JPS5835270B2 - Rust prevention method for liquid metal equipment - Google Patents

Rust prevention method for liquid metal equipment

Info

Publication number
JPS5835270B2
JPS5835270B2 JP51123330A JP12333076A JPS5835270B2 JP S5835270 B2 JPS5835270 B2 JP S5835270B2 JP 51123330 A JP51123330 A JP 51123330A JP 12333076 A JP12333076 A JP 12333076A JP S5835270 B2 JPS5835270 B2 JP S5835270B2
Authority
JP
Japan
Prior art keywords
metal
melting point
low melting
steam generator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51123330A
Other languages
Japanese (ja)
Other versions
JPS5347341A (en
Inventor
憲彦 佐川
邦夫 長谷川
昭 鈴置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51123330A priority Critical patent/JPS5835270B2/en
Publication of JPS5347341A publication Critical patent/JPS5347341A/en
Publication of JPS5835270B2 publication Critical patent/JPS5835270B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は液体金属用機器の防銹方法、特に、これ等機器
の製作組立中の防銹方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for rust-proofing liquid metal equipment, and more particularly to a method for rust-proofing such equipment during manufacture and assembly.

液体金属用機器の主要なものに液体金属冷却高速増殖炉
の蒸気発生器があるが、これは高温液体金属と水との熱
交換により、高温高圧の水蒸気を発生せしめることを目
的とするもので、このうち蒸気発生器伝熱管は高温液体
金属と水とが直接熱交換を行う部分である。
The main liquid metal equipment is the steam generator of the liquid metal cooled fast breeder reactor, which aims to generate high-temperature, high-pressure steam through heat exchange between high-temperature liquid metal and water. Of these, the steam generator heat transfer tube is the part where high temperature liquid metal and water directly exchange heat.

蒸気発生器は第1図に概略を示す如き構造を有するもの
で、上部胴体1、下部胴体2、上部鏡板3、下部鏡板4
、熱しゃへい構造体網6、内部シュラウド7および伝熱
管8,9を主たる構成部分としている。
The steam generator has a structure as schematically shown in FIG. 1, and includes an upper body 1, a lower body 2, an upper head plate 3, and a lower head plate 4.
, a heat shielding structure network 6, an internal shroud 7, and heat exchanger tubes 8 and 9 are the main components.

このような蒸気発生器においては、原子炉反応容器で発
生した熱は中間熱交換器で一度非放射性の液体すl−I
Jウム(一般的には液体金属)に熱交換された後、液体
ナトリウム入口管11から蒸気発生器内部に流入する。
In such a steam generator, the heat generated in the reactor vessel is transferred once to non-radioactive liquid sl-I in an intermediate heat exchanger.
After being heat exchanged with sodium (generally liquid metal), it flows into the steam generator through the liquid sodium inlet pipe 11.

この高温液体ナトリウムはナトリウム入口管11から内
部シュラウド7の外側と熱しゃへい構造体網6の内側を
通り、上昇伝熱管9に沿って下方へ進み、ナトリウム出
口ノズル14から蒸気発生器の外へ流出し、中間熱交換
器へ戻される。
This hot liquid sodium passes through the sodium inlet pipe 11, outside the internal shroud 7 and inside the heat shielding structure network 6, travels downward along the rising heat exchanger tubes 9, and exits the steam generator through the sodium outlet nozzle 14. and returned to the intermediate heat exchanger.

一方、蒸気発生器中の水は、まず給水リングヘッダー1
2から蒸気発生器胴体内に入り、上部および下部胴体1
,2の内側と熱しゃへい構造体網6の外側との空間にあ
る下降伝熱管8内を通り、さらに熱しゃへい構造体側6
の内側と内部シュラウド7の外側にある螺線状の上昇伝
熱管9内を通過し、蒸気出口のフランジ10より蒸気と
して送り出される。
On the other hand, the water in the steam generator is first supplied to the water supply ring header 1.
2 into the steam generator body, and the upper and lower body 1
, 2 and the outside of the heat shield structure network 6.
The steam passes through the spiral rising heat exchanger tube 9 located inside the inner shroud 7 and outside the inner shroud 7, and is sent out as steam from the steam outlet flange 10.

この蒸気が発電機を回転させるためにタービンへ導かれ
る。
This steam is directed to a turbine to rotate a generator.

なお、液体ナトリウムと水との熱交換は下降伝熱管8と
上昇伝熱管9で行なわれるが、蒸気発生器の蒸発器の場
合は、上昇伝熱管の方がはるかに伝熱面積が大きいので
、主に上昇伝熱管9内で水から蒸気になる。
Note that heat exchange between liquid sodium and water is performed in the descending heat exchanger tube 8 and the ascending heat exchanger tube 9, but in the case of the evaporator of a steam generator, the ascending heat exchanger tube has a much larger heat transfer area. Water mainly turns into steam within the rising heat exchanger tubes 9.

通常、高速増殖炉の蒸気発生器では、ナトリウム入口温
度が約500℃、ナトリウム出口温度が約320℃であ
り、給水温度が約300℃、蒸気出口温度が約450℃
である。
Normally, in a fast breeder reactor steam generator, the sodium inlet temperature is about 500°C, the sodium outlet temperature is about 320°C, the feed water temperature is about 300°C, and the steam outlet temperature is about 450°C.
It is.

このように、蒸気発生器は高温の液体すI−IJウムと
高温高圧の水、もしくは水蒸気の共存する機器であるた
め、高速増殖炉のプラント機器のうちで最も技術的に難
かしく、かつ重要な機器であり、しかも、蒸気発生器の
中でも伝熱管は管内面には水が流れ、管外側には液体ナ
トリウムが流れ、管壁を通して熱交換が行なわれるため
特に重要な部分である。
In this way, the steam generator is a device in which high-temperature liquid I-IJ coexists with high-temperature, high-pressure water or steam, so it is technically the most technically difficult and important of the fast breeder reactor plant components. Moreover, heat exchanger tubes are particularly important parts of steam generators because water flows on the inside of the tubes, liquid sodium flows on the outside of the tubes, and heat exchange takes place through the tube walls.

蒸気発生器の伝熱管はこのように重要な部分を占めてい
るため、過熱器および再熱器等はステンレス鋼で作られ
ているのに対して、蒸発器はクロム・モリブデン鋼(2
,25wt%クロム−1wt%モリブデン鋼)で作られ
ており、しかも、蒸発器のみならず、過熱器、再熱器も
クロム・モリブデン鋼を採用することが世界的な趨勢に
なっている。
Because the heat transfer tubes of a steam generator are such an important part, the superheater, reheater, etc. are made of stainless steel, while the evaporator is made of chromium-molybdenum steel (2
, 25wt% chromium-1wt% molybdenum steel), and it is becoming a worldwide trend to use chromium-molybdenum steel not only for evaporators but also for superheaters and reheaters.

さて、こ5で、高速増殖炉蒸気発生器の伝熱管部分の製
作組立て工程をたどってみると第2図の如くになる。
Now, if we trace the manufacturing and assembly process of the heat exchanger tube part of the fast breeder reactor steam generator, it will be as shown in Figure 2.

すなわち、同図aに示すように、まず、直管を溶接して
長い伝熱管9を得る。
That is, as shown in Figure a, first, a long heat exchanger tube 9 is obtained by welding straight tubes.

この際、伝熱管溶接部分は後熱処理を施し、かつX線検
査により健全性がチェックされる。
At this time, the welded portion of the heat exchanger tube is subjected to post-heat treatment, and its soundness is checked by X-ray inspection.

ついで、直管の伝熱管9を同図すのようにコイル状に加
工し、同図Cのように内部シュラウド7中に入れ、伝熱
管サポート16で伝熱管9を固定する。
Next, the straight heat exchanger tube 9 is processed into a coil shape as shown in the figure, placed in the inner shroud 7 as shown in the figure C, and the heat exchanger tube 9 is fixed with the heat exchanger tube support 16.

つぎに、同図dで伝熱管9の両端を溶接して上昇管上端
管9aと上昇管下端管9bを増付ける。
Next, as shown in Figure d, both ends of the heat transfer tube 9 are welded to add an upper end tube 9a and a lower end tube 9b of the riser tube.

この際、溶接部は後熱処理およびX線検査を行う。At this time, the welded portion is subjected to post-heat treatment and X-ray inspection.

ついで、同図eに示すごとく、伝熱管群の外側に熱しゃ
へい構造体側6を挿入するとともに上昇管下端管9bと
下降伝熱管8を溶接し、上昇管上端管9aと蒸気連絡管
17を溶接する。
Next, as shown in Figure e, the heat shielding structure side 6 is inserted into the outside of the heat exchanger tube group, the lower end tube 9b of the riser tube and the descender heat exchanger tube 8 are welded, and the upper end tube 9a of the riser tube and the steam communication pipe 17 are welded. do.

同図1は完成真近い蒸気発生器を示しているが、下降伝
熱管8と給水リングヘッダー管12aの溶接、および蒸
気連絡管17と蒸気管板管18の溶接を行い、この際の
溶接個所はいずれも後熱処理およびX線検査を行う。
Figure 1 shows a nearly completed steam generator, but welding of the descending heat exchanger tube 8 and the water supply ring header tube 12a, and welding of the steam communication tube 17 and the steam tube sheet tube 18 was performed, and the welded parts at this time were Both are subjected to post-heat treatment and X-ray inspection.

最終的には、上部胴体1と下部胴体2を合致させて完成
する。
Finally, the upper fuselage 1 and lower fuselage 2 are matched to complete the construction.

蒸気発生器の組立てには、伝熱管の組立て工程以外にも
、上部鏡院のナトIJウムリンダヘツダーの組立て工程
、上部胴体の下降管取付は工程および下部胴体の組立て
工程等がある。
In addition to the heat transfer tube assembly process, the steam generator assembly process includes the assembly process of the Nato IJ Umlinda header in the upper section, the downcomer pipe installation process in the upper fuselage, and the lower fuselage assembly process.

また、溶接部分は、−基当り約1000個もあり、全溶
接個所の後熱処理およびX線検査等も行なうため、蒸気
発生器の製作には、約2.5年の期間を要する。
In addition, there are about 1000 welded parts per unit, and all welded parts are subjected to post-heat treatment and X-ray inspection, so it takes about 2.5 years to manufacture the steam generator.

このように、蒸気発生器の製作には長期間の製作日数を
必要とするため、クロム・モルブラン鋼でつくられた蒸
気発生器は、それが完成する頃には、広路囲に著しい赤
錆を生じており、製作工程上、最大の問題となっている
As described above, since it takes a long time to manufacture a steam generator, by the time the steam generator is completed using chrome-molbran steel, there is significant red rust on the area surrounding the road. This is the biggest problem in the manufacturing process.

特に、蒸気発生器のように巨大な構造物は輸送上海岸近
くの工場で製作される場合が多く、このような場合には
、製作期間約2,5年の間に進行する赤錆の発生は極め
て着るしく、さらに、蒸気発生器完成後、蒸気発生器内
部に収納されている伝熱管の銹をとることは容易でない
In particular, large structures such as steam generators are often manufactured in factories near the coast for transportation purposes, and in such cases, the development of red rust that progresses during the approximately 2 to 5 years of manufacturing is difficult. It is very difficult to wear, and furthermore, it is not easy to remove the rust from the heat exchanger tubes housed inside the steam generator after the steam generator is completed.

このように蒸気発生器伝熱管が著しい銹を生じると、管
壁の肉厚が薄くなり、場合によっては局部的に深く銹が
進行して伝熱管の表面の凹凸がはげしくなり、伝熱管の
強度低下を招き、ナトリウム−水反応による大火災を生
ずる恐れがある。
When steam generator heat exchanger tubes generate significant rust, the wall thickness of the tube becomes thinner, and in some cases, the rust progresses deeply locally, making the surface of the heat exchanger tubes extremely uneven, which reduces the strength of the heat exchanger tubes. There is a risk of a large fire due to a sodium-water reaction.

また、銹を生じた蒸気発生器に液体ナトリウムを流すと
、液体ナトリウム中の腐食生成物、特に、鉄が増加し、
かつ、液体ナトリウム中の酸素濃度が増加するため2次
系機器材料全体の腐食を促進する恐れがあり、さらに、
液体ナトリウム中の腐食生成物の増加によって、液体す
l−IJウムを純化するコールドトラップ機器の寿命低
下を抱く恐れもある。
Additionally, when liquid sodium is poured into a steam generator that has rusted, corrosion products in the liquid sodium, especially iron, increase.
In addition, the increased oxygen concentration in the liquid sodium may accelerate corrosion of the entire secondary system equipment materials.
The increase in corrosion products in liquid sodium may reduce the lifespan of cold trap equipment for purifying liquid sodium.

本発明は、これらの問題点を解決する液体金属用機器の
防錆方法であって、これら機器の運転時にも障害を与え
ない防錆法を提供することを目的とするもので、クロム
・モリブデン鋼よりなる液体金属用機器の部品素材から
機器の加工、組立を行う工程の少なくとも一工程におい
て、クロム・モリブデン鋼の表面に少なくとも一種の金
属よりなる低融点金属を被着せしめる工程と、この機器
の組立完了後、被着させた低融点金属をその融点以上の
温度で加熱除去する工程と、この工程で残存した低融点
金属を液体金属中に溶出せしめる工程よりなることを特
徴とするものである。
The present invention aims to provide a rust prevention method for liquid metal equipment that solves these problems, and which does not cause any trouble during operation of these equipment. At least one step in the process of processing and assembling equipment from component materials for liquid metal equipment made of steel, a process of coating the surface of chromium-molybdenum steel with a low melting point metal made of at least one type of metal, and this equipment. After the assembly is completed, the deposited low melting point metal is removed by heating at a temperature above its melting point, and the low melting point metal remaining in this step is eluted into the liquid metal. be.

本発明は本発明者等の防錆方法の検討の結果得られたも
のであり、以下にその結果を説明する。
The present invention was obtained as a result of studies by the inventors on rust prevention methods, and the results will be explained below.

まず、防錆方法として非金属反覆による方法があり、例
えば、伝熱管表面に黒錆(Fe 304 )をFf4i
させ被覆する、所謂、化戒皮覆法があるが、2.5年に
およぶ長期間、水分を含んだ空気のもとにおいでは赤錆
(Fe203)が発生し、これが広範囲に進行するため
良好な結果は得られない。
First, as a rust prevention method, there is a method using non-metallic coating. For example, black rust (Fe 304 ) is applied to the surface of the heat exchanger tube by
There is a so-called chemical skin covering method that covers the surface of the product, but red rust (Fe203) occurs in the presence of moist air for a long period of 2.5 years, and this spreads over a wide area, so it is not a good idea. No results are obtained.

さらに、非金属反覆による方法には、金属粉、鉛丹、塩
基性クロム酸鉛等を顔料とした塗料があり、ゴム、プラ
スチック、塩化ビニール系等高分子材料による有機物塗
料もある。
Further, methods using nonmetallic coating include paints using pigments such as metal powder, red lead, and basic lead chromate, and organic paints using polymeric materials such as rubber, plastic, and vinyl chloride.

しかしながら、顔料を用いた塗料および有機物の塗料を
用いた防錆剤は蒸気発生管には適さない。
However, paints using pigments and anticorrosive agents using organic paints are not suitable for steam generating pipes.

すなわち、蒸気発生器伝熱管を液体すI−IJウム中に
侵漬する前にこれらの防錆剤を除去せねばならず、この
ためアセトン、アルコール等の有機溶媒を用いることに
なるが、これらの有機溶媒は引火性の犬なる可燃物であ
り、大量Iこ必要とするため極めて危険であり、かつ、
これら防錆剤を伝熱管表面から完全に除去することは困
難であり、これらの塗料が残存する場合には蒸気発生器
運転時に液体ナトリウムと反応して爆発する恐れがある
That is, these rust inhibitors must be removed before immersing the steam generator heat transfer tubes in liquid I-IJ, and for this purpose organic solvents such as acetone and alcohol are used. Organic solvents are flammable substances and require large amounts of water, making them extremely dangerous, and
It is difficult to completely remove these rust preventives from the surface of the heat exchanger tubes, and if these paints remain, there is a risk that they will react with liquid sodium during operation of the steam generator and cause an explosion.

従って、蒸気発生器伝熱管の防錆処理方法としては非金
属被覆法は適当ではなく、このため伝熱管のクロム・モ
リブデン鋼より耐食性の良い金属または合金で被覆する
金属被覆法が適している。
Therefore, a non-metallic coating method is not suitable as a rust prevention treatment method for steam generator heat exchanger tubes, and therefore a metal coating method in which the heat exchanger tubes are coated with a metal or alloy having better corrosion resistance than the chromium-molybdenum steel is suitable.

金属被覆法としては、電気めっき、化学めっき、溶融め
っき、金属溶射、拡散浸透および合せ金法があるが、こ
のうち、電気めっきは使用される電解液、化学めっき法
は還元剤が残存した場合、液体ナトリウム中で問題とな
り、拡散浸透法は高温度長時間の処理を必要とし、この
ため蒸気発生器の製作日数がさらに増加しコストアンプ
を生ずる。
Metal coating methods include electroplating, chemical plating, hot-dip plating, metal spraying, diffusion infiltration, and alloying methods.Among these, electroplating uses an electrolytic solution, and chemical plating uses a residual reducing agent. , which becomes a problem in liquid sodium, and the diffusion osmosis method requires high-temperature, long-time treatment, which further increases the number of days required to manufacture the steam generator and increases costs.

また合せ金法は、伝熱管の伝熱特性および溶接法に問題
がある。
Furthermore, the alloy method has problems with the heat transfer characteristics of the heat transfer tube and the welding method.

これらの点から、高速増殖炉蒸気発生器伝熱管に防錆を
施す方法としては溶融めつきあるいは金属溶射が工程日
数の点でも、処理操作の点でも容易である。
From these points of view, hot-dip plating or metal spraying is an easy method for applying rust prevention to fast breeder reactor steam generator heat exchanger tubes in terms of the number of process days and processing operations.

本発明はこのような考察の結果得られたもので、溶融め
っき、あるいは金属溶射に用いる金属材料としては、例
えば、錫、ビスマス、鉛等の低融点金属を用いるが、こ
れらは融点が低いのみならず、溶融状態において粘性が
低い方がよい。
The present invention was obtained as a result of such consideration, and low-melting point metals such as tin, bismuth, and lead are used as metal materials for hot-dip plating or metal spraying, but these only have low melting points. It is better that the viscosity is lower in the molten state.

すなわち、粘性(粘性係数)が低い方が伝熱管にめっき
された低融点金属をその融点以上の温度に加熱した時に
除去が滑らかに行なうことができるためである。
That is, the lower the viscosity (viscosity coefficient), the smoother the removal can be performed when the low melting point metal plated on the heat transfer tube is heated to a temperature equal to or higher than its melting point.

また、液体ナトリウム中における溶解度が太きいものが
よく、これは、伝熱管表面にめっきされている低融点金
属をその融点以上の温度で除去した後においても、伝熱
管表面にはわづかの厚さの低融点金属が残存し、この残
存低融点金属は液体ナトリウム中における溶解度が大き
い場合には、容易に液体ナトリウム中に溶出酊能である
ためである。
In addition, the solubility in liquid sodium is good, which means that even after the low melting point metal plated on the surface of the heat transfer tube is removed at a temperature above its melting point, there will be a slight thickness on the surface of the heat transfer tube. This is because a low melting point metal remains, and if this residual low melting point metal has a high solubility in liquid sodium, it is easily eluted into liquid sodium.

例えば、錫は低融点金属の一つであるが、この融点は2
31.9℃であって、錫は大気中の防錆にすぐれ、かつ
溶融錫はクロム・モリブデン鋼にぬれやすく、はんだ付
性もよい。
For example, tin is one of the low melting point metals, but its melting point is 2.
The temperature is 31.9° C., and tin has excellent rust prevention in the atmosphere, and molten tin easily wets chromium-molybdenum steel and has good solderability.

溶融錫めっき被覆において生ずる合金層はFeSn2が
主なるものであるが、この合金層は水素過電圧が高いの
でクロムモリブデン鋼の腐食速度を加速しない。
The alloy layer formed in the hot-dip tin coating is mainly composed of FeSn2, but this alloy layer has a high hydrogen overvoltage and therefore does not accelerate the corrosion rate of the chromium-molybdenum steel.

第3図は液体ナトリウム中に溶解する錫の温度依存性を
示すもので、横軸には温度、縦軸には溶解度をとっであ
る。
Figure 3 shows the temperature dependence of tin dissolved in liquid sodium, with temperature on the horizontal axis and solubility on the vertical axis.

同図から明らかなように、例えば、240℃においては
液体ナトリウム中に錫は約2%程度溶解し、300℃で
は7〜8%程度溶解する。
As is clear from the figure, for example, at 240°C, about 2% of tin dissolves in liquid sodium, and at 300°C, about 7 to 8% of tin dissolves.

従って、液体ナトリウム中には極めて溶解し易い金属で
ある。
Therefore, it is a metal that is extremely easily soluble in liquid sodium.

このように、錫を用いた場合には、蒸気発生器伝熱管に
容易に溶融めっきを施すことができ、かつ蒸気発生器の
組立て完成後に伝熱管にめっきされた錫を容易に除去で
き、さらに、蒸気発生器試運転時に伝熱管に残存する錫
を容易に液体ナトリウム中に溶出させることができる。
In this way, when tin is used, the steam generator heat exchanger tubes can be easily hot-dipped, and the tin plated on the heat exchanger tubes can be easily removed after the steam generator is assembled. , the tin remaining in the heat transfer tubes can be easily eluted into liquid sodium during the steam generator test run.

従って2.5年におよぶ蒸気発生器製作期間中に伝熱管
を銹させることなく健全性を保証することができる。
Therefore, the integrity of the heat exchanger tubes can be guaranteed without rusting during the 2.5 years of manufacturing the steam generator.

以下、本発明の実施例として、高速増殖炉蒸気発生器の
伝熱管の防錆方法について説明する。
EMBODIMENT OF THE INVENTION Hereinafter, as an example of the present invention, a rust prevention method for heat exchanger tubes of a fast breeder reactor steam generator will be described.

第2図は、常連ひ如く、浄気発生器の完成に至るまでの
伝熱管を主体とした組立工程図であるが、これにのっと
り説明すると、第2図aの工程においては、直管よりな
る伝熱管9を受入れた時、あるいはこれらの伝熱管を溶
接接合して長くする前に、溶融錫めっきを施すか、ある
いは、同図すに示すコイル巻きにした状態で溶融めっき
を施こす。
Figure 2 is an assembly process diagram that mainly consists of heat exchanger tubes until the completion of a purified air generator, as usual. When the heat exchanger tubes 9 are received, or before they are welded and joined to lengthen them, hot-dip tin plating is applied, or hot-dip plating is applied in the coiled state shown in the figure.

溶融めっきを行なう場合は、めっきが管内側に入らない
よう管の両端を予じめめくら栓をして伝熱管9の外側表
面のみめつきする。
When performing hot-dip plating, the outer surface of the heat transfer tube 9 is only plated by blindly plugging both ends of the tube in advance to prevent the plating from entering the inside of the tube.

この際の溶融めっき層の厚みには制限はなく、蒸気発生
器の製作期間中、伝熱管の防錆が可能な厚さであればよ
い。
There is no limit to the thickness of the hot-dip plating layer at this time, and it may be any thickness that can prevent the heat exchanger tubes from rusting during the manufacturing period of the steam generator.

かくして、溶融錫めっきの施された上昇伝熱管9を同図
Cの如く固定し、つぎに同図dおよびeに示すように、
伝熱管9と上昇管上端管9aの溶接、伝熱管9と上昇管
下端管9bの溶接、上昇管上端管9aと蒸気連絡管17
の溶接および下降伝熱管8と上昇管下端管9bの溶接接
合部は溶接後、その表面に溶融錫の溶射を行う。
Thus, the hot-dip tin-plated ascending heat exchanger tube 9 was fixed as shown in Figure C, and then as shown in Figures d and e,
Welding of the heat exchanger tube 9 and the upper end tube of the riser tube 9a, welding of the heat exchanger tube 9 and the lower end tube of the riser tube 9b, and the upper end tube of the riser tube 9a and the steam communication tube 17
After the welding and welding of the descending heat exchanger tube 8 and the rising tube lower end tube 9b, molten tin is sprayed onto the surface thereof.

この溶接部の溶射の際の錫の厚さも蒸気発生器の製作期
間中に銹を生じなければ、特に厚みには制限はない。
There is no particular limit to the thickness of the tin when thermally spraying the welded portion, as long as rust does not occur during the manufacturing period of the steam generator.

また同図fの蒸気連絡管17と蒸気管板管18の溶接お
よび下降伝熱管8と給水リングヘッダー管12aの溶接
接合部とも同様溶射を行う。
In addition, the welding of the steam communication pipe 17 and the steam tube sheet pipe 18 and the welding joint of the descending heat exchanger pipe 8 and the water supply ring header pipe 12a shown in FIG.

このようにして蒸気発生器の組立て期間中、伝熱管群は
錫めっきにより大気中で保護され銹を生じない。
In this way, during the assembly of the steam generator, the heat exchanger tube group is protected from the atmosphere by the tin plating and does not rust.

蒸気発生器全体が完成し、本体が据付のため現地に輸送
されるが、その前に、伝熱管にめっきされている錫を除
去する必要がある。
The entire steam generator is completed and the main body is transported to the site for installation, but before that, the tin plating on the heat exchanger tubes needs to be removed.

この操作は蒸気発生器伝熱管の内側に240℃以上に加
熱した飽和蒸気を流し、これによって外側に被着する錫
を溶かし、ナl−IJウム出ロノズル14から排出する
In this operation, saturated steam heated to 240 DEG C. or higher is flowed inside the steam generator heat exchanger tube, thereby melting the tin deposited on the outside and discharging it from the Na1-IJ tin nozzle 14.

飽和蒸気圧は250℃で40.5kg/i、 310℃
で100 kg/critであるが、高速炉蒸気発生器
熱管は十分にこの程度の内圧に耐えるので強度的に問題
とならない。
Saturated vapor pressure is 40.5 kg/i at 250℃, 310℃
However, since the fast reactor steam generator heat tube can sufficiently withstand this level of internal pressure, there is no problem in terms of strength.

しかも飽和蒸気を用いることの利点は、温度変動が少な
く加熱温度の制御が容易である点である。
Moreover, the advantage of using saturated steam is that there is little temperature fluctuation and the heating temperature can be easily controlled.

また、蒸気発生器の場合には元来液体ナトリウムの循環
する構造になっているので錫の除去は容易に実施できる
In addition, in the case of a steam generator, tin can be easily removed since the steam generator originally has a structure in which liquid sodium circulates.

このようにして錫めっきが除去された後の伝熱管には約
数ミクロン程度の厚さの錫が残留する。
After the tin plating is removed in this way, tin with a thickness of about several microns remains in the heat exchanger tube.

この残存する錫の量は蒸気発生器−基当り約10kg程
度になる。
The amount of remaining tin is approximately 10 kg per steam generator.

伝熱管表面に数ミクロン程度の厚み錫の付着した蒸気発
生器は現地へ輸送され、プラントへ据付けられる。
The steam generator, which has a layer of tin several microns thick on the surface of its heat transfer tubes, is transported to the site and installed at the plant.

そして、蒸気発生器の試運転時に伝熱管表面に残存して
いる錫を液体ナトリウム中に溶出させる。
Then, during a test run of the steam generator, tin remaining on the surface of the heat transfer tube is eluted into liquid sodium.

なお、蒸気発生器のカバーガス層にある伝熱管の錫を除
去するには一時的に液体ナトリウムを通常の液面より上
げて溶出せしめる。
In addition, to remove tin from the heat transfer tubes in the cover gas layer of the steam generator, the liquid sodium is temporarily raised above the normal liquid level and eluted.

液体ナトリウム中に錫を溶出させることにより液体ナト
リウムは不純物錫を含むことになる。
By dissolving tin into the liquid sodium, the liquid sodium contains impurity tin.

しかしながら、蒸気発生器1基に使用される2次冷却系
のナトリウム量は約300トンである。
However, the amount of sodium in the secondary cooling system used for one steam generator is approximately 300 tons.

従って300トンのナトリウム中に10kgの錫が溶は
込むと液体ナトリウム中の錫の濃度はおおよそ3Qpp
m程度である。
Therefore, if 10 kg of tin is dissolved in 300 tons of sodium, the concentration of tin in liquid sodium will be approximately 3Qpp.
It is about m.

一般に、2次冷却系ナトリウム中の不純物管理値として
は、例えば、酸素、炭素、塩素等の非金属では3Qpp
m以下となっている。
In general, the impurity control value for sodium in the secondary cooling system is, for example, 3Qpp for nonmetals such as oxygen, carbon, and chlorine.
m or less.

一方、液体ナトリウム中の金属不純物は2次冷却系機器
材料に、非金属程悪影響を及ぼさない。
On the other hand, metal impurities in liquid sodium do not have as bad an effect on secondary cooling system equipment materials as non-metals.

従って液体すl−IJウム中に30p11111程度の
錫が溶解していても、伝熱特性上および材料強度上何ら
問題とならない。
Therefore, even if about 30p11111 of tin is dissolved in the liquid sl-IJ, it does not cause any problems in terms of heat transfer characteristics and material strength.

以上の実施例においては、低融点金属として錫を用いた
例を示したが、その他の低融点金属あるいは低融点合金
を用いることができ、また、蒸気発生器の蒸発器のみな
らず、再熱器、過熱器等、においてもクロム・モリブデ
ン鋼を用いている場合には適用できる。
In the above embodiments, tin is used as the low melting point metal, but other low melting point metals or low melting point alloys can be used. It can also be applied when chromium-molybdenum steel is used in containers, superheaters, etc.

なお、蒸気発生器伝熱管内側は、製作工程中宮にめくら
栓をすることによって管外側表面のような銹の発生を押
えることができ、また、蒸気発生器運転中は液体ナトリ
ウムではなく高温高圧水もしくは水蒸気が流れるため、
若干の銹は水蒸気等によって洗い去ることができ、従っ
て伝熱管内側を溶融めっきして防錆する必要はない。
The inside of the steam generator heat transfer tube can be prevented from forming rust like the outside surface of the tube by putting a blind stopper in the middle of the manufacturing process, and during operation of the steam generator, high-temperature, high-pressure water is used instead of liquid sodium. Or because water vapor flows,
Some rust can be washed away by steam or the like, so there is no need to hot-dip the inside of the heat transfer tube to prevent rust.

このように、この実施例によって製造された蒸気発生器
伝熱管は2.5年にわたる長期製作期間中鍋の発生を防
止できるため、組立前の銹取りの困難な作業を必要とせ
ず、銹の発生による伝熱管の強度低下も生ぜず、さらに
、防錆に用いた錫の被着、除去作業も容易であり、表面
に残存する錫も液体ナトリウムに悪影響を与えない。
In this way, the steam generator heat exchanger tube manufactured according to this example can prevent the occurrence of cauldron during the long manufacturing period of 2.5 years, so there is no need for the difficult work of removing rust before assembly. There is no reduction in the strength of the heat exchanger tube due to this generation, and furthermore, tin used for rust prevention can be easily deposited and removed, and tin remaining on the surface does not have an adverse effect on the liquid sodium.

さらに、液体ナトリウム中の鉄の腐食生成量を低減でき
、液体ナトリウム中の酸素濃度が低下して2次系材料全
体の腐食を抑制する効果があり、この結果液体ナトリウ
ム純化器であるコールドトラップの長寿命化も可能であ
る。
Furthermore, the amount of iron corrosion generated in liquid sodium can be reduced, and the oxygen concentration in liquid sodium is reduced, which has the effect of suppressing corrosion of the entire secondary system material.As a result, the cold trap, which is a liquid sodium purifier, Longer life is also possible.

以上の如く、本発明の液体金属用機器の防錆方法は、長
期間にわたるこれら機器の組立製作中の防錆を可能とし
、かつ機器の運転時においても障害を与えない防錆法を
可能としたものであって、これによってこの種装置の製
作面、健全性の面で優れた効果を有するものであり、工
業的効果の犬なるものである。
As described above, the rust prevention method for liquid metal equipment of the present invention enables rust prevention during the assembly and production of these equipment over a long period of time, and also enables a rust prevention method that does not cause any trouble during operation of the equipment. As a result, this type of device has excellent effects in terms of manufacturing and soundness, and is an industrial advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高速増殖炉蒸気発生器の概略構造を示す縦断面
図、第2図は蒸気発生器伝熱管の組立て状況を示す工程
図、第3図はナトリウム中に溶解する錫の温度依存性を
示す特性図である。 符号の説明、6・・・・・・熱遮蔽構造体胴、7・・・
・・・内部シュラウド、8・・・・・・下降伝熱管、9
・・・・・・上昇伝熱管、10・・・・・・蒸気出口フ
ランジ、11・・・・・・ナトリウム入口管、12・・
・・・・給水リングヘッダー13・・・・・・放出系ノ
ズル、17・・・・・・蒸気連絡管、18・・・・・・
蒸気管板管。
Figure 1 is a vertical cross-sectional view showing the schematic structure of the fast breeder reactor steam generator, Figure 2 is a process diagram showing the assembly status of the steam generator heat exchanger tubes, and Figure 3 is the temperature dependence of tin dissolved in sodium. FIG. Explanation of symbols, 6...Heat shielding structure body, 7...
...Inner shroud, 8...Downward heat transfer tube, 9
... Rising heat transfer tube, 10 ... Steam outlet flange, 11 ... Sodium inlet pipe, 12 ...
...Water supply ring header 13...Discharge system nozzle, 17...Steam communication pipe, 18...
Steam tube sheet pipes.

Claims (1)

【特許請求の範囲】 1 クロム・モリブデン鋼よりなる液体金属用機器の部
品素材から前記機器の加工、組立を行う工程の少なくと
も一工程において、前記クロム・モリブデン鋼の表面に
少なくとも一種の金属元素よりなる低融点金属を被着せ
しめる工程と、前記機器の組立完了後前記工程によって
被着せしめた低融点金属を該金属の融点以上の温度で加
熱除去する工程と、該工程で残存した低融点金属を液体
金属中に溶出せしめる工程とを有することを特徴とする
液体金属用機器の除銹方法。 2 前記低融点金属を被着せしめる工程が、該低融点金
属の溶融めっきおよび溶射の倒れかにより行なわれる特
許請求の範囲第1項記載の液体金属用機器の防銹方法。 3 前記の低融点金属を除去する工程を該低融点金属の
被着する機器の内側から該低融点金属の融点以上の飽和
蒸気で行なう特許請求の範囲第1項又は第2項記載の液
体金属用機器の防銹方法。 4 前記低融点金属が粘性係数低く、液体金属中の溶解
度大なる金属である特許請求の範囲第1項又は第2項又
は第3項記載の液体金属用機器の防銹方法。 5 前記金属が錫である特許請求の範囲第4項記載の液
体金属用機器の防銹方法。
[Scope of Claims] 1. In at least one step of processing and assembling liquid metal equipment from component materials for liquid metal equipment made of chromium-molybdenum steel, at least one metal element is added to the surface of the chromium-molybdenum steel. a step of depositing a low melting point metal, a step of heating and removing the low melting point metal deposited in the step after completing the assembly of the device at a temperature equal to or higher than the melting point of the metal, and a step of removing the low melting point metal remaining in the step. A method for removing rust from equipment for liquid metals, comprising the step of eluting the metal into the liquid metal. 2. The method for rustproofing liquid metal equipment according to claim 1, wherein the step of depositing the low melting point metal is carried out by hot-dip plating and thermal spraying of the low melting point metal. 3. The liquid metal according to claim 1 or 2, wherein the step of removing the low melting point metal is carried out with saturated steam having a melting point higher than the melting point of the low melting point metal from inside the equipment to which the low melting point metal is attached. Rust prevention method for equipment. 4. The rust prevention method for liquid metal equipment according to claim 1, 2, or 3, wherein the low melting point metal is a metal with a low viscosity coefficient and high solubility in the liquid metal. 5. The rust-proofing method for liquid metal equipment according to claim 4, wherein the metal is tin.
JP51123330A 1976-10-13 1976-10-13 Rust prevention method for liquid metal equipment Expired JPS5835270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51123330A JPS5835270B2 (en) 1976-10-13 1976-10-13 Rust prevention method for liquid metal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51123330A JPS5835270B2 (en) 1976-10-13 1976-10-13 Rust prevention method for liquid metal equipment

Publications (2)

Publication Number Publication Date
JPS5347341A JPS5347341A (en) 1978-04-27
JPS5835270B2 true JPS5835270B2 (en) 1983-08-01

Family

ID=14857877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51123330A Expired JPS5835270B2 (en) 1976-10-13 1976-10-13 Rust prevention method for liquid metal equipment

Country Status (1)

Country Link
JP (1) JPS5835270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128793A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Method for operating vapor generator
GB2438458A (en) * 2006-05-11 2007-11-28 Univ Cambridge Tech Blocking zero-order light in phase shift hologram generation

Also Published As

Publication number Publication date
JPS5347341A (en) 1978-04-27

Similar Documents

Publication Publication Date Title
Fernandes et al. Failure by liquid metal induced embrittlement
US9969889B2 (en) Corrosion-resistant structure for high-temperature water system and corrosion-preventing method thereof
JPS5835270B2 (en) Rust prevention method for liquid metal equipment
CN1204280C (en) High-chromium nickel-base alloy and produced spraying wire and its application
US10037822B2 (en) Method for the in situ passivation of the steel surfaces of a nuclear reactor
JP5398124B2 (en) Corrosion-inhibiting film generation method and nuclear power plant
DE19803084B4 (en) Use of steel powder based on Fe-Cr-Si for corrosion-resistant coatings
EP3093369B1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
Collins Effect of design, fabrication and installation on the performance of stainless steel equipment
JP6517981B2 (en) Method of repairing fuel assembly, method of manufacturing fuel assembly
CN106560641A (en) Piping Member, Nitrogen Monoxide Cracking Unit, And Power Generation System
Harrison Corrosion of Feed Line Surfaces
JPH06159947A (en) Rust-preventive treatment method for glass-lined reactor vessel
JPS5832688A (en) Production of coated tube for reactor used in pyrolysis and formation of hydrocarbons
Clark Design from the Viewpoint of Corrosion
JP2023521326A (en) Use of nickel-chromium-iron alloys
Franklin METALLIZED COATINGS FOR HEAT CORROSION PROTECTION
JPS6360291A (en) Corrosion resistant structure
Sherwood Performance of aluminium in refineries
DE102007020420B4 (en) Plasma spraying process for coating superheater pipes and using a metal alloy powder
Porter THE PROTECTION OF MOTOR VEHICLES FROM
Cotton Practical Use of Anodic Passivation for the Protection of Chel11Ical Plant
Elliott Materials selection for corrosion control
CN110093595A (en) A kind of method that high temperature hydro-thermal reaction prepares metalwork surface rust protection ceramic coating
Liu et al. Hot Dip Aluminizing of Steel Sheet by the Flux Method