JPS5835202B2 - Propylene removal process - Google Patents

Propylene removal process

Info

Publication number
JPS5835202B2
JPS5835202B2 JP6593675A JP6593675A JPS5835202B2 JP S5835202 B2 JPS5835202 B2 JP S5835202B2 JP 6593675 A JP6593675 A JP 6593675A JP 6593675 A JP6593675 A JP 6593675A JP S5835202 B2 JPS5835202 B2 JP S5835202B2
Authority
JP
Japan
Prior art keywords
polymerization
propylene
polymerization vessel
polymer
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6593675A
Other languages
Japanese (ja)
Other versions
JPS51140983A (en
Inventor
昭信 志賀
紀由 松山
衛 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6593675A priority Critical patent/JPS5835202B2/en
Publication of JPS51140983A publication Critical patent/JPS51140983A/en
Publication of JPS5835202B2 publication Critical patent/JPS5835202B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】 本発明はプロピレンの単独重合、プロピレンとエチレン
のランダム共重合またはプロピレンとエチレンのブロッ
ク共重合を連続的に行う方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously carrying out homopolymerization of propylene, random copolymerization of propylene and ethylene, or block copolymerization of propylene and ethylene.

さらに詳しくは大部を仕切板により教室に分割した構造
を有した横型重合器を用いて上記の重合を行う方法に関
する。
More specifically, the present invention relates to a method of carrying out the above polymerization using a horizontal polymerizer having a structure in which most of the parts are divided into classrooms by partition plates.

従来、プロピレンの単独もしくはプロピレンとエチレン
の共重合1こおいて使用される重合器は竪型撹拌重合器
がよく知られている。
Conventionally, a vertical stirring polymerization vessel has been well known as a polymerization vessel used in the single polymerization of propylene or the copolymerization of propylene and ethylene.

この重合器を使用した場合連続操作が比較的安定に行え
、かつ単位時間当りの重合量が多いという利点を有する
反面、重合器内において完全混合に近い撹拌が行われる
ため触媒および重合物の滞留時間分布が広いため下記の
問題点を有している。
When this polymerization vessel is used, it has the advantage of relatively stable continuous operation and a large amount of polymerization per unit time, but on the other hand, the catalyst and polymer remain in the vessel because stirring is performed close to complete mixing inside the polymerization vessel. Since the time distribution is wide, it has the following problems.

■ 触媒のうち未だ活性の高い滞留時間の短い触媒が排
出されるため触媒当りの重合量が回分式に比較して約1
0φ低下する。
■ Among the catalysts, the catalysts with short residence times that are still highly active are discharged, so the amount of polymerization per catalyst is approximately 1% compared to the batch method.
Decreases by 0φ.

■ 2基直列の重合器を用い、前段重合器でプロピレン
の重合に続いて後段重合器でエチレンとの共重合を行う
、いわゆるブロック共重合を行った場合、触媒滞留時間
の分布が広くまた触媒粒子当りの重合量が重合器内の滞
留時間によって異なるため、生成した個々の重合体粒子
は前段のプロピレンの重合量、後段のエチレンとの共重
合量が互に独立して非常に異なり、その結果として得ら
れたブロック共重合体は極めて広い組成分布を有するも
のとなる。
■ When performing so-called block copolymerization using two polymerization vessels in series, in which propylene is polymerized in the first polymerization vessel and then copolymerized with ethylene in the second polymerization vessel, the distribution of catalyst residence time is wide and Since the amount of polymerization per particle varies depending on the residence time in the polymerization vessel, the amount of polymerized propylene in the first stage and the amount of copolymerization with ethylene in the second stage of each polymer particle vary independently from each other. The resulting block copolymer has an extremely wide compositional distribution.

それは例えば前段での全重合量と後段での全重合量の比
が80/20であったとしても極端に考えれば重合体の
組成分布はプロピレン重合体100係の粒子からエチレ
ン−プロピレンランダム共重合体100φの重合体粒子
に至るまでばらついていることになる。
For example, even if the ratio of the total amount of polymerization in the first stage to the total amount of polymerization in the second stage is 80/20, if you think about it in an extreme way, the composition distribution of the polymer will range from 100% propylene polymer particles to ethylene-propylene random copolymer. This means that there are variations even down to the polymer particles having a combined diameter of 100φ.

このような組成が不均一な重合体の品質は好ましくない
The quality of polymers with such non-uniform composition is not desirable.

例えば前段の重合体と後段の共重合体の極限粘度(5)
に相異があるのが一般的であるから、組成の広い分布が
分子量の広い分布に対応し、重合体をフィルム用に加工
すると多数のフィッシュアイを生ずるので不適である。
For example, the intrinsic viscosity (5) of the polymer in the first stage and the copolymer in the second stage
Since there is generally a difference in the molecular weight, a wide distribution of composition corresponds to a wide distribution of molecular weight, and processing the polymer into a film is unsuitable because it results in a large number of fish eyes.

また射出成形用に力ロエすると成型品の低温での耐衝撃
性が著しく低下したり衝撃時の白化を起しやすい。
Furthermore, when used for injection molding, the impact resistance of the molded product at low temperatures is significantly reduced and whitening is likely to occur upon impact.

これらの欠点を改良する方法として■回分式重合を行う
■多槽直列連続重合を行うことが有効であることは知ら
れている。
It is known that as a method for improving these drawbacks, it is effective to (1) carry out batch polymerization and (2) carry out continuous series polymerization in multiple tanks.

ところが、■の回分式重合法においては均一な重合体が
得られ、触媒効率が高いが原料の仕込および重合体の排
出に時間がかかったり、重合速度が一定でないために常
に最高重合速度に保つことができないので、単位時間当
りの重合体量は連続重合法に比し著しく低下するという
欠点を有している。
However, in the batch polymerization method (2), a homogeneous polymer can be obtained and the catalyst efficiency is high, but it takes time to charge raw materials and discharge the polymer, and the polymerization rate is not constant, so it is necessary to always maintain the highest polymerization rate. Therefore, it has the disadvantage that the amount of polymer per unit time is significantly lower than that in the continuous polymerization method.

また■の方法は多数の重合器を直列に使用し、重合を連
続化して回分式の欠点を補うものであるが、重合器の数
が増加するために重合器のみならず各基にそれぞれの必
要な制御機器、重合体懸濁液移送装置等の機器類をとり
つける必要があるので、設備費、面積の拡大および運転
の複雑化のために不利である。
In addition, method (2) uses a large number of polymerization vessels in series to make polymerization continuous and compensate for the disadvantages of the batch system. Since it is necessary to install necessary equipment such as control equipment and a polymer suspension transfer device, it is disadvantageous because it increases equipment costs, increases area, and complicates operation.

本発明者らは種々検討の結果、内部に仕切板によって少
なくとも3個以上の室に分割した構造を有し、かつ逆流
混合効果の少ない形状の撹拌機を内蔵する横型重合器を
1基または2基使用して重合を行うことにより上記問題
点を解決できることを見出し本発明に到達した。
As a result of various studies, the present inventors have constructed one or two horizontal polymerization vessels that have a structure that is divided into at least three or more chambers by partition plates, and that have a built-in stirrer that has a shape that reduces the effect of backflow mixing. The inventors have discovered that the above-mentioned problems can be solved by carrying out polymerization using a group, and have thus arrived at the present invention.

本発明によれば重合器1基で少なくとも3基以上の従来
の重合器に相当する操作を可能とし、さらに横型構造の
ため安定操業を容易にする。
According to the present invention, one polymerization vessel can perform operations equivalent to at least three conventional polymerization vessels, and the horizontal structure facilitates stable operation.

多段式竪型重合器については米国特許第 3.454,675号明細書にも記載されており、重合
器内部を多室化する点では本発明に使用する重合器と同
じであるが、竪型構造では各室において重合熱の除去が
不十分になると気泡が発生するとか各室の間で温度分布
が生じやすい欠点を有する。
A multistage vertical polymerization vessel is also described in U.S. Pat. The mold structure has disadvantages in that if the heat of polymerization is insufficiently removed in each chamber, air bubbles may be generated or temperature distribution may occur between the chambers.

液相プロピレン中での重合においては重合速度が大きい
ために工業的規模においては、重合熱の除去は単に重合
器壁に取付けられたジャケットだけの冷却だけでは不十
分であることが多く、外部冷却器として重合器の上部に
リフラックスコンデンサーを取付けるのが通常よく行わ
れる。
Due to the high polymerization rate of polymerization in liquid propylene, on an industrial scale, it is often insufficient to remove the polymerization heat simply by cooling the jacket attached to the wall of the polymerization vessel; A reflux condenser is usually installed at the top of the polymerization reactor as a container.

しかしながら多段式竪型重合器の場合、最上部の室のみ
しか気相部がないため、外部冷却器を取り付けた場合で
も全ての室の温度を一定にすることはできず、安定操業
が非常に行い難い欠点を有している。
However, in the case of a multi-stage vertical polymerization reactor, only the top chamber has a gas phase, so even if an external cooler is installed, it is not possible to maintain a constant temperature in all chambers, making stable operation extremely difficult. It has drawbacks that make it difficult to carry out.

本発明においては横型重合器をしているので気相が各室
の上層部に存在し、プロピレン液相中で重合すれば重合
温度を決める要因であるプロピレンの蒸気圧は重合器の
どの室も同一であるので重合器の各室の温度を自己制御
的に一定に保つことができ、また室によって重合量が異
なっても重合量に応じてプロピレンの蒸発が起り、同一
気相を形成し重合温度は常に一定値を維持することがで
きる。
In the present invention, since a horizontal polymerization reactor is used, the gas phase exists in the upper part of each chamber, and if polymerization is carried out in the propylene liquid phase, the vapor pressure of propylene, which is a factor that determines the polymerization temperature, can be controlled in any chamber of the polymerization reactor. Because they are the same, the temperature in each chamber of the polymerization vessel can be kept constant in a self-controlled manner, and even if the amount of polymerization differs depending on the chamber, propylene evaporates depending on the amount of polymerization, forming the same gas phase and polymerizing. The temperature can always be maintained at a constant value.

蒸発した気相ガスは重合器外部に設けられたりフラック
スコンデンサーで凝縮され、凝縮液は再び重合器に循環
される。
The evaporated gas is condensed in a flux condenser installed outside the polymerization vessel, and the condensate is circulated back to the polymerization vessel.

このように本発明においては竪型重合器に見られる欠点
は存在しない。
In this way, the present invention does not have the drawbacks found in vertical polymerization vessels.

本発明についてさらに述べれば、本発明において使用さ
れる触媒は一般にプロピレンの重合に使用されるチーグ
ラー・ナツタ系触媒であり有機アルミニウム化合物aと
遷移金属化合物すとの組合せからなり、さらに詳細には 触媒a:有機アルミニウム化合物と 触媒す二周期律表の第■〜第■族の遷移金属化合物ある
いはその化合物と周期律表第 ■〜■族の金属化合物との錯化合物。
To further describe the present invention, the catalyst used in the present invention is a Ziegler-Natsuta catalyst that is generally used for the polymerization of propylene, and is composed of a combination of an organoaluminium compound a and a transition metal compound S. a: An organoaluminum compound and a catalytic transition metal compound of groups ① to ② of the periodic table, or a complex compound of the compound and a metal compound of groups ① to ② of the periodic table.

との組合せを主体とする触媒系であり、さらに触媒C:
アミン、エーテル、エステル、イオウ、ハロゲン、ベン
ゼンの誘導体、有機お よび無機の窒素、リンなどの化合物 の如き第三成分を併用する場合をも含む系からなるもの
である。
It is a catalyst system mainly consisting of a combination of catalyst C:
The system may also include the use of third components such as amines, ethers, esters, sulfur, halogens, benzene derivatives, organic and inorganic compounds such as nitrogen and phosphorus.

また重合に用いられる条件はプロピレンが液相として存
在する条件であればよいが工業的には重合圧力16〜4
6kg/ffl、重合温度40〜90°Cの範囲が採用
される。
In addition, the conditions used for polymerization may be those in which propylene exists as a liquid phase, but industrially the polymerization pressure is 16 to 4
6 kg/ffl and a polymerization temperature in the range of 40 to 90°C are adopted.

かかる条件では重合物は液状プロピレン中に懸濁して得
られる。
Under such conditions, the polymer is obtained suspended in liquid propylene.

また工業的には通常プロピレンにプロパンが1〜30φ
含まれているが本発明はこのようなプロピレンを用いて
も好適に実施することができる。
Also, industrially, propane is usually used for propylene with a diameter of 1 to 30 mm.
However, the present invention can be suitably carried out using such propylene.

以下本発明をさらに明瞭にするため図面を用いて説明す
る。
In order to further clarify the present invention, the present invention will be explained below using drawings.

図1および2は本発明に使用する装置の一例の概略図で
あり、図3は本発明に使用する撹拌翼の代表例の側面図
である。
1 and 2 are schematic diagrams of an example of an apparatus used in the present invention, and FIG. 3 is a side view of a typical example of a stirring blade used in the present invention.

図1では横型に設置された重合器1には横型の撹拌軸2
がついており重合器とメカニカルシールによってシール
され、両端または場合によっては真中で固定さ札電動機
5によって回転される。
In Figure 1, the polymerization vessel 1 installed horizontally has a horizontal stirring shaft 2.
It is sealed by a polymerizer and a mechanical seal, fixed at both ends or in the middle as the case may be, and rotated by a tag electric motor 5.

撹拌軸2には逆混合効果の少ない撹拌翼3および重合器
1を多室に仕切る回転板4が各々必要に応じて取付けら
れる。
A stirring blade 3 having a small back-mixing effect and a rotary plate 4 which partitions the polymerization vessel 1 into multiple chambers are attached to the stirring shaft 2 as necessary.

仕切りは回転板によるだけでなく固定する方法も考えら
れる。
In addition to using rotating plates as partitions, it is also possible to use fixed partitions.

重合器1にはノズル6から液状プロピレン、ノズル7か
ら触媒a、ノズル8から触媒b、ノズル9から水素、ノ
ズル10からエチレンが供給される。
The polymerization vessel 1 is supplied with liquid propylene from a nozzle 6, catalyst a from a nozzle 7, catalyst b from a nozzle 8, hydrogen from a nozzle 9, and ethylene from a nozzle 10.

重合体は排出口11から懸濁液として排出される。The polymer is discharged from the discharge port 11 as a suspension.

重合器1内では重合の進行と共に撹拌翼3および液の流
れによって仕切板の間隙を通り抜けて排出口11に向っ
て重合体は移動する。
In the polymerization vessel 1, as the polymerization progresses, the polymer moves toward the discharge port 11 through the gaps between the partition plates by the stirring blades 3 and the flow of the liquid.

重合によって発生した熱によって蒸発したプロピレンお
よびプロパンガスはノズル12から抜き出されリフラッ
クスコンデンサー13で凝縮されてノズル14から再び
重合器にもどる。
Propylene and propane gases evaporated by the heat generated by polymerization are extracted from the nozzle 12, condensed in the reflux condenser 13, and returned to the polymerization vessel through the nozzle 14.

水素あるいはエチレンのように不凝縮性ガスはりフラッ
クスコンデンサー13から引抜かれ、圧縮機15によっ
て圧縮されてノズル16から重合器1に循環される。
A non-condensable gas such as hydrogen or ethylene is drawn out from the flux condenser 13, compressed by a compressor 15, and circulated through a nozzle 16 to the polymerizer 1.

ノズル14および16は望ましくは各室に取付けて各流
量は調節して分配されるのがよい。
Nozzles 14 and 16 are preferably mounted in each chamber so that each flow rate is regulated and distributed.

重合熱の一部分は重合器壁に取付けられたジャケット1
7によっても除熱される。
A portion of the polymerization heat is transferred to the jacket 1 attached to the wall of the polymerization vessel.
7 also removes heat.

図2は図1の重合器2基を用いてブロック共重合を行う
方法を示したもので重合器18にはノズル20から液状
プロピレン、ノズル21から触媒a、ノズル22から触
媒b、ノズル23から水素を供給してプロピレンの重合
を行い、引き続いて管24によって重合器19に重合体
懸濁液を移送し、ノズル25から液状プロピレン、ノズ
ル26からエチレンを追加しながらプロピレンとエチレ
ンの共重合を連続的に行いブロック共重合体を得る。
FIG. 2 shows a method for performing block copolymerization using the two polymerization vessels shown in FIG. Propylene is polymerized by supplying hydrogen, and then the polymer suspension is transferred to the polymerization vessel 19 through the pipe 24, and copolymerization of propylene and ethylene is carried out while adding liquid propylene from the nozzle 25 and ethylene from the nozzle 26. This is carried out continuously to obtain a block copolymer.

ブロック共重合体は排出口27から抜き出され次の工程
Eこ送られる。
The block copolymer is extracted from the outlet 27 and sent to the next step E.

重合器18および19は構造は同じであり、同じ形状の
撹拌形式を有し、かつ同じ形式のりフラックスコンデン
サー圧縮機を有するが容積は必ずしも同一にする心安は
ない。
The polymerization vessels 18 and 19 have the same structure, have the same stirring type, and have the same type of flux condenser compressor, but the volumes are not necessarily the same.

一般には重合器19は重合器18よりも小さく、これは
重合器19での重合量が少ないことおよび重合速度が早
いことによる。
Generally, the polymerization vessel 19 is smaller than the polymerization vessel 18 because the amount of polymerization in the polymerization vessel 19 is smaller and the polymerization rate is faster.

撹拌回転数は各室において均一に重合体粒子が分散する
ような強度の撹拌は不要である。
The stirring rotation speed does not need to be strong enough to uniformly disperse the polymer particles in each chamber.

単に重合体粒子がお互いに付着するのを防止する程度で
よく経験的には周速度が0.3 m /seC以上であ
ればよい。
Empirically, it is enough to simply prevent the polymer particles from adhering to each other, as long as the circumferential velocity is 0.3 m/secC or more.

強度な撹拌は撹拌翼による吐出流のために各室内での混
合が大きくなり゛室画成の混合が増加して好ましくない
Intense stirring is undesirable because it increases the mixing within each chamber due to the discharge flow from the stirring blades and increases the mixing in the chamber definitions.

撹拌翼の形状としては図3に示すような、ねじり角度が
O〜5°のパドル型(A、B)、水平翼(C,D)が代
表的である。
Typical shapes of stirring blades are paddle types (A, B) and horizontal blades (C, D) with twist angles of 0 to 5 degrees, as shown in FIG.

撹拌軸は図1のように偏心したもの、あるいは中心軸の
ものでもよい。
The stirring shaft may be eccentric as shown in FIG. 1 or may have a central shaft.

撹拌翼および仕切板形状に応じて撹拌軸の位置をきめれ
ばよいわけである。
The position of the stirring shaft can be determined depending on the shape of the stirring blades and the partition plate.

次に本発明を実施例を用いて説明する。Next, the present invention will be explained using examples.

実施例 I L/D= 2.5 (L :長さ、D:内径)、内容積
20OAの横型重合器に撹拌軸を中心軸を通して挿入し
各室に1個の図3のD型の撹拌翼を取付け、仕切板に回
転円板の1/12を扇状に切欠いたもを3個取付けて重
合器内部を4分割した。
Example I A stirring shaft was inserted through the central shaft into a horizontal polymerization vessel with L/D = 2.5 (L: length, D: inner diameter) and an internal volume of 20 OA, and each chamber had one D-type stirring device in Fig. 3. The interior of the polymerization vessel was divided into four parts by attaching wings and three fan-shaped notches cut out from 1/12 of a rotating disk to the partition plate.

撹拌回転数は25r、p、mで周速度は0.671LA
ecであった。
The stirring rotation speed is 25 r, p, m and the peripheral speed is 0.671 LA.
It was ec.

触媒aとしてジエチルアルミニウムクロライド4 g/
h rおよび触媒すとして三塩化チタン1.29/h
rをヘプタンと一緒に10分に1回の間隔で間欠的にカ
ロえた。
Diethylaluminum chloride 4 g/as catalyst a
h r and titanium trichloride as catalyst 1.29/h
The mixture was intermittently mixed with heptane at intervals of once every 10 minutes.

三塩化チタンはTiCl2をジエチルアルミニウムによ
り還元し、ついでジイソアミルエーテル処理、ついでT
+cA!4処理を施して得られたものを使用した。
Titanium trichloride is obtained by reducing TiCl2 with diethylaluminum, followed by diisoamyl ether treatment, and then T
+cA! 4 treatments were used.

液状プロピレンは14ky、4(で連続的に供給し、水
素は重合器の気相濃度が3.2条になるようにカロえた
Liquid propylene was continuously supplied at a rate of 14 ky, 4, and hydrogen was added so that the gas phase concentration in the polymerization vessel was 3.2.

重合温度60°C1重合圧力25.8kg/cTLで平
均滞留時間35時間で重合した。
Polymerization was carried out at a polymerization temperature of 60° C., a polymerization pressure of 25.8 kg/cTL, and an average residence time of 35 hours.

除熱は重合器のジャケットで行った。Heat was removed using the jacket of the polymerization vessel.

得られた重合体はM、 r 、 6.5で重合体収量は
6.2 kg/ h rであり、三塩化チタン1g当り
重合量は5.2 kgであった。
The obtained polymer had an M, r of 6.5, a polymer yield of 6.2 kg/hr, and a polymerized amount of 5.2 kg per 1 g of titanium trichloride.

比較例 1 重合器にり、/D=1.8、内容積20OAの竪型重合
器を用いた。
Comparative Example 1 A vertical polymerization vessel with /D=1.8 and an internal volume of 20OA was used.

撹拌機はタービン翼を用い、150 r、p、mで回転
した。
The stirrer was a turbine blade, rotating at 150 r, p, m.

重合器内壁には4枚の邪魔板を取付けた。Four baffle plates were attached to the inner wall of the polymerization vessel.

実施例1と全く同一条件で重合したところ得られた重合
体はMI5.6であり重合体量は5.6 kg/ h
rであった。
The polymer obtained by polymerization under exactly the same conditions as in Example 1 had an MI of 5.6 and a polymer weight of 5.6 kg/h.
It was r.

三塩化チタン1g当りの重合量は4.7kgであった。The amount of polymerization per 1 g of titanium trichloride was 4.7 kg.

実施例 2 実施例1と全く同一の重合器を2基直列に使用し、前段
重合器は実施例1と全く同一に操作した。
Example 2 Two polymerization vessels identical to those in Example 1 were used in series, and the front polymerization vessel was operated in the same manner as in Example 1.

後段重合器にはエチレン0.6 kg/ h r 、プ
ロピレン1 kg/ h rを投入して重合温度45°
C1重合圧力19kg/−で共重合した。
Ethylene 0.6 kg/hr and propylene 1 kg/hr were charged into the second stage polymerization vessel, and the polymerization temperature was set at 45°.
Copolymerization was carried out at a C1 polymerization pressure of 19 kg/-.

得られた重合体は7、8 kg/ h rであった。The yield of the obtained polymer was 7.8 kg/hr.

物性値は表1に示す。比較例2よりもシートのブツ、低
温での落錘衝撃強度の改良効果が大きいことがわかった
The physical property values are shown in Table 1. It was found that the sheet had a greater effect of improving the falling weight impact strength at low temperatures than Comparative Example 2.

比較例 2 重合器に比較例と同一の重合器を2基直列に使用して実
症例2と全く同一に操作した。
Comparative Example 2 Two polymerization vessels identical to those of Comparative Example were used in series, and the same operation as in Actual Case 2 was carried out.

後段重合器の重合温度45℃、重合圧力18.8kg/
−であった。
Polymerization temperature in the second stage polymerization vessel: 45℃, polymerization pressure: 18.8kg/
-It was.

得られた重合体は7.6kg/hrであった。物性値を
表1に示す。
The yield of the obtained polymer was 7.6 kg/hr. The physical property values are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のプロピレンの単独重合またはエチレンと
の共重合に使用する装置の一例の概略図である。 図2は前段重合器でプロピレンの重合、後段重合器でエ
チレンとの共重合をする重合装置の概略図である。 図3は用いられる撹拌翼の代表例の側面図である。 1:重合器、2:撹拌軸、3:撹拌翼、4二仕切り板、
18二重合器(前段)、19:重合器(後段)。
FIG. 1 is a schematic diagram of an example of an apparatus used for homopolymerization of propylene or copolymerization with ethylene according to the present invention. FIG. 2 is a schematic diagram of a polymerization apparatus in which propylene is polymerized in a first stage polymerization vessel and copolymerized with ethylene in a second stage polymerization vessel. FIG. 3 is a side view of a typical example of the stirring blade used. 1: Polymerization vessel, 2: Stirring shaft, 3: Stirring blade, 4 Two partition plates,
18: Polymerization vessel (first stage), 19: Polymerization vessel (second stage).

Claims (1)

【特許請求の範囲】[Claims] 1 内部を仕切板によって少なくとも3個以上の室に分
割した構造を有し、かつ逆流混合効果の少ない形状の撹
拌機を内蔵する横型重合器を1基または2基使用してプ
ロピレン液相中でプロピレンの単独重合あるいはエチレ
ンとの共重合あるいはプロピレンの重合とエチレンとの
共重合を直列に行いブロック共重合することを特徴とす
る方法。
1. In a propylene liquid phase using one or two horizontal polymerization vessels that have a structure in which the interior is divided into at least three chambers by partition plates and a built-in stirrer that has a shape that reduces the effect of backflow mixing. A method characterized by homopolymerization of propylene, copolymerization with ethylene, or polymerization of propylene and copolymerization with ethylene in series to perform block copolymerization.
JP6593675A 1975-05-30 1975-05-30 Propylene removal process Expired JPS5835202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6593675A JPS5835202B2 (en) 1975-05-30 1975-05-30 Propylene removal process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6593675A JPS5835202B2 (en) 1975-05-30 1975-05-30 Propylene removal process

Publications (2)

Publication Number Publication Date
JPS51140983A JPS51140983A (en) 1976-12-04
JPS5835202B2 true JPS5835202B2 (en) 1983-08-01

Family

ID=13301334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6593675A Expired JPS5835202B2 (en) 1975-05-30 1975-05-30 Propylene removal process

Country Status (1)

Country Link
JP (1) JPS5835202B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761013A (en) * 1980-10-01 1982-04-13 Sumitomo Chem Co Ltd Continuous vapor-phase polymerization of alpha-olefin
JP4177769B2 (en) * 2004-02-04 2008-11-05 株式会社日立製作所 Polymer synthesizer

Also Published As

Publication number Publication date
JPS51140983A (en) 1976-12-04

Similar Documents

Publication Publication Date Title
US3954722A (en) Manufacture of uniform polymers
US3522227A (en) Polymerization of vinyl chloride
US3578649A (en) Preparation of vinyl polymers
US3927983A (en) Continuous staged isobaric stirred polymerization apparatus
CN105601814B (en) Industrial production method of trans-butadiene-isoprene copolymer rubber and device for implementing method
CA2312988C (en) Agitator for subfluidized particulate bed in quench-cooled vapor phase polymerization reactors
US4576994A (en) Process for the preparation of a polypropylene molding composition
US4328327A (en) Continuous bulk polymerization process for preparing copolymer of aromatic vinyl monomer and maleic anhydride
CA1070897A (en) Continuous solvent-free polymerisation of vinyl derivatives
CA1332490C (en) Highly crystalline poly-1-butene, the process for preparing it and the catalyst used in the process
US4339569A (en) Process for continuous production of oxymethylene polymer or copolymer
CN113941296A (en) External circulation reactor and heat removal method for polymerization reaction
US3794471A (en) Continuous polymerization apparatus
US4099335A (en) Drying and finishing operations in slurry or bulk phase polymerization processes
US3909207A (en) Vertical stirred mass polymerization apparatus
JPS5835202B2 (en) Propylene removal process
US3801286A (en) Slurry polymerization reactor
US3687923A (en) Polymerization of ethylenic monomers and products thereof
CN100582124C (en) Process for preparing catalyst components for the olefin polymerization
EP0046696B1 (en) Rotating disc evapo-extrusion process and apparatus therefor
JP4377032B2 (en) Continuous production method of living polymer
US4419488A (en) Process for continuous production of high impact polystyrene
US3950138A (en) Apparatus for conducting chemical reactions, particularly polymerization, continuously
CN109517098A (en) A kind of offline pre-polymerized catalyst and propylene homo close and the method for combined polymerization
US3687919A (en) Polymerization in mass of ethylenic monomers and products produced thereby