JPS5835407A - Signal processor for checking pattern defect - Google Patents

Signal processor for checking pattern defect

Info

Publication number
JPS5835407A
JPS5835407A JP13508781A JP13508781A JPS5835407A JP S5835407 A JPS5835407 A JP S5835407A JP 13508781 A JP13508781 A JP 13508781A JP 13508781 A JP13508781 A JP 13508781A JP S5835407 A JPS5835407 A JP S5835407A
Authority
JP
Japan
Prior art keywords
signal
pattern
defect
comparator
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13508781A
Other languages
Japanese (ja)
Inventor
Kennosuke Sugizaki
杉崎 堅之助
Shunsuke Mukasa
武笠 俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP13508781A priority Critical patent/JPS5835407A/en
Publication of JPS5835407A publication Critical patent/JPS5835407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95623Inspecting patterns on the surface of objects using a spatial filtering method

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To increase the accuracy in pattern measurement, by comparing a compensation measuring signal, which is obtained by subtracting a signal extracted in a low frequency filter from the defect data signal of the pattern whose phase is adjusted by a space filtering method, with a threshold signal. CONSTITUTION:The laser light signal of the defect of the regular pattern by the space filtering method is transduced into an electric signal by a photoelectric transducer 501 and branched through an amplifier 502. One output is inputted into a comparator 505 through the buffer amplifier 503 and a phase adjusting circuit 504, wherein the phase is adjusted. The other output is inputted into the comparator 505 through the low pass filter 506 and an adding circuit 507, and subtraction for both signals is performed. The difference signal is compared with the threshold signal which is inputted from a reference voltage circuit 508 through the adding circuit 507, and the defect signal 509 is outputted. In this way, the causes of the degradation of the measuring accuracy such as fluctuation in the photoelectric transducer 501 and secular change are alleviated and the accuracy in the pattern measurement is improved.

Description

【発明の詳細な説明】 本発明状、シャドウマスクなど規則性パターンを有する
工業製品の欠陥検査#Cおける1Ill!精度の向上を
図るため、光学系の物理的な責動、被測定物の形状偏差
、光電変換系の特性変動などの測定精度低下の要因を一
連の電子回路で軽減する信号処a装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to defect inspection #C of industrial products having regular patterns such as shadow masks. In order to improve accuracy, this invention relates to a signal processing device that uses a series of electronic circuits to reduce factors that reduce measurement accuracy, such as the physical impact of an optical system, deviations in the shape of an object to be measured, and variations in characteristics of a photoelectric conversion system.

りま〕、本発Ij1社、光情報処理の一応用分野である
光学計測系を用いて、パターン計測や検査をする偏置の
信号処理系#Cおける測定精度を向上させる手段として
のその回路構成に係ゐ。
This circuit is a means for improving measurement accuracy in an eccentric signal processing system #C that performs pattern measurement and inspection using an optical measurement system, which is an application field of optical information processing. Concerning the composition.

光学計ll1m1置における測定精度低下の主な原因に
は、被測定物を含む光学系の物理的な変化である光軸ズ
レや振動、被一定物の形状偏差などによるもの、光学系
を介して得られた光学的信号を電気的信号化変換する際
に用いる光電気変換偏置の特性の経時的な変化中1周囲
温度の影響ζζよる特性のゆらぎ、−sらに唸装置に含
まれる雑音成分などが考えられ為。
The main causes of decreases in measurement accuracy in optical meters at 11m1 are physical changes in the optical system that includes the object to be measured, such as optical axis misalignment and vibration, deviations in the shape of the object, and physical changes in the optical system that includes the object to be measured. Changes over time in the characteristics of the opto-electrical conversion emplacement used when converting the obtained optical signal into an electrical signal: 1. Fluctuations in the characteristics due to the influence of ambient temperature Because the ingredients etc. are considered.

そこで1本発明は、光学計測系を介して受光し九光学的
信号を電気的信号に変換し先後、その中に含まれる測定
精度低下の原因くなる前述の要因の軽減化を一連の電子
回路によp行ない、パターン計測の測定精度向上を図る
装置を得ようとす為ものである。
Therefore, the present invention is directed to a series of electronic circuits that receive light through an optical measurement system, convert the optical signal into an electrical signal, and then reduce the aforementioned factors that cause a decrease in measurement accuracy. The purpose of this study is to obtain a device that improves the accuracy of pattern measurement.

すなわち、光学計測系を用いたパターン計測。That is, pattern measurement using an optical measurement system.

特に規則性パターンの開口形状大略の判別を行なう場合
1時間的、空間的な;ヒーレンシーをもったレーザー光
を利用したレーず光回折バーーン空間局波数フィルタリ
ング方式が多く用いられるが。
In particular, when determining the approximate shape of an aperture in a regular pattern, a laser beam diffraction Burnn space-station wave number filtering method using a laser beam with temporal and spatial herherency is often used.

本発明は、単位開口の規則的配列で成るパターン中の欠
陥の有無および位置を空間フィルタリング方式化よって
逆フーリエ変換間上に生ずる輝点から検出する場合に認
識率を向上させる(パターン欠陥検査用)信勺処ig装
置を提供することを、その目的とする。
The present invention improves the recognition rate when detecting the presence or absence and position of defects in a pattern consisting of a regular array of unit apertures from bright spots generated between inverse Fourier transforms using a spatial filtering method (for pattern defect inspection). ) Its purpose is to provide a reliable IG device.

先ず、空間フィルタリング方式の基本構成を第111J
Jζよ〕説明する。
First, the basic configuration of the spatial filtering method is explained in 111J.
Jζ] Let me explain.

レーザ発振器lを出九レーザビーム2は、Hリメータ3
によって拡大された平行光4となって被検査物5に照射
される。被検査物5は7−リエ変換レンズ7の前焦点買
上に置かれてあル、後焦点面上には被検査物5を通過す
る時に回折した光6によって、被検査物5の7−リエ変
換スペクトルが現われる。しかして、フーリエ変換レン
ズ7の後焦点面上には、被検査物5の正常パターン(7
−リエ変換レンズ7による)のフーリエ変換スペクトル
強度分布を記碌したネガ写真フィルム、つまシ空聞周波
数フィルタaが置かれており、被検査物5の7−リエ変
換スペクトルのうち、正常パターンに相蟲するスペクト
ルのみが空間周波aフィルタ8によって吸収され、欠陥
パターンに相崗するスペクトルは透過する。
Laser oscillator l outputs nine laser beams 2, H remeter 3
The object to be inspected 5 is irradiated with the expanded parallel light 4. The object to be inspected 5 is placed at the front focal point of the 7-layer conversion lens 7, and the 7-layer conversion lens 7 of the object to be inspected is placed on the back focal plane by the light 6 that is diffracted when passing through the object to be inspected. A transformed spectrum appears. Therefore, on the back focal plane of the Fourier transform lens 7, the normal pattern (7
- A negative photographic film in which the intensity distribution of the Fourier transform spectrum (by the Fourier transform lens 7) has been recorded, and an empty frequency filter a are placed. Only the spectrum that is compatible with the defect pattern is absorbed by the spatial frequency a filter 8, and the spectrum that is compatible with the defect pattern is transmitted.

ところで、この空間周波数フィルタ8は逆7−リエ変換
レンズlOの前焦点面上lζ設けられている丸め、空間
周波数フィルタ8を透過した光9は逆7−リエ変換レン
ズ10によって逆フーリエ変換され、逆7−リエ変換レ
ンズの後焦点wi(逆7−9工変換面)上に置かれ九ス
クリーンHに、空間フィルタリングされた逆7−リエ変
換像、すなわち被検査物6の欠陥部分だけの像となりて
異ゎれる。
By the way, this spatial frequency filter 8 is rounded and provided on the front focal plane lζ of the inverse 7-Lier transform lens lO, and the light 9 transmitted through the spatial frequency filter 8 is inversely Fourier transformed by the inverse 7-Lier transform lens 10. A spatially filtered inverse 7-Lier transform image, that is, an image of only the defective portion of the inspected object 6, is placed on the back focal point wi (inverse 7-9 transform plane) of the inverse 7-Lier transform lens and is placed on the nine screen H. It becomes strange.

以上が空間フィルタリン!方式の基本構成てあ為。That's all for spatial filtering! This is the basic structure of the method.

一方、第2図は矩形状の単位−口の規則的配列で成るパ
ターンの−例を示すものであ)、かか為パターンの欠陥
部その大Ii盲が予め決められえ一定値以上のものと定
義される。しかして、第1■で述べた空間フィルタリン
グ方式を利用した欠陥検査装置では、第3Ill^〜(
2)の欠陥部分Di〜D4だけが、その欠陥買積に対応
した明るさの点となって再回折像間上に現われる。なお
、第aml(1)は正常なパターンを示してい為。
On the other hand, Figure 2 shows an example of a pattern consisting of a regular arrangement of rectangular units (orifices). is defined as However, in the defect inspection device using the spatial filtering method described in Section 1.
Only the defective portions Di to D4 of 2) appear on the re-diffraction image as points of brightness corresponding to the defect size. Note that the aml (1) shows a normal pattern.

逆フーリエ変換面に現われる被検査パターン5の逆像の
欠陥部分だけの像は、第4閣に示すように、フォトディ
テクタアレイUによりて検出1れろO ζヒにおいて、被検査パターンSを平行光4内で光軸認
に直角に平行移動してtアー替工変換の移行層によ)、
フーリエ変換レンズ7のam点面上klIわれるツーリ
エ変換パターンに変化はない。
The image of only the defective portion of the inverse image of the pattern to be inspected 5 appearing on the inverse Fourier transform plane is detected by the photodetector array U as shown in the fourth panel. (transferred parallel to the optical axis at right angles to the transition layer),
There is no change in the Fourier transform pattern klI on the am point plane of the Fourier transform lens 7.

したがって、被検査パターン5を平行移動してt同様に
、被検査パターン器の7−リエ変換スペクトルのうち正
常パターンに相轟するスペクトルのみが空間フィルタ8
によって吸収され、欠陥パターン<amするスペクトル
は透過する。かくして、被検査パターン5の平行移動に
よシ逆7−リエ変換像は光軸対称の逆方向に移動、りt
〉被検査パターン5の逆像の欠陥部分だけの像が、光軸
νを挾んで被検査パターン5の移動方向と反対の方向に
逆フーリエ変換買上を移動する。
Therefore, when the pattern to be inspected 5 is translated in parallel, only the spectrum that resonates with the normal pattern among the 7-lier transform spectra of the pattern to be inspected is transferred to the spatial filter 8.
and the spectrum where the defect pattern <am is transmitted. Thus, due to the parallel movement of the pattern to be inspected 5, the inverse 7-Lier transformed image moves in the opposite direction of optical axis symmetry.
> An image of only the defective portion of the inverse image of the pattern to be inspected 5 moves in the direction opposite to the movement direction of the pattern to be inspected 5, sandwiching the optical axis ν.

第1図において、被検査パターン5の移動方向を紙面に
直角な方向とし、逆フーリエ変換面上の7オトデイテク
タアレイ11の配列方向を紙面に平行な方向とすれば、
逆フーリエ変換買上を移動する欠陥像は7オ°トデイテ
クタアレイUを直角に横切ることにな〉、欠陥像の出力
信号として検出される◎ また、被検査パターン5の移動に伴ない、その移動距離
に関する情報を出力する装置を本欠陥検!!装置に設置
することによル、被検査パターン中にお匹て検出され九
欠陥の位置を知ることができる。例を挙げて説明す石と
、今、被検査パターンの移動方向に直角な方向をX方向
、平行な方向なY方向とすれば、X方向の欠陥位置成分
は、逆フーリエ変換面上において欠隆像−jXIRgJ
為単位フォトディテクタの7オトデイテクーアレイ方向
の位置によって検出でき、Y方向のそれは、被検査パタ
ーンの固定台及び本体に位置スケール、さらに高精度が
要求される場合に唸■折格子の篭アレ縞を利用した位置
変位検出偏置等を徽ける。あるいは被検査パターンを移
動させるための毫−一等の駆動軸部分化ロータリエン;
−ダを設ける、等の手段によって検出可能である。これ
ら以外にも、Y方向の欠陥位置成分は、被検査パターン
が等速移動するため移動開紬時を電点として時間を計数
することによっても求めることがで自る。
In FIG. 1, if the direction of movement of the pattern to be inspected 5 is perpendicular to the plane of the paper, and the direction in which the seven detector arrays 11 on the inverse Fourier transform plane are arranged is parallel to the plane of the paper, then
The defect image moving through the inverse Fourier transform crosses the 7-degree detector array U at right angles and is detected as an output signal of the defect image. Also, as the pattern to be inspected 5 moves, its movement This defect inspection is carried out on devices that output distance information! ! By installing it in the device, it is possible to detect the defects in the pattern to be inspected and to know the positions of the nine defects. Assuming that the X direction is the direction perpendicular to the movement direction of the pattern to be inspected, and the Y direction is parallel to the direction of movement of the pattern to be inspected, the defect position component in the X direction is the defect position component on the inverse Fourier transform surface. Ryuzo-jXIRgJ
Therefore, it can be detected by the position of the unit photodetector in the direction of the 7-axis photodetector array.It can be detected by the position of the unit photodetector in the direction of the 7-dimensional array, and that in the Y direction is determined by the position scale on the fixed base and main body of the pattern to be inspected. This allows for position displacement detection, eccentricity, etc. using . Or a first-class drive shaft partial rotary engine for moving the pattern to be inspected;
Detection is possible by means such as providing a - holder. In addition to these, since the pattern to be inspected moves at a constant speed, the defect position component in the Y direction can also be obtained by counting the time with the electric point set at the time of movement and opening.

フォトディテクタアレイnは矩jI#−口を持つ複数の
単位7オトデイテク11口の配列で#I威され、被検査
パターンの挙動によ〉得られ為出方信号は欠陥の最大許
容藺積に相識したスレッシ璽ルドを持つ;ンパレータに
よ)2値化され、これkよ)欠陥検出が行なわれる。
The photodetector array is a rectangular array of 7 units with 11 holes, and the output signal obtained by the behavior of the pattern to be inspected corresponds to the maximum allowable accumulation of defects. It has a threshold; it is binarized (by a comparator), and defect detection is performed.

以上の如くして、被検査パターンにおける欠陥部分化対
応ずゐ信号が得られる。とζろが、光学計測系において
は、光軸のずれ、振動および開口辺部の微小な形状誤差
などの原因によル正常開口でも開口辺部に微小な輝点を
もってあられれる。
As described above, a signal corresponding to partial defects in the pattern to be inspected can be obtained. However, in an optical measurement system, even a normal aperture may have a minute bright spot on the aperture side due to causes such as misalignment of the optical axis, vibration, and minute errors in the shape of the aperture side.

また受光部においては、光→電気変更素子1例えば光電
管中光電子増倍管などの感度の経時的なゆらぎやその出
力信号Efすれる雑音成分などの影響を受ける。
In addition, the light receiving section is affected by fluctuations in sensitivity over time of the light-to-electrical change element 1, such as a photomultiplier tube in a phototube, and noise components caused by the output signal Ef thereof.

その丸め、欠陥の許容範囲決定条件が開口辺部の輝点両
横によって定められる第4図に示すようなフォトディテ
クタ開口アレイを用いた場合、この輝点間積Sks幽す
るしきい値と被11*信号を比較することによって、真
のパターン欠陥の検出を行なうことが可能であるが、被
一定信号には、前記しえ如く様々な要因による誤差成分
、ゆらぎ成分中雑音成分が含まれる丸め、高い測定精度
は望めなかった。
When using a photodetector aperture array as shown in FIG. 4, in which the conditions for determining the tolerance range for rounding and defects are determined by the bright spot on both sides of the aperture side, the threshold value and the 11 *It is possible to detect true pattern defects by comparing the signals, but the fixed signal may include error components due to various factors as described above, fluctuation components, noise components, rounding, etc. High measurement accuracy could not be expected.

こむにおいて1本発明では、その一実施例の第5図に示
すような信号旭理回路を用いることkよp、前述の測定
精度低下の要因の軽減化を行なっている。
One aspect of the present invention is to use a signal control circuit as shown in FIG. 5, which is an embodiment of the present invention, in order to reduce the factors that cause the measurement accuracy to deteriorate as described above.

以下lζ、1i5Elc示した基本構成によ)説明する
The basic configuration shown below will be explained below.

光→電気変換器501かも光学系を介して受光した光量
(フォトディテクタで検出されたレーザ光511) K
対応した電気信号512が出される。増幅器502唸光
→電気変換器信号(51りレベルを適尚。な信号(51
3)レベルまで増幅させると集に。
The amount of light received through the optical system of the light-to-electricity converter 501 (laser light 511 detected by the photodetector) K
A corresponding electrical signal 512 is issued. Amplifier 502 roaring light → electrical converter signal (51) Adjust the level appropriately. Signal (51
3) When amplified to the level, it becomes a collection.

前段の光→電気変換器301の緩衝器としての役割を果
たしている。壜九、光→電気変換器501に含まれる比
較的高い周波数成分の雑音(検出すべl信号の周波数に
比べ十分高い周波数成分)は増幅9502の高域中電力
周波数を適轟に制限するヒとで除去可能である。
It plays a role as a buffer for the optical to electrical converter 301 in the previous stage. The noise of relatively high frequency components contained in the optical-to-electrical converter 501 (frequency components sufficiently higher than the frequency of the signal to be detected) is used to limit the high-range medium power frequency of the amplifier 9502 to an appropriate level. It can be removed by

増幅器502を出た信号513(以下「測定信号」と呼
ぶ)は2系統に分紋される。低域フィルタ506は被測
定物の形状偏差に原因す゛るとζろの検出すべl信号の
周波数に比べ、十分低い周波数成分を検出するものであ
る。
A signal 513 (hereinafter referred to as a "measurement signal") output from the amplifier 502 is divided into two systems. The low-pass filter 506 detects a sufficiently lower frequency component than the frequency of the ζ filter detection signal, which is caused by the shape deviation of the object to be measured.

;ンパレータ505の入力段は差動増幅器になっている
ため、その入力信号518を加算回路507を介してコ
ンパレータS05の基準信号入力側に入力し、コンパレ
ータのもう一方の入力端子よシ測定信号515を入力す
ることによシ、両信号515゜!$18の振幅特性およ
び位相特性が等しければ、測定物の形状偏差に原因する
低い周波数成分を除去することが可能である。
; Since the input stage of the comparator 505 is a differential amplifier, the input signal 518 is input to the reference signal input side of the comparator S05 via the adder circuit 507, and the measurement signal 515 is input to the other input terminal of the comparator. By inputting , both signals are 515°! If the amplitude characteristics and phase characteristics of $18 are equal, it is possible to remove low frequency components caused by shape deviations of the object to be measured.

ところが、除去したい低い周波数成分の信号は低域フィ
ルタ506を遇゛して抽出するため、測定信号515に
対して位相遅れが生ずる。このため、コンパレータ50
5人力端子において測定信号515儒と低域フィルタ5
06を通過して来た518憫の両信号間に位相差が生ず
る。
However, since the low frequency component signal to be removed is extracted using the low-pass filter 506, a phase lag occurs with respect to the measurement signal 515. For this reason, the comparator 50
Measurement signal 515 and low-pass filter 5 at the 5-power terminal
A phase difference occurs between the two signals of 518 that have passed through 06.

この問題を回避するため、測定信号5x51Hたは低域
フィルタ506儒に位相調整用の回路を挿入する1本発
明で4低域フイルタ508による位相遅れが問題となっ
ているから、低域フィル−506側に挿入する場合は進
十位相にするような位相詞整−路を、測定信号515儒
に挿入する場合社連れ位相になゐような位相調整回路5
04を設ければよい。ただし、後者の場合社損輻轡性が
除去しようとする低い周波数帯域は勿論、位相調整され
九測定信号515にも影響を及ぼさないような特性を有
すゐ位相調整回路504を採用する必要がある。いずれ
の場合化しても位相間111111504は、振幅特性
が変化せず位相特性のみ麦見られる特性を有するものが
望まれる。
In order to avoid this problem, a phase adjustment circuit is inserted into the measurement signal 5x51H or the low-pass filter 506.In the present invention, since the phase delay caused by the 4 low-pass filters 508 is a problem, the low-pass filter When inserted into the measurement signal 506 side, the phase adjustment circuit 5 is set to the leading decimal phase, and when inserted into the measurement signal 515 side, the phase adjustment circuit 5 is set to the synchronized phase.
04 may be provided. However, in the latter case, it is necessary to adopt a phase adjustment circuit 504 that has characteristics that do not affect the low frequency band that the company wants to eliminate, but also the phase adjusted signal 515. be. In any case, it is desired that the phase gap 111111504 has a characteristic in which the amplitude characteristic does not change and only the phase characteristic can be observed.

バッファアンプ503は判別臀性上の問題からコンパレ
ータ505にヒステリヒス特性を設ける丸め。
The buffer amplifier 503 is rounded to provide a hysteresis characteristic to the comparator 505 due to discrimination problems.

コンパレータ入力端子の一方の儒〈;ンパレータ出力信
号の一部を帰還させることによ〉生ずる信号成分が低域
フィルタ側を介してコンバレー−入力端子の他方に入力
されるの、を防止し1判別特性の向上を図る役割を果た
している=従ってバッファアンプ503は帰還され先側
の端子の前に挿入すればよく、この実施例ではバッファ
アンプ503の位置を位相調整回路504の前段にして
いるが、=ンパレータ50sと位相調整回路504の間
に設けても上記機能は果たせる。
This method prevents the signal component of one of the comparator input terminals (by feeding back a part of the comparator output signal] from being input to the other input terminal of the comparator via the low-pass filter side. It plays a role in improving the characteristics = Therefore, the buffer amplifier 503 can be fed back and inserted before the terminal on the other side. In this embodiment, the buffer amplifier 503 is placed before the phase adjustment circuit 504. Even if it is provided between the comparator 50s and the phase adjustment circuit 504, the above function can be achieved.

なお、コンパレータ505人力において、両信号515
 、518の振幅レベルも一致させる必要性がある。こ
れについては、バッファアンプ503の利得調整、加算
回路507に利得を持たせ各端子の重み付けを決める抵
抗を調整する。低域フィルタ506をアクティブフィル
タで実現しその利得を調整する。あるいはレベルの高い
方の系統にアッテネータを挿入しレベル調整するなどが
考えられる。
In addition, when the comparator 505 is manually operated, both signals 515
, 518 also need to match. For this purpose, the gain of the buffer amplifier 503 is adjusted, the adder circuit 507 is given a gain, and the resistance that determines the weighting of each terminal is adjusted. The low-pass filter 506 is implemented as an active filter and its gain is adjusted. Alternatively, it is possible to insert an attenuator into the higher level system and adjust the level.

基準電圧発生回路508は欠陥制御用のしきい値を決定
する丸めの電圧を発生するものである。基準電圧発生回
路508により発生される直流電圧レベルは、加算回路
507を介してコンパレータ505の基準信号518偶
に印加される。
The reference voltage generation circuit 508 generates a rounded voltage that determines a threshold value for defect control. The DC voltage level generated by the reference voltage generation circuit 508 is applied to the reference signal 518 of the comparator 505 via the addition circuit 507.

しかして、514はバッファアンプ503の出力。Thus, 514 is the output of the buffer amplifier 503.

516は低域フィルタ506の出力、519は;ンパレ
ータ505の出力で欠陥信号、509はその出力端であ
る。
516 is the output of the low-pass filter 506, 519 is the output of the comparator 505 which is a defective signal, and 509 is its output terminal.

ζこで、との実施例における実際的な数値を記すO 空間フィルタリング方式化よって行なわれる通常の欠陥
検査は、数μのマスクパターンから数10μ〜数100
μのメタルメッシ晶までの広範II#cわ九るが、ここ
では−例として、゛第411のよ51kl1則性パター
ンの単位スロットが300μx soo声の場合につい
て示す。光源には出力レベルが安蝋化され九鳥−N@レ
ーザを用いる。光学的な計測系を介して得られる逆フー
リエ変換像は1幅TOO声のディティフタアレイ11に
よ)検出され、光7アイパを介して光電子増倍管(光→
電気変換@Sol。
ζ Here, and O are the actual values in the examples. Normal defect inspection performed by spatial filtering is performed from a mask pattern of several microns to several tens of microns to several hundreds of microns.
A wide range of .mu. metal mesh crystals is available, but here, as an example, a case where the unit slot of a 51 kl law pattern like the 411th one is 300 .mu.x soo is shown. The light source uses a Kutori-N@ laser with a low output level. The inverse Fourier transform image obtained through the optical measurement system is detected by a 1-width TOO deflector array 11) and sent to a photomultiplier tube (light→
Electrical conversion @Sol.

増幅器102)で受光される。属層性バI−ンの各スロ
ット部の検査は、ディティフタアレイUをスキャンユン
グさせて、屓次逆7−リエ変換像を光電子増倍管−ζ取
〕込みクク行なう。スキャンユング速度はlO〜300
謳/秒1度の範囲であゐ。このとき欠陥に対応して得ら
れる信号の屑wL数範囲は200−〜IK&11度であ
為。壜九、省稠定物の形状偏差が要因とな〕生ずる周波
数成分は主に加Hz以下である。したがって、低域フィ
ルタsO6の遮断周波数は30Hs付近に選んでい為。
The light is received by an amplifier 102). Inspection of each slot portion of the layered beam is carried out by scanning the deflector array U and then capturing the inverse 7-layer transformed image with the photomultiplier tube. Scanning speed is lO ~ 300
In the range of 1 degree per second. At this time, the signal debris wL number range obtained in response to the defect is 200- to IK & 11 degrees. The frequency components generated are mainly below Hz. Therefore, the cutoff frequency of the low-pass filter sO6 is selected to be around 30Hs.

第6図は、本発明の他の実施例のプ臣ツク図である。FIG. 6 is a schematic diagram of another embodiment of the present invention.

この実施例は測定信号側の系に訃いて、前述の検出すべ
き信号に比べて十分低い周波数成分の除去を行なった後
、コンパレータ505に入力する方式を示している。従
って基準電圧発生回路508から預生されたし暑い値5
17は、直@*ンパレータの基準電圧入力側に印加され
る。
This embodiment shows a system in which the measurement signal is input to the comparator 505 after removing frequency components sufficiently lower than the signal to be detected. Therefore, the highest value 5 is received from the reference voltage generation circuit 508.
17 is applied to the reference voltage input side of the direct @* amplifier.

なお、601は減算器で1位相間1lrIA路の出力6
11から低域フィルタ出力516を減算し、コンパレー
タ505へ補正された測定信号612を送出する。
Note that 601 is a subtracter that outputs the output 6 of the 1lrIA path between 1 phase.
A low-pass filter output 516 is subtracted from 11 and a corrected measurement signal 612 is sent to the comparator 505.

第7図は1本発明の第5図に示すような実施例における
各部゛の信号波形の一例である。−同図(a)は。
FIG. 7 shows an example of signal waveforms of each part in the embodiment shown in FIG. 5 of the present invention. -Figure (a) is.

光→電気蜜換器501の出力信号波形81!、同図(6
)は、増巾1Ii502の出力信号波形513.同図(
o)は、低域フィルタ!S06の出力信号波形616.
同図(荀は。
Output signal waveform 81 of light to electricity exchanger 501! , the same figure (6
) is the output signal waveform 513 . Same figure (
o) is a low pass filter! Output signal waveform 616 of S06.
Same figure (Xunha.

加算回路607の出力信号波形518と位相間!1回路
504の出力波形!15との差を示す信号波形、そして
同図(荀は、:Iンパレータ505の出力信号波形51
Gである。
Between the output signal waveform 518 of the adder circuit 607 and the phase! Output waveform of 1 circuit 504! The signal waveform showing the difference from 15 and the output signal waveform 51 of the
It is G.

かくして、本発明によれば、規1AWkAターンを有す
る工業製品の欠陥検査がなされる場合に、被測定物の形
状偏差や光学系の物理的表変化に対しても十分な補正が
なされると共に、光電子増倍管の経時的な特性変化やj
lS囲温度の影響による特性のゆらぎ、さらに雑音等に
よる悪影響も軽減化される。これらの補正効果によp、
従来の検査親電に比べ測定精度を一段と向上させること
ができる。
Thus, according to the present invention, when an industrial product having a standard 1 AWkA turn is inspected for defects, sufficient correction is made for deviations in the shape of the object to be measured and changes in the physical surface of the optical system. Characteristic changes over time of photomultiplier tubes
Characteristic fluctuations due to the influence of the lS ambient temperature and the adverse effects of noise etc. are also reduced. Due to these correction effects, p,
Measurement accuracy can be further improved compared to conventional test mains.

【図面の簡単な説明】[Brief explanation of the drawing]

第15!!lは空間フィルタリング方式の基本構成図、
第2図は矩形状の単位開口の規則的配列で成るパターン
の一例を示す図、$3図囚〜(6)はパターンの欠陥、
正常を表わす図、第4Eは逆フーリエ変換面に現われる
被検査パターンの逆像の火陥部分の像の説明図、第5図
は本発明の一実施例のブロック図、第6図は本発明の他
の実施例のブロック図、第7図は、@1の実施例の信号
波形を示す図である。 1・・・v−f発振器、2・・・レーザビーム、3・・
・コリメータ、4・・・平行光、5・・・被検査物、6
・・・回折し九九、7・・・7−リエ変換レンズ、8・
・・空間周波数フィルタ、9・・・空間周波数フィルタ
8を透過した光、10・・・逆7−リエ交換レンズ、1
1・・・フォトディテクタアレイ (スクリーン)、1
2・・・光軸、13・・・単位フォトディテクタ、14
・・・スロット、501・・・光→電気変換器、502
・・・増幅器、5σ3・・・バッファアンプ、504・
・・位相調整回路、505・・・コンパレータ。 506・・・低域フィルタ、507・・・加算回路、5
08・・・基準電圧発生回路、509・・・欠陥信号5
19の出力端。 511・・・フォトディテクタアレイ11で検出された
レーザ光、513・・・測定信号、 515 、612
・・・補正された測定信号、517・・・欠陥制御用の
しきい値電圧信号、 601・・・減算器。
15th! ! l is the basic configuration diagram of the spatial filtering method,
Figure 2 is a diagram showing an example of a pattern consisting of a regular array of rectangular unit openings, and Figure 3 (6) shows defects in the pattern.
Figure 4E is an explanatory diagram of the image of the defective part of the inverse image of the pattern to be inspected that appears on the inverse Fourier transform plane, Figure 5 is a block diagram of an embodiment of the present invention, and Figure 6 is a diagram showing the present invention. FIG. 7, a block diagram of another embodiment, is a diagram showing signal waveforms of the embodiment @1. 1... vf oscillator, 2... laser beam, 3...
・Collimator, 4...Parallel light, 5...Object to be inspected, 6
...Diffraction multiplication table, 7...7-Lie transformation lens, 8.
...Spatial frequency filter, 9...Light transmitted through spatial frequency filter 8, 10...Inverse 7-Rie interchangeable lens, 1
1... Photodetector array (screen), 1
2... Optical axis, 13... Unit photodetector, 14
... Slot, 501 ... Optical to electrical converter, 502
...Amplifier, 5σ3...Buffer amplifier, 504.
...Phase adjustment circuit, 505...Comparator. 506...Low pass filter, 507...Addition circuit, 5
08... Reference voltage generation circuit, 509... Defect signal 5
19 output end. 511... Laser light detected by photodetector array 11, 513... Measurement signal, 515, 612
. . . Corrected measurement signal, 517 . . . Threshold voltage signal for defect control, 601 . . . Subtractor.

Claims (1)

【特許請求の範囲】[Claims] パターンの欠陥情報信号をレーで光で受けてこれを電気
信号に変える光→電気変換器と、その電気信号を増幅し
検出ナベ自信号の周波数に比べ十分高い周波数成分の雑
音を除去する丸め高域亭電力周波数を適轟に制限する増
幅量と、この増幅器出力の測定信号から一走物の形状偏
差に原因する低い周波数成分を抽出する低域フィルタと
、その低域フィルタR−おける抽出される信号の位相遅
れを補償する位相調整回路と、欠陥制御用のしきい値電
圧信号を発生する基準電圧発生囲路と、前記位相遅れが
補償され九前記測定信号から前記低域フィルタよp抽出
した信号を減算させた補正一定信号と前記しきい値電圧
信号とを比較する;ンパレータとを具備することを畳黴
とするパターン欠陥検査用信号電層装置。
An optical-to-electrical converter that receives the pattern defect information signal with light using a laser and converts it into an electrical signal, and a rounding height that amplifies the electrical signal and removes noise in frequency components that are sufficiently higher than the frequency of the detection pane signal. The amount of amplification that limits the power frequency to an appropriate level, the low-pass filter that extracts the low frequency component caused by the shape deviation of the running object from the measurement signal of the output of this amplifier, and the extracted component in the low-pass filter R- a phase adjustment circuit for compensating for a phase delay of a signal to be measured; a reference voltage generation circuit for generating a threshold voltage signal for defect control; and a reference voltage generation circuit for generating a threshold voltage signal for defect control; A signal layer device for pattern defect inspection, comprising: a comparator for comparing a corrected constant signal obtained by subtracting the corrected signal with the threshold voltage signal;
JP13508781A 1981-08-28 1981-08-28 Signal processor for checking pattern defect Pending JPS5835407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13508781A JPS5835407A (en) 1981-08-28 1981-08-28 Signal processor for checking pattern defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13508781A JPS5835407A (en) 1981-08-28 1981-08-28 Signal processor for checking pattern defect

Publications (1)

Publication Number Publication Date
JPS5835407A true JPS5835407A (en) 1983-03-02

Family

ID=15143520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13508781A Pending JPS5835407A (en) 1981-08-28 1981-08-28 Signal processor for checking pattern defect

Country Status (1)

Country Link
JP (1) JPS5835407A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162592A (en) * 1978-06-13 1979-12-24 Fujitsu Ltd Signal processing circuit
JPS56135088A (en) * 1980-03-26 1981-10-22 Ricoh Co Ltd Damper device for carriage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162592A (en) * 1978-06-13 1979-12-24 Fujitsu Ltd Signal processing circuit
JPS56135088A (en) * 1980-03-26 1981-10-22 Ricoh Co Ltd Damper device for carriage

Similar Documents

Publication Publication Date Title
US5434902A (en) Imaging system with means for compensating vignetting and x-ray examination apparatus comprising such an imaging system
KR100400995B1 (en) Optical Wafer Positioning System
JPH01176921A (en) Fourier spectral device
CA1068371A (en) Circuit arrangements for controlling detector signals in surface inspection systems
JPS5835407A (en) Signal processor for checking pattern defect
GB1574622A (en) Method of and apparatus for adjusting the focussing condition of an image intensifierchain
JPH0199372A (en) Shading characteristic measuring method for picture information reader
US6580066B2 (en) Measurement signal generating circuit for linear scale
CN112595424B (en) Laser wavelength real-time acquisition and measurement system and method
JP3660472B2 (en) Interferogram correction method
EP0594070B1 (en) Noise reduction in a storage phosphor data acquisition system
JPS5835408A (en) Signal processor for checking pattern defect
RU2155981C1 (en) Adaptive image production system
RU2020522C1 (en) Adaptive telescope
CN111487040B (en) Point source transmittance measuring method and system of optical system
RU2101875C1 (en) Adaptive image processing system
US5867211A (en) Apparatus and method for removing offset and shading from a video signal
JPH06160302A (en) Method and apparatus for inspecting surface flaw of running strip
US5401978A (en) Laser-optic missile control surface monitor
SU1167482A1 (en) Gas analyser
US3089383A (en) Reflectance measuring equipment
JPS58153917A (en) Correcting device of pattern defect detection signal
JPS6023718Y2 (en) Pinhole detection circuit with dark current compensation function
SU1379760A1 (en) Image adaptive corrector
Murari et al. Signal processing and calibration electronics for the metal foil bolometers of RFX