JPS583481B2 - Bulk polymerization reactor - Google Patents

Bulk polymerization reactor

Info

Publication number
JPS583481B2
JPS583481B2 JP12416678A JP12416678A JPS583481B2 JP S583481 B2 JPS583481 B2 JP S583481B2 JP 12416678 A JP12416678 A JP 12416678A JP 12416678 A JP12416678 A JP 12416678A JP S583481 B2 JPS583481 B2 JP S583481B2
Authority
JP
Japan
Prior art keywords
polymerization
shaft
bulk polymerization
stirrer
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12416678A
Other languages
Japanese (ja)
Other versions
JPS5552302A (en
Inventor
岡本武彦
佐藤宏
浅田昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12416678A priority Critical patent/JPS583481B2/en
Publication of JPS5552302A publication Critical patent/JPS5552302A/en
Publication of JPS583481B2 publication Critical patent/JPS583481B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

【発明の詳細な説明】 本発明は塊状重合反応装置に関するものである,更に詳
しく説明すれば塊状重合反応装置において缶内にかくは
ん機を有し、そのかくはん機の軸は、偏心しておりその
偏心量は缶中心と偏心軸中心の距離が軸相当直径の15
0%以下であり、かつそのかくはん機には構内壁面を掻
き取るための翼を有し、かつそのかくはん機には、開口
面積比率が35〜65%である多孔板がとりつけられて
いることを特徴とする塊状重合反応装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bulk polymerization reactor, and more specifically, the bulk polymerization reactor has a stirrer in the can, and the shaft of the stirrer is eccentric. The distance between the center of the can and the center of the eccentric shaft is 15 of the shaft equivalent diameter.
0% or less, and the agitator has blades for scraping the walls of the premises, and the agitator is equipped with a perforated plate with an open area ratio of 35 to 65%. The present invention relates to a characteristic bulk polymerization reaction apparatus.

高分子生成反応を利用してプラスチックを工業的に製造
する方法には、乳化重合方法、懸濁重合方法、溶液重合
方法、塊状重合方法が知られている。
Emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization are known as methods for industrially producing plastics using polymer production reactions.

これらの重合方法は、得られるプラスチックの使われ方
に応じて選択されることもあるが一般的には、重合反応
熱の除去及び重合反応の進行とともに増大する粘性物質
の取り扱いに制約されて、選択されているのが現状であ
る。
These polymerization methods are sometimes selected depending on how the resulting plastic will be used, but in general, they are limited by the removal of polymerization reaction heat and the handling of viscous substances that increase as the polymerization reaction progresses. It is currently selected.

重合反応プロセスとして見た場合、クロードシステムを
とりやすく省資源、省エネルギー、低公害濁のプロセス
となりやすい塊状重合プロセスが工業規模の重合プロセ
スとして望ましいが、反応の不安定性、重合反応の進行
、とともに粘性が指数関数的に増大する物質を異常滞留
なく取り扱える適切な装置、規模の増大とともに減少す
る除熱面積等、反応装置上の難問題を解決する必要があ
り、乳化重合、懸濁重合、溶液重合にくらべると極めて
少ない種類のプラスチックにおいてしか成功を収めてい
ない。
When viewed as a polymerization reaction process, the bulk polymerization process is preferable as an industrial-scale polymerization process because it is easy to adopt the Claude system and is a resource-saving, energy-saving, and low-pollution process. It is necessary to solve difficult problems with reaction equipment, such as appropriate equipment that can handle substances whose concentration increases exponentially without abnormal retention, and heat removal area that decreases as the scale increases. Comparatively, success has been achieved with only a very small number of types of plastics.

一般的に塊状重合反応においては重合反応が進むにつれ
て系の粘性が増大する。
Generally, in bulk polymerization reactions, the viscosity of the system increases as the polymerization reaction progresses.

反応装置内でこのような高粘性物質を安定に取り扱うこ
とは極めて困難である。
It is extremely difficult to stably handle such highly viscous substances within a reactor.

すなわち構内壁面およびかくはん軸付近に動かない層い
わゆる異常滞留層が成長する。
That is, an immovable layer, so-called abnormal stagnation layer, grows on the wall surface of the premises and near the stirring axis.

この層は高温で長時間滞留することになるため熱安定性
の悪いポリマは劣化して着色して最終的には炭化してし
まう場合もある。
Since this layer remains at high temperatures for a long time, polymers with poor thermal stability may deteriorate, become colored, and eventually carbonize.

これらの異常滞留部のポリマはボリマの流れによりけず
られて正常なポリマーを着色させたり正常ポリマー中に
炭化した異物(炭化物)として混入しその品質を著しく
損ねるものである。
The polymer in these abnormal retention areas is dislodged by the flow of the polymer, causing the normal polymer to become colored, or being mixed into the normal polymer as carbonized foreign matter (carbide), thereby significantly impairing its quality.

これらの異常滞留部をなくするために従来の解決方法は
シアーを与えて壁面でのシアレイトをできるだけ上げる
スクリュタイプであるとか特殊な混練機能を有する装置
を利用することであったが、かかる方法は混合の動力を
著しく消費するばかりでなく摩擦熱のため液相内の温度
を上げることになり、熱安定性の悪いポリマにはますま
す劣化を促進させることになり、また重合反応の制御も
困難になるのが通常であった。
Conventional solutions to eliminate these abnormal retention areas have been to use screw-type equipment that applies shear to increase the shear rate on the wall surface as much as possible, or to use equipment that has a special kneading function. Not only does it consume a significant amount of power for mixing, but it also raises the temperature within the liquid phase due to frictional heat, further accelerating the deterioration of polymers with poor thermal stability, and making it difficult to control the polymerization reaction. It was normal to be.

また他の方法は重合率を上げずに液相が粘度の低い状態
で反応を終了させて、ポリマーを回収するものでこの方
法によれば塊状重合反応の最も困難な問題である高粘性
液体の安定な取り扱いをさけることができるが、装置効
率が悪くなるとともにモノマの回収工程が複雑になると
いう欠点がある。
Another method is to complete the reaction in a state where the liquid phase has low viscosity without increasing the polymerization rate and recover the polymer. Although stable handling can be avoided, there are disadvantages in that the efficiency of the device deteriorates and the monomer recovery process becomes complicated.

塊状重合反応装置に付随する問題点の他の1つは反応の
不安定性である。
Another problem associated with bulk polymerization reactors is reaction instability.

一般的には重合反応は発熱反応でありこの反応熱の制御
が系の粘性が高いために困難を伴ないホットスポットの
発生、重合暴走に到らしめることがある。
Generally, a polymerization reaction is an exothermic reaction, and controlling the reaction heat is difficult due to the high viscosity of the system, which may lead to the generation of hot spots and runaway polymerization.

かかる状況に鑑み、本発明者らは塊状重合反応に適した
装置を開発すべく、鋭意研究努力し本発明に到達した。
In view of this situation, the present inventors have made extensive research efforts to develop an apparatus suitable for bulk polymerization reactions, and have arrived at the present invention.

本発明の重合反応装置で塊状重合反応を取り扱えるモノ
マ種は、スチレン、スチレンーアクリロニトリル共重合
モノマ、ゴム含有アクリロニトリルースチレン共重合モ
ノマ、ナイロン、ポリエステル等の塊状重合をおこなえ
るものであればなんでもよく、縮合重合附加重合反応を
起すものにも適用しうる。
The monomer species that can be used for bulk polymerization in the polymerization reaction apparatus of the present invention may be any monomer that can perform bulk polymerization such as styrene, styrene-acrylonitrile copolymer monomer, rubber-containing acrylonitrile-styrene copolymer monomer, nylon, polyester, etc. It can also be applied to those that cause condensation polymerization and addition polymerization reactions.

とりわけ、熱着色しゃすいポリマ種の熱塊状重合または
ラジカル重合触媒使用の塊状重合反応には、有利である
It is particularly advantageous for thermal bulk polymerization of thermochromic, transparent polymer species or for bulk polymerization reactions using radical polymerization catalysts.

ここでいう塊状重合とは30重量係以下の溶液重合を含
むものである。
The term "bulk polymerization" as used herein includes solution polymerization of 30% by weight or less.

第1図に本発明による塊状重合装置の一例を示す。FIG. 1 shows an example of a bulk polymerization apparatus according to the present invention.

この図によって更に詳細に本発明の内容及びその効果を
説明する。
The content and effects of the present invention will be explained in more detail with reference to this figure.

Aは重合槽缶体でジャケット槽造をもち適宜加熱、保温
もしくは冷却が可能な構造になっている。
A is a polymerization tank, which has a jacket tank structure and is capable of heating, keeping warm, or cooling as appropriate.

Bは、かくはん軸で軸心は気相部において重合槽缶体の
中心から偏心した構造を有している。
B is a stirring shaft having a structure in which the shaft center is eccentric from the center of the polymerization tank body in the gas phase portion.

かくはん軸は気相部から液相部を通じて偏心している必
要がありその偏心量は缶中心と偏心軸中心の距離(軸間
距離)が軸相当直径の150%以下である必要かある。
The stirring shaft must be eccentric from the gas phase to the liquid phase, and the amount of eccentricity is such that the distance between the center of the can and the center of the eccentric shaft (distance between the shafts) is 150% or less of the shaft equivalent diameter.

より好ましくは、10〜110%の範囲である。More preferably, it is in the range of 10 to 110%.

本発明者らのABS塊状重合反応の詳細な検討によると
軸間距離がOのとき(同心軸の場合)、重合反応の連続
運転経過時間が3日をすぎると軸まわりに滞留層が著し
く成長して着色相もしくはゲル相となりそれらが製品中
に混入し、着色した樹脂となったり、製品表面に突起ブ
ツか生じて製品価値を著しく損なうことが明らかになっ
た。
According to a detailed study of the ABS bulk polymerization reaction by the present inventors, when the distance between the shafts is O (in the case of concentric shafts), the stagnant layer grows significantly around the shaft when the elapsed continuous operation time of the polymerization reaction exceeds 3 days. It has become clear that the colored phase or gel phase is mixed into the product, resulting in a colored resin or the formation of protrusions on the surface of the product, which significantly impairs the product value.

液相部のかくはん軸を偏心させると軸まわりの滞留層が
殆んど解消する。
If the agitation shaft of the liquid phase section is made eccentric, the stagnant layer around the shaft is almost eliminated.

しかしこの偏心量が偏心軸径の150%を越えるとかく
はん機への異常滞留層が成長しないという効果はあるが
重合反応構内の挙動が安定しない。
However, if the amount of eccentricity exceeds 150% of the diameter of the eccentric shaft, the behavior within the polymerization reaction plant will not become stable, although this is effective in preventing the growth of an abnormal accumulation layer in the stirrer.

すなわち、かくはん機への異常滞留防止及び重合反応の
安定性のためには、重合槽中心と、かくはん軸中心との
距離がかくはん軸相当直径の150%以下である必要が
ある。
That is, in order to prevent abnormal retention in the stirrer and to stabilize the polymerization reaction, the distance between the center of the polymerization tank and the center of the stirring shaft must be 150% or less of the equivalent diameter of the stirring shaft.

より好ましくは10〜110%の範囲である。More preferably, it is in the range of 10 to 110%.

Cはかき取り翼である。C is a scraped wing.

このかき取り翼はかくはん機とともに回転するが、重合
槽内壁面への異常滞留をなくすために不可欠である。
This scraping blade rotates together with the stirrer, and is essential for eliminating abnormal accumulation on the inner wall surface of the polymerization tank.

このかき取り翼と槽内壁面とのクリアランスはその要求
機能上せまい方がよいが、通常60mm以内望ましくは
5〜25mmの範囲におさえればよい。
The clearance between the scraping blade and the inner wall surface of the tank should be as small as possible in view of the required functions, but it is usually within 60 mm, preferably within the range of 5 to 25 mm.

かくはん数についても特に制限はなく1rpm以上であ
れば重合槽壁へのポリマ滞留層の防止効果がある。
There is no particular restriction on the number of stirrings, and as long as the stirring speed is 1 rpm or more, it is effective to prevent a polymer retention layer from forming on the walls of the polymerization tank.

しかし3 0 r pm以上にすると重合槽内の上下混
合が激しくなり、槽内の反応が安定しないばかりでなく
かくはん電力の消費が大きくなり一般的には好ましくな
い。
However, if the speed is 30 rpm or higher, vertical mixing in the polymerization tank becomes intense, which not only makes the reaction in the tank unstable, but also increases the consumption of stirring power, which is generally undesirable.

このかき取り翼は、そのかき取り面積が、通常液相壁面
積の80%以上好ましくは101%以上をかき取るよう
に設置されている必要がある。
The scraping blade must be installed so that its scraping area usually scrapes 80% or more, preferably 101% or more of the liquid phase wall area.

かき取り面積が少なすぎるとかき取っていない部分の構
内壁面に滞留層が生じ着色、やけブツ混入の原因になる
If the scraped area is too small, a stagnant layer will form on the unscraped walls of the premises, causing discoloration and dirt contamination.

Dは、多孔板である。D is a perforated plate.

この多孔板はかくはん機とともに回転しその開口比は構
内断面積に対して35〜36%の範囲が好ましい。
This perforated plate rotates together with the stirrer, and its aperture ratio is preferably in the range of 35 to 36% of the internal cross-sectional area.

この多孔板は槽内反応液の反応の安定性を保つためのも
のである。
This porous plate is for maintaining the stability of the reaction of the reaction solution in the tank.

すなわち槽内の上下混合を抑えて流動状態を安定させる
ことにより安定した反応を逐行させることを目的とした
ものである。
That is, the purpose is to stabilize the reaction by suppressing vertical mixing in the tank and stabilizing the fluid state.

開口比が35%未満の多孔板を用いた場合には重合槽出
の重合率も98%と高重合率を確保できるのであるが運
転の経過とともに、製品が着色して吐出量も減少してく
る現象がみられ停機後のかくはん機多孔板の観察による
と多孔板面上に着色したポリマが付着したりして好まし
くない。
If a perforated plate with an aperture ratio of less than 35% is used, a high polymerization rate of 98% can be ensured at the exit from the polymerization tank, but as the operation progresses, the product becomes colored and the amount discharged decreases. Observation of the perforated plate of the agitator after the machine was shut down revealed that colored polymer was deposited on the perforated plate surface, which is not desirable.

また開口比65%を超越する多孔板を用いて塊状重合を
おこなったところ構内圧力が安定せず、また温度分布も
極めて不安定でありポリマの吐出も不安定となる傾向が
みられた。
Furthermore, when bulk polymerization was carried out using a porous plate with an aperture ratio exceeding 65%, the internal pressure was not stable, the temperature distribution was extremely unstable, and the discharge of the polymer tended to be unstable.

多孔板Dの単孔形状は円状が普通であるが必ずしも円状
である必要はなくスリット状、多角形状、円弧状など必
要に応じてどのような形状でもよい。
The single hole shape of the perforated plate D is generally circular, but it is not necessarily circular and may be of any shape as required, such as a slit shape, a polygonal shape, or an arc shape.

また一方単孔の大きさは開孔比とともに重要であり、取
扱う重合体の粘度にあわせて適切な大きさを選択するこ
とか必要なことはいうまでもない。
On the other hand, the size of the single pore is important as well as the pore opening ratio, and it goes without saying that it is necessary to select an appropriate size according to the viscosity of the polymer to be handled.

以上第1図にもとづいて本発明の効果を説明してきたが
、塊状重合反応の反応の安定性および高粘性物質の異常
滞留の問題点を同時に解決しうる重合反応装置という点
から本発明の汎用性は極めて広く、明細書中の限定され
た図例に限定されるものでなく特許請求範囲に記載され
た内容を満たす装置はすべて本発明に包含されるもので
ある。
The effects of the present invention have been explained above based on FIG. The scope of the invention is extremely wide, and the invention is not limited to the limited illustrations in the specification, but any device that satisfies the contents described in the claims is included in the present invention.

以下実施例について説明する。Examples will be described below.

実施例 l ポリブタジエン(Firestone社製FRS−20
04)ラテックス存在下に次に示す重合処方でスチレン
・アクリロニトリルを重合しポリブタジエンにスチレン
・アクリロニトリルをグラフト共重合した重合体のラテ
ックスを得た。
Example 1 Polybutadiene (FRS-20 manufactured by Firestone)
04) Styrene/acrylonitrile was polymerized according to the following polymerization recipe in the presence of latex to obtain a polymer latex in which styrene/acrylonitrile was graft copolymerized onto polybutadiene.

重合率は9.5%であった。The polymerization rate was 9.5%.

グラフト共重合処方 物 質 仕込部数 ポリフクジエンラテックス(固形分) 700スチレ
ン 21.6 アクリロニトリル 8.4ターシ
ャリートデシルメル力ブタン 0.1 5ラウリ
ン酸ソーダ 1.50テキストロー
ス 05クロンドロペルオキシド
02ピロリン酸ソーダ
03硫酸第1鉄 001
イオン交換水 1 5 0.0こ
のラテックス固形分25重量部にスチレンモノマ25重
量部を加えてよく攪拌したのち硫酸マグネシウム08部
を添加した。
Graft copolymerization formulation material Materials Charged parts Polyfukudiene latex (solid content) 700 Styrene 21.6 Acrylonitrile 8.4 Tertiary decyl butane 0.1 5 Sodium laurate 1.50 Textulose 05 Clondroperoxide
02 Sodium pyrophosphate
03 Ferrous sulfate 001
Ion-exchanged water 1 5 0.0 25 parts by weight of styrene monomer were added to 25 parts by weight of this latex solid content, and after stirring well, 08 parts of magnesium sulfate was added.

混合液を白色のポリマー/モノマ相(クラム)と水に分
離し脱水し、ポリマー/モノマ相(クラム)のみを取り
出しスチレンモノマ29部、アクリロニトリルモノマ2
1部,ノルマルードデシルメルカブタン0.15部を加
えて均一溶液(原料ドープ)とした。
The mixed solution was separated into a white polymer/monomer phase (crumb) and water, dehydrated, and only the polymer/monomer phase (crumb) was taken out, containing 29 parts of styrene monomer and 2 parts of acrylonitrile monomer.
1 part and 0.15 part of normalized decyl mercabutane were added to prepare a homogeneous solution (raw material dope).

原料ドープ組成は次の通りである。The raw material dope composition is as follows.

ABS 25重量部 スチレンモノマ 54 〃 アクリロニトリルモノマ 21 〃 水 lO 〃 この原料ドープを固形分50重量パーセントまで予備塊
状重合したものを第1図に示す重合槽で連続的に95%
まで熱重合し未重合モノマーを分離してABS樹脂を連
続的にとりだした。
ABS 25 parts by weight Styrene monomer 54 〃 Acrylonitrile monomer 21 〃 Water 1O 〃 This raw material dope was preliminarily bulk polymerized to a solid content of 50% by weight, and was continuously polymerized to 95% in the polymerization tank shown in Figure 1.
The ABS resin was thermally polymerized until the end of the resin was heated, the unpolymerized monomer was separated, and the ABS resin was continuously taken out.

第1図の重合槽デイメンジョンは次の通りである。The dimensions of the polymerization tank in FIG. 1 are as follows.

重合槽内径 750mmφ かくはん機軸径 150mmφ 偏心軸間距離 50mm 液面までの高さ 2355mm 容量 約900l 多孔板開口比 51%(単孔径50mmφ)重合条
件 原料ドープ処理速度 1 5 0kg/H内圧
2.0kg/cmG 重合温度 T1 120±2°CT2 13
0±2°C T3 160±2℃ T, 180±2°C ’r, 200±2°C 以上の条件で240時間の連続運転をおこなった。
Polymerization tank inner diameter 750mmφ Stirrer shaft diameter 150mmφ Distance between eccentric shafts 50mm Height to liquid level 2355mm Capacity approx. 900l Perforated plate opening ratio 51% (single hole diameter 50mmφ) Polymerization conditions Raw material dope processing speed 150kg/H Internal pressure
2.0kg/cmG Polymerization temperature T1 120±2°CT2 13
Continuous operation was performed for 240 hours under the following conditions: 0±2°C T3 160±2°C T, 180±2°C 'r, 200±2°C.

重合条件は安定しており、得られた樹脂の物理特性及び
色調も安定したABSペレットであった。
The polymerization conditions were stable, and the resulting resin was an ABS pellet with stable physical properties and color tone.

溶融粘度 4.O×10”ポイズ (2208C0.5mmφx 1. O mm L ,
5 0kg/cm)引張強度 4 1
0 kg/cm破断伸度 18% アイゾット衝撃強さ 22kg・cm/cmノツチ付
Yel lowness Index 2 6〜28
%比較実施例 1 実施例と同一の原料ドープを次のテイメンジョンの重合
槽で連続重合した。
Melt viscosity 4. O x 10” poise (2208C0.5mmφx 1. O mm L,
5 0kg/cm) Tensile strength 4 1
0 kg/cm breaking elongation 18% Izod impact strength 22 kg/cm/cm notched Yel lowness Index 2 6~28
% Comparative Example 1 The same raw material dope as in Example was continuously polymerized in the following Teimension polymerization tank.

重合槽内径 750mmφ かくはん機軸径 150mmφ 偏心軸間距離 Omm 灘面までの高さ 2355mm 容 量 約900l 多孔板開口比 51% 多孔板単孔径 50mmφ 重合条件 原料ドープ処理速度 150kg/H 内 圧 2.0kg/cmG重合
温度 T1 125±2°C T2 137±2°C T, 165±2℃ T4 188±5°C T, 205±7℃ 以上の条件で連続運転を行ったが70時間経過後ペレッ
ト色調が落ちつかなくなり、150時間後には樹脂中に
赤黒い異物が混在するようになった。
Polymerization tank inner diameter 750mmφ Stirrer shaft diameter 150mmφ Distance between eccentric shafts Omm Height to Nada surface 2355mm Capacity Approximately 900l Perforated plate opening ratio 51% Perforated plate single hole diameter 50mmφ Polymerization conditions Raw material dope processing speed 150kg/H Internal pressure 2.0kg/ cmG polymerization temperature T1 125±2°C T2 137±2°C T, 165±2°C T4 188±5°C T, 205±7°C Continuous operation was performed under the above conditions, but after 70 hours the pellet color changed. He became restless, and after 150 hours, red-black foreign matter began to be mixed in the resin.

得られた樹脂の物性は次の通り。溶融粘度 4
.O×103ポイズ(220°G O. 5 mm×1
.Ommφ, 5 0 kg/cm )引張強度
4 1 0kg/cm破断伸度 16
% アイゾット衝撃強さ 20kg・cm/cmノツチ付Y
el Iownes.s Index 2 8 ″6
0%運転後重合槽を解体しかくはん機を観察したところ
赤色に着色した樹脂相が重合槽下部軸部に10mm程度
の層をなしていた。
The physical properties of the obtained resin are as follows. Melt viscosity 4
.. O x 103 poise (220°G O. 5 mm x 1
.. Ommφ, 50 kg/cm) Tensile strength
4 1 0kg/cm breaking elongation 16
% Izod impact strength 20kg・cm/cm Notched Y
el Iownes. s Index 2 8 ″6
After the 0% operation, the polymerization tank was dismantled and the agitator was observed, and a red colored resin phase was found to form a layer of about 10 mm on the lower shaft of the polymerization tank.

比較実施例 2 実施例1と同一条件であるが多孔板の開口比が20%の
ものについて、連続重合をおこなった。
Comparative Example 2 Continuous polymerization was carried out under the same conditions as in Example 1, but with a perforated plate having an aperture ratio of 20%.

原料ドープ処理速度 1 5 0kg/H内 圧
2.0kg/cmG重合温度
T1 125±2℃T2 140±2°C T3 170±2°C T4 195±2°C T, 209±2°C 得られた樹脂物性は次の通り。
Raw material dope processing speed 150kg/H internal pressure
2.0kg/cmG polymerization temperature
T1 125±2°C T2 140±2°C T3 170±2°C T4 195±2°C T, 209±2°C The physical properties of the obtained resin are as follows.

アイゾット衝撃強さ18〜20kg・cm/cmノツチ
付 Yet Iownese Index 3 5 ′4
5%比較実施例 3 実施例1と同一条件であるが多孔板の開口比が70%の
ものについて連続重合をおこなった。
Izod impact strength 18-20 kg/cm/cm Notched Yet Iownese Index 3 5'4
5% Comparative Example 3 Continuous polymerization was carried out under the same conditions as in Example 1, but with a perforated plate having an aperture ratio of 70%.

原料ドープ処理速度 1 5 0 kg/H内 圧
2.0kg/cmG重合温度
T, 125±5°CT2 135±5°C T3 165±5°C T, 183±10°C T, 205±lO°C 重合槽内温度分布が乱れ樹脂の物性、色調も不安定であ
った。
Raw material dope processing speed 150 kg/H Internal pressure
2.0kg/cmG polymerization temperature
T, 125±5°CT2 135±5°C T3 165±5°C T, 183±10°C T, 205±10°C The temperature distribution inside the polymerization tank was disturbed, and the physical properties and color tone of the resin were also unstable. .

アイゾット衝撃強さ 18〜24kg・cm/cmノツ
チYellowness Index 23 〜3
2%
Izod impact strength 18-24kg・cm/cm Notsuchi Yellowness Index 23-3
2%

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による塊状重合装置の横断面図の1例
を示す。 第2図は、第1図のX−X断面図を示す。 A:重合槽缶体、B:攪拌軸、C:かき取り翼、D:多
孔板、I:供給口、H:排出口、X:偏心軸間距離、d
:攪拌軸直径。
FIG. 1 shows an example of a cross-sectional view of a bulk polymerization apparatus according to the invention. FIG. 2 shows a sectional view taken along the line XX in FIG. 1. A: Polymerization tank body, B: Stirring shaft, C: Scraping blade, D: Perforated plate, I: Supply port, H: Discharge port, X: Distance between eccentric shafts, d
: Stirring shaft diameter.

Claims (1)

【特許請求の範囲】[Claims] 1 塊状重合反応槽の缶内に、缶中心と攪拌機の軸中心
との距離を、攪拌機の軸直径の150%以下の範囲で偏
心させた偏心攪拌機軸を設け、これに槽内壁面に付属し
た重合体を掻き取るための翼、および開口面積比率が3
5〜65%の多孔板を取り付けてなる攪拌機を備えてな
る塊状重合反応装置。
1. An eccentric stirrer shaft is installed in the can of the bulk polymerization reaction tank, with the distance between the center of the can and the center of the shaft of the stirrer being eccentric within a range of 150% or less of the shaft diameter of the stirrer, and an eccentric stirrer shaft attached to the inner wall of the tank is installed. Wings for scraping the polymer and an opening area ratio of 3
A bulk polymerization reaction apparatus equipped with a stirrer equipped with a 5-65% perforated plate.
JP12416678A 1978-10-11 1978-10-11 Bulk polymerization reactor Expired JPS583481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12416678A JPS583481B2 (en) 1978-10-11 1978-10-11 Bulk polymerization reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12416678A JPS583481B2 (en) 1978-10-11 1978-10-11 Bulk polymerization reactor

Publications (2)

Publication Number Publication Date
JPS5552302A JPS5552302A (en) 1980-04-16
JPS583481B2 true JPS583481B2 (en) 1983-01-21

Family

ID=14878571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12416678A Expired JPS583481B2 (en) 1978-10-11 1978-10-11 Bulk polymerization reactor

Country Status (1)

Country Link
JP (1) JPS583481B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839827A (en) * 1996-03-28 1998-11-24 Kuraray Co., Ltd. Agitating element for mixing apparatus and the mixing apparatus equipped with the agitating element

Also Published As

Publication number Publication date
JPS5552302A (en) 1980-04-16

Similar Documents

Publication Publication Date Title
KR890000743B1 (en) Continous bulk polymerization reactor
US3954722A (en) Manufacture of uniform polymers
US2727884A (en) Process of mass polymerization in vertical unmixed strata
US4424301A (en) Continuous process and device for the manufacture of a vinyl chloride polymer in aqueous suspension
NL8000099A (en) PROCESS FOR PREPARING AROMATIC POLYESTERS.
EP0027274A2 (en) Continuous bulk polymerization process for preparing a copolymer of an aromatic vinyl monomer and maleic anhydride
JPH0770257A (en) Granulating device
US4298576A (en) Polymerization autoclave
JPS583481B2 (en) Bulk polymerization reactor
KR100675239B1 (en) Process for the Manufacture of Impact Resistant Modified Polymers
EP0357079B1 (en) Process for producing aromatic polyesters
KR100426421B1 (en) Polymerization apparatus
US4125697A (en) Process for the production of polychloroprene
US3245970A (en) Method for coagulation of colloidal dispersions
EP0036896B1 (en) Bulk polymerization reactor
CA2072855C (en) Anionic extruder polymerization
NO751547L (en)
CA1139533A (en) Bulk polymerization reactor
EP0051945B1 (en) Improved suspension process for the polymerization of vinyl chloride monomer
CA1144295A (en) Homogenizer process for forming emulsion/suspension polymers
US5973079A (en) Large particle generation
US2834762A (en) Polymerization of butyl rubber
US4355157A (en) Hot water precipitation of resins containing maleic anhydride
JPH09313912A (en) Stirring blade and mixing apparatus provided therewith
JPH0346009B2 (en)