第1図に於いて、光路に没うて噴火、ランプ11、レン
ズ系1bを有す為光1[IN、光11111ibらの光
を直線偏光とす為ための偏光子!、試料3、異常光線屈
折率が電界II:W&じて変化する例えばネオマチック
液晶から威為液晶々#4、検光子5、目或いは光電子増
僑菅等の光強度や分布を観察することがで念、必要Km
じてしyズ艙像系を含む観察系6が配列されている。液
晶セJk4は第2図に示すように、IIJIIwtII
!kを持たない板ガラス等か−も成る透明板10%11
のそれぞれの内筒に1透明電極12.1gがコーティン
グさhでいて、液晶14を挟設するよう化fx−)でい
る。叉、液晶14の屑■には透明電極12.1墨を平行
r:*持すみためのスペーサ15、i4が設けられてあ
り、透明電極12.13は液晶14に印加する電界を変
化させるための交流低圧の駆動電源回路17に後続され
ている。又、液晶14の温度を検出するための温度セン
f−18が液晶14内又はその近傍に配置され、液晶1
4の温度を表示部19で読取り得るようになっている。
In FIG. 1, a polarizer for linearly polarizing light such as light 1 [IN, light 11111ib, etc.] is immersed in the optical path and has a lamp 11 and a lens system 1b! , sample 3, whose extraordinary ray refractive index changes as the electric field II:W&, for example, from neomatic liquid crystal to Weiwei liquid crystal #4, analyzer 5, eye or photoelectron amplification tube, etc., can be used to observe the light intensity and distribution. Just in case, the required Km
An observation system 6 including a Y-Z image system is arranged. The liquid crystal display Jk4 is IIJIIwtII as shown in Figure 2.
! Transparent plates such as plate glass that do not have k -10%11
12.1g of transparent electrodes are coated on each inner cylinder of the liquid crystal display 12, and a liquid crystal 14 is sandwiched therebetween. In addition, spacers 15 and i4 are provided on the scraps of the liquid crystal 14 to hold the transparent electrode 12.1 in parallel r:*, and the transparent electrode 12.13 is used to change the electric field applied to the liquid crystal 14. It is followed by an AC low voltage drive power supply circuit 17. Further, a temperature sensor f-18 for detecting the temperature of the liquid crystal 14 is disposed within or near the liquid crystal 14.
4 can be read on the display section 19.

更には偏光子2、試料3、液晶セル4、検光子5は必要
に応じて光路と垂直な菌内で回転可能となっている。
Furthermore, the polarizer 2, sample 3, liquid crystal cell 4, and analyzer 5 can be rotated within the bacteria perpendicular to the optical path as necessary.

光源1を射出した光は、偏光子2により直線偏光され複
屈折性を有する試料6に入射する。試料3の方位角と入
射光の直線偏光の方位角とは一致して怠らず、第S図に
示すように角度差45度を最適角度とするように調整さ
れている。試料器を透過した光は一般に楕円偏光となり
液晶セル4に入射する。液晶セル4の方位角は、試料6
0属折本の高い方向鴎に液晶セル4の屈折率の低い方向
−が一致して配置されている。液晶セ#4は電極12.
15FC印加される電界により異常光線屈折率が変化す
るので、電界を調節することにより液晶セル4の透過光
は偏光子!とhca論方−の直線偏光となる。検光子5
は偏光子2と直交方向に置かれているため、観察系6E
は鬼が入射しない、然し電界の調節が上述の条件に舎わ
ない場合には、1晶竜に4を透過す為光はIIIIP!
偏光となり、偏光子5を透過する観中成分を生ず為ため
に観察系6には光が入射亥ることになる。ζζ″eIm
晶14の電界とiat:に対す為複屈折量、液晶14の
厚みは既知である。諌晶セ44Em界をlImL、なけ
れば、一般に譲晶竜#4からは楕円偏光が射出し観察系
6に光が入射す:&、観察系番の光量を観察しながら、
液晶セh4Ell−す為電昇を冒俸して観察系4IC光
が入射しないようにし1.同時Icl11度七ンチ1魯
を表示部19により液晶14の温度を検出する。このと
会の電界とIL変の値から液晶セ#40位相遅れを知為
ことがで会る。液晶セル4の位相遅れと試!Isの位相
遅れは絶対値が等しく反転してい為状態てあ為かも、試
II4番4D41k@、遥れ或いは複履折、量を知るこ
とがて命る。X、液晶セル41、検光子5を回転し、−
転角を読取墨ことkより試料器の旋光度の測定も可能で
ある。
Light emitted from a light source 1 is linearly polarized by a polarizer 2 and enters a sample 6 having birefringence. The azimuth angle of the sample 3 and the azimuth angle of the linearly polarized light of the incident light must match, and are adjusted so that the angle difference is 45 degrees as the optimum angle, as shown in FIG. The light transmitted through the sample device generally becomes elliptically polarized light and enters the liquid crystal cell 4. The azimuth angle of the liquid crystal cell 4 is the same as that of the sample 6.
The direction in which the liquid crystal cell 4 has a low refractive index is arranged to coincide with the direction in which the refractive index of the liquid crystal cell 4 is low. Liquid crystal cell #4 has electrode 12.
15FCThe extraordinary ray refractive index changes depending on the applied electric field, so by adjusting the electric field, the transmitted light of the liquid crystal cell 4 becomes a polarizer! It becomes linearly polarized light according to the hca theory. Analyzer 5
is placed perpendicular to the polarizer 2, so the observation system 6E
However, if the electric field adjustment does not meet the above conditions, the light will pass through 4 to 1 crystal dragon, so the light will be IIIP!
The light becomes polarized and generates an observation component that passes through the polarizer 5, so that the light is incident on the observation system 6. ζζ″eIm
The amount of birefringence for the electric field of the crystal 14 and iat: and the thickness of the liquid crystal 14 are known. If there is no 44Em field, elliptically polarized light is generally emitted from Yoshoryu #4 and enters the observation system 6: &, While observing the light intensity of the observation system number,
1. To prevent the observation system 4IC light from entering the liquid crystal display, avoid the voltage rise. At the same time, the temperature of the liquid crystal 14 is detected by the display section 19 at 11 degrees and 7 inches. The phase delay of liquid crystal cell #40 can be determined from the electric field and IL variation values of this connection. Phase delay and test of liquid crystal cell 4! Since the absolute value of the phase delay of Is is equal and inverted, it may be difficult to determine the state, but it is important to know the amount of distance or double fold in Test II No. 4 4D41k@. X, rotate the liquid crystal cell 41 and analyzer 5, -
It is also possible to measure the optical rotation of the sample device by reading the rotation angle.

第4図は他の実施例を示すものであり、第1図のi&量
の偏光子2と試料6との間に第1のλ74波兼板116
が、液晶セに4と検光子5との間に第2のλ74波長板
21がそれぞれ挿入されている。
FIG. 4 shows another embodiment, in which a first λ74 wave plate 116 is installed between the polarizer 2 and the sample 6 having the amount of i in FIG.
However, a second λ74 wavelength plate 21 is inserted between the liquid crystal panel 4 and the analyzer 5, respectively.

第1のλ74波長板2I鯰偏光子2の直線偏光を円偏光
にす為働会をし、第2の1/4 II長板21a円偏光
を元の直線偏光に直す働会をす為ものであり、174波
長板20,21同志は方位角が直交す為ように配置され
ている。第SIIは更El&の実施例を示すものてあり
、第1図の俟量の試%器と液晶セに4との−に雑像レン
ズ系21が挿入され、4Hc偏光−機能に適した配列と
なっている。
To work to convert the linearly polarized light of the first λ74 wavelength plate 2I catfish polarizer 2 into circularly polarized light, and to work to convert the circularly polarized light of the second 1/4 II long plate 21a back to the original linearly polarized light. The 174 wavelength plates 20 and 21 are arranged so that their azimuths are perpendicular to each other. No. SII shows a further embodiment of El&, in which an optical miscellaneous lens system 21 is inserted between 4 and 4 in the weight sampler and liquid crystal panel shown in FIG. 1, and an arrangement suitable for the 4Hc polarization function It becomes.

ξれらの実施例は飼れも第11iの場合と同様に、試料
器の位相遅れ、複屈折量、旋光度の測定を可能とするも
のてあ番。   ・ 観察系6、電源181117、温度センナ18に一演算
処lK@路を襲繞することkより、測定の自動化以上説
明したように本ll明に係為液晶偏光計は、電界駆動゛
の液晶セルを取付は番という簡単な構造で、異方性試料
の位相差、複履祈嚢、旋光度の測定かて舎、かつ自動針
−をも可能にす為刹点がある。又、ファラデー効果を刹
層した装置に地駿して、交流低圧の電源回路により11
!履折量の変化を実現可能なため電界の制御が春島とな
り、更1c#ツケにス効果を利用した装置に比較しても
高圧直流を用いないため、資金性が高い。
ξThese embodiments are similar to the case of No. 11i, and are capable of measuring the phase delay, amount of birefringence, and optical rotation of the sample device. - The observation system 6, the power supply 181117, and the temperature sensor 18 are subjected to a single calculation process, thereby automating the measurement. The cell has a simple structure of a number, and there is a special point to enable the measurement of the phase difference of anisotropic samples, the double-track case, the optical rotation, and the automatic needle. In addition, by incorporating the Faraday effect into a device, 11
! Since it is possible to change the amount of folding, the electric field can be controlled by Harushima, and even compared to a device that uses the 1c# cost effect, it does not use high-voltage direct current, so it is more financially viable.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に41為箪晶偏光計の実施例を示すもので
あり、第1図は第1の実施例の構成■、第2図は液晶セ
ルの新am、第3mlは偏光状膣の説明園、第4図、展
び115図は第!及び第1の実施例の構成m”eある。 符号1は光源部、!は偏光子、3は試料、4は液晶セル
、6は検光子、6は観察系噌・、11は透明板、12.
1墨は逓−電極、噛4は液晶、15.16はスペーチ、
17は電源回路、1自は温度センナ、20.21は17
4波長板、!!は特許出願人     キャノン株式金
社1411 sgii
The drawings show an embodiment of the 41-meter crystal polarimeter according to the present invention. Fig. 1 shows the configuration of the first embodiment, Fig. 2 shows the new am of the liquid crystal cell, and No. 3 ml shows the configuration of the polarized vagina. The explanation garden, Figure 4, and Exhibition Figure 115 are the! and the configuration m"e of the first embodiment. Reference numeral 1 is a light source section, ! is a polarizer, 3 is a sample, 4 is a liquid crystal cell, 6 is an analyzer, 6 is an observation system, 11 is a transparent plate, 12.
1 ink is the cross-electrode, 4th is the liquid crystal, 15.16 is the spacer,
17 is the power supply circuit, 1st is the temperature sensor, 20.21 is 17
4 wavelength plate! ! Patent applicant: Canon Co., Ltd. Kinsha 1411 sgii

Claims (1)

【特許請求の範囲】 1、試料の複履折量等を一定するための偏光計に於いて
、試料と同一光* r−s−加す為電界により複履折量
が資化する温度センナ仲の液晶セ身を挿入し、試料の有
す1善性を、電界、温度を基とす為既知の液晶セにの時
性と比験することにより測定す為ことを畳黴とする液晶
偏光計。 1試料及び液晶セkを挾ルて2軟のJ/4 II!長板
を光路中に挿入した時評請求の範■第1項記−の液晶偏
光計。 五光路申に複数個の液晶セ身を挿入した時評請求の範囲
第1項記載の液晶偏光計。
[Scope of Claims] 1. In a polarimeter for fixing the amount of double folding of a sample, etc., a temperature sensor that utilizes the double folding amount by an electric field to apply the same light *rs- as the sample. Liquid crystal polarization is used to measure the polarization of a sample by inserting a liquid crystal polarizer into the middle and comparing it with the temporality of a known liquid crystal, which is based on electric field and temperature. Total. 1 sample and liquid crystal panel and 2 soft J/4 II! A liquid crystal polarimeter according to claim 1, wherein a long plate is inserted into the optical path. The liquid crystal polarimeter according to claim 1, wherein a plurality of liquid crystal polarizers are inserted into the five-light path.
JP13508081A 1981-08-28 1981-08-28 Liquid crystal polarization meter Pending JPS5835425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13508081A JPS5835425A (en) 1981-08-28 1981-08-28 Liquid crystal polarization meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13508081A JPS5835425A (en) 1981-08-28 1981-08-28 Liquid crystal polarization meter

Publications (1)

Publication Number Publication Date
JPS5835425A true JPS5835425A (en) 1983-03-02

Family

ID=15143363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13508081A Pending JPS5835425A (en) 1981-08-28 1981-08-28 Liquid crystal polarization meter

Country Status (1)

Country Link
JP (1) JPS5835425A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0165767A2 (en) * 1984-06-14 1985-12-27 National Research Development Corporation Polariscope having liquid crystal cells
FR2597641A1 (en) * 1986-04-22 1987-10-23 Thomson Csf DEVICE FOR MODULATING THE LIGHTING LIGHT OF AN ELECTRO-OPTICAL DISPLAY SCREEN
EP0737856A3 (en) * 1995-04-14 1999-03-10 J.A. Woollam Co. Inc. Polarisation monitoring methods and apparatus
EP1494014A1 (en) * 2003-06-30 2005-01-05 Emhart Glass S.A. System with a ferro-electric liquid crystal for two-fold optical inspection of containers
CN112525493A (en) * 2020-11-13 2021-03-19 华中科技大学 Method and device for detecting optical characteristics of ferroelectric liquid crystal retarder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0165767A2 (en) * 1984-06-14 1985-12-27 National Research Development Corporation Polariscope having liquid crystal cells
FR2597641A1 (en) * 1986-04-22 1987-10-23 Thomson Csf DEVICE FOR MODULATING THE LIGHTING LIGHT OF AN ELECTRO-OPTICAL DISPLAY SCREEN
US4824216A (en) * 1986-04-22 1989-04-25 Thomson-Csf Device for the modulation of the illuminating light of an electro-optic display screen
EP0737856A3 (en) * 1995-04-14 1999-03-10 J.A. Woollam Co. Inc. Polarisation monitoring methods and apparatus
EP1494014A1 (en) * 2003-06-30 2005-01-05 Emhart Glass S.A. System with a ferro-electric liquid crystal for two-fold optical inspection of containers
CN112525493A (en) * 2020-11-13 2021-03-19 华中科技大学 Method and device for detecting optical characteristics of ferroelectric liquid crystal retarder

Similar Documents

Publication Publication Date Title
US2976764A (en) Polarimeters
US4523848A (en) Polariscope
EP0086373B1 (en) Magneto-optical converter
US4608535A (en) Magnetic field and current measuring device using a Faraday cell with a thin electrically conductive film substantially covering the Faraday cell
US6317208B1 (en) Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
Jellison Jr Generalized ellipsometry for materials characterization
JPS5835425A (en) Liquid crystal polarization meter
US3146294A (en) Interference microscope optical systems
CN117030660A (en) Device for measuring electro-optic coefficient of ferroelectric film
Jerrard A high precision photoelectric ellipsometer
US3967902A (en) Method and apparatus for investigating the conformation of optically active molecules by measuring parameters associated with their luminescence
US3016789A (en) Polarimetric apparatus
CN101762891A (en) Optical property measurement system of liquid crystal unit and method thereof
US2992589A (en) Optical stress meter
US4003663A (en) Device for calibrating instrument that measures circular dichroism or circularly polarized luminescence
JP2003262553A (en) Method and apparatus for measuring edge stress of transparent plate
Lyle et al. A brief history of polarimetry
JP2576781B2 (en) Method and apparatus for measuring cell gap of birefringent body
CN214427155U (en) Nondestructive testing device for residual stress of transparent material
Tkachenko et al. Time-resolved refractive index change during the bacteriorhodopsin photocycle
Simon et al. About the optical activity of incommensurate [N (CH3) 4] 2ZnCl4 (TMAZC)
Namba High voltage measurement by ADP crystal plate
JP3046874B2 (en) Optical voltage / electric field sensor
King The effect of sample cell windows in precision polarimetry
Wang et al. Optical design of polarimeter for Space Solar Telescope