JPS5834865B2 - Vector calculation circuit - Google Patents

Vector calculation circuit

Info

Publication number
JPS5834865B2
JPS5834865B2 JP4483777A JP4483777A JPS5834865B2 JP S5834865 B2 JPS5834865 B2 JP S5834865B2 JP 4483777 A JP4483777 A JP 4483777A JP 4483777 A JP4483777 A JP 4483777A JP S5834865 B2 JPS5834865 B2 JP S5834865B2
Authority
JP
Japan
Prior art keywords
circuit
coefficient
equal dividing
dividing line
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4483777A
Other languages
Japanese (ja)
Other versions
JPS53129944A (en
Inventor
元治 江■
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON AVIATION ELECTRONICS
Original Assignee
NIPPON AVIATION ELECTRONICS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON AVIATION ELECTRONICS filed Critical NIPPON AVIATION ELECTRONICS
Priority to JP4483777A priority Critical patent/JPS5834865B2/en
Publication of JPS53129944A publication Critical patent/JPS53129944A/en
Publication of JPS5834865B2 publication Critical patent/JPS5834865B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は互いに直角な方向と夫々の大きさを持った2
ケのベクトル量の合成値の大きさを計算する回路に関し
、更に詳細に云えばベクトル入力を互いに直角に配置さ
れた一方向及びその逆方向のみ計測出来る測定器で計測
し、その出力を実際に合成することなく入力ベクトル量
の大きさの近似値を得る装置に関する。
[Detailed description of the invention] This invention provides two
Regarding the circuit that calculates the magnitude of the composite value of vector quantities, in more detail, the vector input is measured with a measuring instrument that can measure only one direction and its opposite direction, which are arranged at right angles to each other, and the output is actually measured. The present invention relates to a device for obtaining an approximate value of the magnitude of an input vector quantity without compositing.

例えば加速度計でベクトル量である加速度を測定する場
合について考えてみると、その加速度を求めるため第1
図のような方法で計測している。
For example, if we consider the case of measuring acceleration, which is a vector quantity, with an accelerometer, the first
It is measured using the method shown in the figure.

即ち一般に加速度計は一方向及びその逆方向のみしか計
測できないため、そのベクトル量を測定するためには2
個のセンサーを互いに直角の位置に配置し、X軸方向の
成分Vx及びy軸方向の成分■yを計測し、ベクトル合
成回路てv=7幻■v】を計算してその大きさを求めて
いた。
In other words, accelerometers can generally only measure in one direction and the opposite direction, so in order to measure the vector quantity, 2
Arrange the sensors at right angles to each other, measure the component Vx in the X-axis direction and the component ■y in the y-axis direction, and use a vector synthesis circuit to calculate v = 7 illusion ■v] to find its size. was.

しかしながら自乗計算や平方根の計算を電気回路でアナ
ログ計算するのはかなり困難であり、回路部品が環境条
件に影響を受は易い使用法をされるため精度上問題があ
り、それらの問題を解決すると高価につく欠点があった
However, it is quite difficult to perform analog calculations of squares and square roots using electric circuits, and since circuit components are used in ways that are easily affected by environmental conditions, there are problems with accuracy. It had the drawback of being expensive.

また別の方法として第2図のように3個のセンサー3,
4.5を120度づつ離して配置し、加速度をO度方向
成分■。
Another method is to use three sensors 3,
4.5 are placed 120 degrees apart, and the acceleration is the 0 degree direction component■.

、120度方向戒分V120および240度方向成分V
240を計測し、その絶対値を例えば第6図のような最
大値検出回路に入れて3成分■。
, 120 degree direction component V120 and 240 degree direction component V
240, and input the absolute value into a maximum value detection circuit as shown in FIG. 6, for example, to generate three components.

+V1□。および■24゜の中の最大値を取出して測定
値とする方法があるが、この特性は第3図に示す通りで
、誤差の最大値は13.4%となり実用になるとしパ(
も精度が悪く、又回路は最大値検出回路のみでダイオー
ド及び抵抗で簡単に構成出来るが、センサー3個を必要
とするので高価になる欠点がある。
+V1□. There is a method of taking the maximum value between
Also, although the circuit can be easily constructed with only a maximum value detection circuit and a diode and a resistor, it has the disadvantage of being expensive because it requires three sensors.

この発明の目的はベクトル量を測定する場合にセンサー
を2個使用するのみで比較的簡単な回路で安価に出来、
しかも比較的高精度にベクトル量の大きさの近似値を求
めることのできる回路を提供するにある。
The purpose of this invention is to use only two sensors when measuring vector quantities, which can be done at low cost with a relatively simple circuit.
Moreover, it is an object of the present invention to provide a circuit that can obtain an approximate value of the magnitude of a vector quantity with relatively high precision.

この発明の回路は互いに直角に配置されたセンサーによ
って2つの直角な取分に分割されたベクトル入力の大き
さを、合成回路を使用しないで近似的に算出するもので
ある。
The circuit of the present invention approximately calculates the magnitude of a vector input divided into two orthogonal portions by sensors arranged at right angles to each other, without using a combining circuit.

この目的を遠戚するためにこの発明では以下に詳しく説
明するように、選択した係数をセンサーの出力に乗する
係数乗算回路と、所望の係数乗算回路の出力を加算する
加算回路と、各センサーの出力及び加算回路の出力の中
最大値を検出する最大値検出回路で構成される。
In order to achieve this objective, the present invention includes a coefficient multiplier circuit that multiplies the output of a sensor by a selected coefficient, an adder circuit that adds the output of the desired coefficient multiplier circuit, and each sensor as described in detail below. It consists of a maximum value detection circuit that detects the maximum value of the output of the adder circuit and the output of the adder circuit.

以下にこの発明について図面を用いて説明する。This invention will be explained below using the drawings.

第4図はこの発明の一実施例の系統図を示す。FIG. 4 shows a system diagram of an embodiment of the present invention.

センサー1,2は第1図のように直角に配置されている
Sensors 1 and 2 are arranged at right angles as shown in FIG.

図の入力方向から例えば加速度入力があったとして入力
方向とセンサー1のなす角をθとする。
Assuming that, for example, there is an acceleration input from the input direction in the figure, the angle between the input direction and the sensor 1 is assumed to be θ.

第4図において係数乗算回路6はセンサー1′)出力■
・に0・707(込「)を乗じ・係数乗算回路7はセン
サー2の出力vyに0.707 (、/E )を乗す
る回路である。
In Fig. 4, the coefficient multiplier circuit 6 outputs the sensor 1')
The coefficient multiplication circuit 7 is a circuit that multiplies the output vy of the sensor 2 by 0.707 (, /E ).

乗する係数は次のようにして定める。The coefficient to be multiplied is determined as follows.

第5図において入力ベクトルをOPとし、ベクトルOP
のX軸、Y軸に対する投影をOA、OBとする。
In Fig. 5, the input vector is OP, and the vector OP
Let OA and OB be the projections of on the X and Y axes.

センサー1,2は夫々X軸、Y軸上におかれるので、O
A、OBの大きさがVx、Vyになる。
Since sensors 1 and 2 are placed on the X and Y axes, respectively, O
The sizes of A and OB become Vx and Vy.

角XOYの2等分線をOQとする。Let OQ be the bisector of angle XOY.

OAのOQに対する投影OMとOAとの比をVxの係数
、OBのOQに対する投影ONとOBとの比をVyの係
数とする。
Let the ratio of projection OM to OA to OQ of OA be a coefficient of Vx, and the ratio of projection ON to OB to OQ of OB be a coefficient of Vy.

回路8は前記係数乗算回路6および7の出力側に接続さ
れ、第5図におけるOMとONを加算する回路即ち係数
乗算回路6及7の出力0.707 Vxおよび0.70
7Vyを加算する回路である。
A circuit 8 is connected to the output side of the coefficient multiplication circuits 6 and 7, and is a circuit for adding OM and ON in FIG.
This is a circuit that adds 7Vy.

この加算回路の出力0.707 (Vx+Vy )は前
記センサー1,2の出力Vx、Vyと共に最大値検出回
路に入る。
The output 0.707 (Vx+Vy) of this adder circuit enters the maximum value detection circuit together with the outputs Vx and Vy of the sensors 1 and 2.

最大値検出回路9は前記入力V x r V yおよび
0.707 (Vx+Vy )の中最大のものを検出し
て出力V=M’axVx、Vy、0.707(Vx+V
y)を出す。
The maximum value detection circuit 9 detects the maximum value among the inputs V x r V y and 0.707 (Vx+Vy), and outputs V=M'axVx, Vy, 0.707 (Vx+V
y).

係数乗算回路6,7および加算回路8はオペレーショナ
ルアンプ1個と数個の抵抗器で構成され、安価で、環境
条件に対しても安定に作ることができる。
The coefficient multiplier circuits 6, 7 and the adder circuit 8 are composed of one operational amplifier and several resistors, and can be manufactured at low cost and stable under environmental conditions.

最大値検出回路9は例えば第6図に示したようにダイオ
ードと抵抗器で簡単に作ることが出来る。
The maximum value detection circuit 9 can be easily constructed using a diode and a resistor, for example, as shown in FIG.

第7図は第4図の回路を用いた場合の特性を示し、誤差
はθ−22°30′及びθ67°30′のとき最大で、
そのときの出力■は真値■Rに対しV=0.924VR
となり7,6咎の誤差となる。
Figure 7 shows the characteristics when using the circuit in Figure 4, and the error is maximum at θ-22°30' and θ67°30'.
At that time, the output ■ is V=0.924VR with respect to the true value ■R
This results in an error of 7.6 tai.

これは第2図のセンサー3個を用いた場合の最大誤差1
34φに比して相当良い結果が得られる。
This is the maximum error of 1 when using three sensors in Figure 2.
Considerably better results can be obtained compared to 34φ.

第7図を見ると、横軸は入力方向の角度、縦軸は求める
値■の真値vRとの比を示しθ−σにおいてはVxが真
値に一致し、θ−0〜2 ff 30’においてはVx
が真値に近い。
Looking at Figure 7, the horizontal axis is the angle of the input direction, and the vertical axis is the ratio of the sought value ■ to the true value vR. At θ-σ, Vx matches the true value, and θ-0 to 2 ff 30 'In ', Vx
is close to the true value.

θ−45°においては加算回路8の出力0.707 (
Vx+Vy )が真値に一致し、θ−22°30′〜6
7°30’においては0、707 (Vx十Vy )が
真値に近い。
At θ-45°, the output of adder circuit 8 is 0.707 (
Vx+Vy) matches the true value, θ-22°30'~6
At 7°30', 0,707 (Vx + Vy) is close to the true value.

又θ=9げにおいてはVyが真値に一致し、θ−67°
30′〜90°においてはVyが真値に近い。
Also, at θ=9, Vy matches the true value, and θ-67°
Vy is close to the true value between 30' and 90°.

θ〉90°の範囲でも同様である。The same holds true in the range of θ>90°.

但しVx、Vyは絶対値を取るようにしておくものとす
る。
However, it is assumed that Vx and Vy take absolute values.

第8図は本発明の他の実施例の系統図を示し、センサー
は第1図と同様に配置し、その出力をV x r V
yとする。
FIG. 8 shows a system diagram of another embodiment of the present invention, in which the sensors are arranged in the same way as in FIG.
Let it be y.

係数乗算回路10a、10bは入力に係数0.866(
Vi)を、係数乗算回路1 11a、11bは入力に係数0.5(7)を乗する係数
乗算回路であり、センサー1の出力は係数乗算回路10
aおよび11aに、センサー2の出力は係数乗算回路1
0bおよびIlbに接続されている。
The coefficient multiplication circuits 10a and 10b have a coefficient of 0.866 (
Vi), the coefficient multiplication circuit 1 11a and 11b are coefficient multiplication circuits that multiply the input by a coefficient 0.5 (7), and the output of the sensor 1 is the coefficient multiplication circuit 10.
a and 11a, the output of sensor 2 is applied to coefficient multiplication circuit 1.
Connected to 0b and Ilb.

乗する係数は次のようにして定める。第9図において入
力ベクトルをOPとし、ベクトルOPのX軸Y軸に対す
る投影をOA、OBとすると、前述のようにOA、OB
の大きさがV x +vyとなる。
The coefficient to be multiplied is determined as follows. In FIG. 9, if the input vector is OP and the projections of the vector OP onto the X and Y axes are OA and OB, then OA and OB are
The magnitude of is V x +vy.

ZXOYの3等分線をOQおよびORとする。Let the trisectors of ZXOY be OQ and OR.

係数乗算回路10aの係数はOAのOQに対する投影O
M1とOAの比、同じく10bの係数はOBのORに対
する投影ON2とOBの比、また11aの係数はOAの
ORに対する投影OM2とOAの比、11bの係数はO
BのOQに対する投影ON、とOBの比とする。
The coefficient of the coefficient multiplication circuit 10a is the projection O of OA to OQ.
The ratio of M1 to OA, the coefficient of 10b is the ratio of projection ON2 to OB to OR of OB, the coefficient of 11a is the ratio of projection OM2 to OA to OR of OA, and the coefficient of 11b is O
Let be the ratio of the projection ON to the OQ of B and OB.

回路12aは係数乗算回路10a、11bの出力側に接
続され、その出力0.866Vxとo、svyとを加算
する回路で、加算回路12bは係数乗算回路11a、1
0bの出力側に接続され、その出力0.5Vxと0.8
66Vyとを加算する回路である。
The circuit 12a is connected to the output sides of the coefficient multiplication circuits 10a and 11b, and is a circuit that adds the output 0.866Vx and o, svy.
Connected to the output side of 0b, its outputs 0.5Vx and 0.8
This is a circuit that adds 66Vy.

この加算回路12a、12bの出力(Jセンサー1゜2
の出力と共に最大値検出回路9に接続される。
The outputs of these adder circuits 12a and 12b (J sensor 1゜2
It is connected to the maximum value detection circuit 9 together with the output of.

最大値検出回路9は前記入力Vx 、 Vy、0.86
6Vx十O15■yおよび0.5Vx+0.866Vy
の中最大のものを検出して出力V −MaxVx 、
Vy 、 0.866Vx+0.5Vy 、0.5Vx
+0.866Vyを出す。
The maximum value detection circuit 9 receives the inputs Vx, Vy, 0.86
6Vx 15■y and 0.5Vx+0.866Vy
Detects the largest one among them and outputs V −MaxVx,
Vy, 0.866Vx+0.5Vy, 0.5Vx
+0.866Vy is output.

第10図は第8図の回路を用いた場合の特性を示し、誤
差はθ=15°、θ=4!;0およびθ=75°のとき
最大で、その時の出力■はV=0.966 VRで3.
4%の誤差となり、前述の実施例に比べて更に精度が良
くなる。
Fig. 10 shows the characteristics when using the circuit of Fig. 8, and the error is θ=15°, θ=4! It is maximum when 0 and θ=75°, and the output ■ at that time is V=0.966 VR and 3.
The error is 4%, and the accuracy is even better than that of the previous embodiment.

第10図を見ると、θ−〇°においてはVxが真値に一
致しθ=O°〜15°ではVxが真値に近い。
Looking at FIG. 10, Vx matches the true value at θ-0°, and Vx is close to the true value at θ=0° to 15°.

θ=30°においては0.866 Vx+ 0.5 V
yが真値に一致し、θ=15°〜45°においては0.
866Vx+0.5Vyが真値に近い。
0.866 Vx+ 0.5 V at θ=30°
y matches the true value and is 0. at θ=15° to 45°.
866Vx+0.5Vy is close to the true value.

θ=60’においては0.5 Vx+ 0.866 V
yが真値に一致し、θ=45°〜75°においては0.
5Vx+0.866Vyが真値に近い。
At θ=60', 0.5 Vx+0.866 V
y matches the true value and is 0. at θ=45° to 75°.
5Vx+0.866Vy is close to the true value.

またθ=90°においてはVyが真値に一致し、θ=7
5°〜90°においてはvyが真値に近い。
Also, at θ=90°, Vy matches the true value, and θ=7
In the range of 5° to 90°, vy is close to the true value.

θ〉90°の範囲でも同様である。The same holds true in the range of θ>90°.

V X + V yが絶対値を取るようにすることは前
記の例と同様である。
Setting V X + V y to take an absolute value is similar to the previous example.

以上のように本発明によれば、係数乗算回路によりセン
サー出力に係数を乗じ加算回路において所望の加算を行
ない、その出力と2つのセンサーの計測値を比較して最
大値を選ぶことにより必要なセンサーは2つだけで、自
乗又は平方根などのような面倒な、環境条件に影響され
易い回路を使用することなく、安定にかつ安価に、しか
も精度よく求めることができる。
As described above, according to the present invention, the coefficient multiplier circuit multiplies the sensor output by a coefficient, the adder circuit performs the desired addition, the output is compared with the measured values of two sensors, and the maximum value is selected. With only two sensors, the value can be determined stably, inexpensively, and accurately without using complicated circuits such as square or square root circuits that are easily affected by environmental conditions.

なおこの回路は同様にしてZXOYを4等分以上に等分
した場合にも適用出来、等分数を増す程精度は良くなる
Note that this circuit can be similarly applied to the case where ZXOY is divided into four or more equal parts, and the accuracy improves as the number of equal parts increases.

又以上は2次元について説明したが3次元のベクトル量
についても応用できるものである。
Furthermore, although the above description has been made for two-dimensional vector quantities, it can also be applied to three-dimensional vector quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はセンサーの配置と入力方向を示す図、第2図は
センサー3個を12σ毎に配置してベクトルを求める従
来例を示す図、第3図はセンサー3個を用いた第2図に
示す従来例の特性図、第4図は本発明の一実施例の回路
図、第5図は第4図の回路の係数を定めるための原理図
、第6図は本発明に用いる最大値検出回路の一例を示す
図、第7図は第4図の回路を用いたときの特性図、第8
図は本発明の他の実施例の回路図、第9図は第8図の回
路の係数を定めるための原理図、第10図は第8図の回
路を用いたときの特性図である。 1.2:センサー、6,7,10a、10b。 11a、11b:係数乗算回路、8,12a。 12b:加算回路、9:最大値検出回路。
Figure 1 is a diagram showing the arrangement of sensors and input directions, Figure 2 is a diagram showing a conventional example of calculating vectors by arranging three sensors every 12σ, and Figure 3 is a diagram showing the second diagram using three sensors. 4 is a circuit diagram of an embodiment of the present invention, FIG. 5 is a principle diagram for determining the coefficients of the circuit of FIG. 4, and FIG. 6 is a maximum value used in the present invention. Figure 7 is a diagram showing an example of the detection circuit; Figure 7 is a characteristic diagram when using the circuit in Figure 4;
9 is a circuit diagram of another embodiment of the present invention, FIG. 9 is a principle diagram for determining the coefficients of the circuit of FIG. 8, and FIG. 10 is a characteristic diagram when the circuit of FIG. 8 is used. 1.2: Sensor, 6, 7, 10a, 10b. 11a, 11b: coefficient multiplication circuit, 8, 12a. 12b: Adder circuit, 9: Maximum value detection circuit.

Claims (1)

【特許請求の範囲】 1 人カークトル量の成分を計測し、その入力ベクトル
量の大きさを求める計測回路において、直交する2軸上
に配置したセンサーの出力から得たそれぞれの計測値の
前記直交軸のなす直交角を複数等分する等分線上におけ
る投影を求める回路即ち該等分線と前記直交軸の各軸の
挾む角に対する前記センサーの測定値の余弦値を前記測
定値に乗する係数乗算回路と、前記等分線のそれぞれに
対する該係数乗算回路の出力を入力としてその和を求め
る加算回路と、前記センサーの出力と前記加算回路の出
力を入力として該入力の内最大のものを選択する最大値
検出回路よりなり、センサーの計測値を合成することな
く入力ベクトルの大きさの近似値を求めるベクトル算出
回路。 2 等分線が2等分線であり、係数乗算回路において乗
する係数がcos45°=0.707である係数乗算回
路を2個備える特許請求の範囲第1項記載のベクトル算
出回路。 3 等分線が3等分線であり、係数乗算回路において乗
する係数がCO530’= 0.866およびcos5
Q’0.5である係数乗算回路を各等分線に対応して各
2個とそれぞれに対応した加算回路2個を有する特許請
求の範囲第1項記載のベクトル算出回路。
[Scope of Claims] 1. In a measurement circuit that measures components of a person's Kirktle quantity and determines the magnitude of its input vector quantity, the orthogonal values of the respective measurement values obtained from the outputs of sensors arranged on two orthogonal axes are provided. A circuit that obtains a projection on an equal dividing line that equally divides a plurality of orthogonal angles formed by the axes, that is, the measured value is multiplied by the cosine value of the measured value of the sensor for the angle between the equal dividing line and each axis of the orthogonal axis. a coefficient multiplication circuit; an addition circuit that takes as input the output of the coefficient multiplication circuit for each of the equal dividing lines and calculates the sum thereof; and an addition circuit that takes as input the output of the sensor and the output of the addition circuit and calculates the maximum of the inputs. A vector calculation circuit that consists of a selected maximum value detection circuit and calculates an approximate value of the magnitude of an input vector without combining sensor measurement values. 2. The vector calculation circuit according to claim 1, comprising two coefficient multiplication circuits in which the equal dividing line is a bisector, and the coefficient multiplied by the coefficient multiplication circuit is cos45°=0.707. 3 The equal dividing line is a third equal dividing line, and the coefficient multiplied by the coefficient multiplication circuit is CO530' = 0.866 and cos5
2. The vector calculation circuit according to claim 1, comprising two coefficient multiplication circuits each having a coefficient of Q'0.5 corresponding to each equal dividing line and two addition circuits corresponding thereto.
JP4483777A 1977-04-19 1977-04-19 Vector calculation circuit Expired JPS5834865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4483777A JPS5834865B2 (en) 1977-04-19 1977-04-19 Vector calculation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4483777A JPS5834865B2 (en) 1977-04-19 1977-04-19 Vector calculation circuit

Publications (2)

Publication Number Publication Date
JPS53129944A JPS53129944A (en) 1978-11-13
JPS5834865B2 true JPS5834865B2 (en) 1983-07-29

Family

ID=12702575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4483777A Expired JPS5834865B2 (en) 1977-04-19 1977-04-19 Vector calculation circuit

Country Status (1)

Country Link
JP (1) JPS5834865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8402077B2 (en) 2006-06-21 2013-03-19 Fanuc Ltd. Amplitude calculation apparatus of output signal of encoder and amplitude calculation program of output signal of encoder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120319C2 (en) * 1981-05-21 1986-07-17 Siemens AG, 1000 Berlin und 8000 München Method for determining a reference signal for the approximate value of the amount of a vector and circuit arrangements for carrying out the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8402077B2 (en) 2006-06-21 2013-03-19 Fanuc Ltd. Amplitude calculation apparatus of output signal of encoder and amplitude calculation program of output signal of encoder

Also Published As

Publication number Publication date
JPS53129944A (en) 1978-11-13

Similar Documents

Publication Publication Date Title
Kraft A quaternion-based unscented Kalman filter for orientation tracking
CN104718431B (en) Gyroscope regulation and gyroscope camera alignment
Zachmann Distortion correction of magnetic fields for position tracking
CN109186596B (en) IMU measurement data generation method, system, computer device and readable storage medium
JPH0727503A (en) System for electromagnetically measuring position and orientation of moving body
CN101971248A (en) Sound measurement device
CN107576275A (en) A kind of method for carrying out straining field measurement to inflatable structure using photogrammetric technology
CN114663597A (en) Real-time structured light reconstruction method and device based on normalized extended polar line geometry
JPS5834865B2 (en) Vector calculation circuit
JP2009186244A (en) Tilt angle estimation system, relative angle estimation system, and angular velocity estimation system
Bronstein et al. Surface reconstruction from derivatives
Katusin Glove for Augmented and Virtual Reality
JP2791275B2 (en) Object position / posture measuring device and component assembly device equipped with the same
CN113048985B (en) Camera relative motion estimation method under known relative rotation angle condition
Jarvis Microsurveying: towards robot accuracy
CN110244251B (en) Method and device for acquiring calibration coefficient and calibration chip
CN112013849A (en) Autonomous positioning method and system for surface ship
Saponaro et al. Towards auto-calibration of smart phones using orientation sensors
JP3439068B2 (en) Apparatus for estimating bias error of sensor attitude and position
JP5958920B2 (en) Inclination angle estimation system
Blostein et al. Algorithms for motion estimation based on three-dimensional correspondences
Shu et al. On unified optical flow field
Handel Compensation of thermal errors in vision based measurement systems using a system identification approach
Guan et al. Closed-form solution of space resection using unit quaternion
JP2012168189A (en) Tilt angle estimation system relative angle estimation system and angular velocity estimation system