JPS5834819A - Deactivation of polyoxymethylene copolymer - Google Patents

Deactivation of polyoxymethylene copolymer

Info

Publication number
JPS5834819A
JPS5834819A JP13207781A JP13207781A JPS5834819A JP S5834819 A JPS5834819 A JP S5834819A JP 13207781 A JP13207781 A JP 13207781A JP 13207781 A JP13207781 A JP 13207781A JP S5834819 A JPS5834819 A JP S5834819A
Authority
JP
Japan
Prior art keywords
deactivation
copolymer
neutralizing agent
polyoxymethylene copolymer
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13207781A
Other languages
Japanese (ja)
Other versions
JPH0235772B2 (en
Inventor
Koichi Yoshida
浩一 吉田
Toshiyuki Iwasako
祝迫 敏之
Junzo Masamoto
正本 順三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13207781A priority Critical patent/JPH0235772B2/en
Publication of JPS5834819A publication Critical patent/JPS5834819A/en
Publication of JPH0235772B2 publication Critical patent/JPH0235772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To deactivate residual catalyst effectively and thereby imporve stabilization yields, by grinding a polyoxymethylene copolymer prepared by cationic polymerization to a powder,diameter <=20 mesh, and then contacting the powder with a basic neutralizing agent. CONSTITUTION:Trioxane and a cyclic ether (e.g., ethylene oxide) or a cyclic formal (e.g., diethylene glycol formal) are cationically copolymerized at about 60-120 deg.C in the presence of about 10<-4>-1mol%, based on trioxane, catalyst (e.g., boron fluoride dibutyl etherate). Then the residual catalyst in the produced polyoxymethylene copolymer is deactivated by grinding the copolymer to a powder, diameter <=20 mesh, mixing and reacting this powder at above 50 deg.C with a solution of a basic neutralizing agent (e.g., triethylamine, calcium hydroxide) (the mol ratio of the neutralizing agent to the catalyst is about 1-10<-3>).

Description

【発明の詳細な説明】 本発−は、隔安定4&に置れた高晶質のポリオキシメチ
レン共重合物な工業的に安価にIIる為の重台1lls
の失活化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on a heavy-duty platform for producing highly crystalline polyoxymethylene copolymer industrially at low cost.
This relates to a method for inactivating.

−1iK、ポリオI?クメテレン共重舎愉は、親電子性
触課411に弗化硼素及びその−化合物の存在下でトリ
オキサンと他のコモノマー例工ばIl状エーテル又はア
セタールとの共重合により製造される通常、共重合後に
重合物中E1mつたsrsは、塩基性中10″lsKよ
゛り失活化され、乾燥後、安定化工1を餉て製品となる
。失活化工程に於いて中和が不充分で1.共重合物中に
1IIE課f残ると、共重合物の熱安定性が朧くなり、
その結束後の末端不安定部を除く安定化工程での収率(
以後安定化収率と喝す、)が低下し、製造コストが高く
なり最lI&躾品の品質も低下する。高品質の重合物を
安価Ell造する為に、失活化の工程は極めて重量であ
る。
-1iK, polio I? Cumeterene copolymer is usually produced by copolymerization of trioxane and other comonomers such as Il-like ethers or acetals in the presence of boron fluoride and its compounds in the electrophilic catalyst 411. Later, the srs containing E1m in the polymer is inactivated at 10"lsK in a basic environment, dried, and then subjected to stabilization step 1 to obtain a product. In the deactivation step, neutralization is insufficient and .If 1IIE section f remains in the copolymer, the thermal stability of the copolymer becomes vague.
The yield in the stabilization process excluding the terminal unstable part after bundling (
The stabilization yield (hereinafter referred to as "stabilized yield") decreases, the manufacturing cost increases, and the quality of the final product also decreases. In order to produce high quality polymers at low cost, the deactivation process is extremely heavy.

従来、失活化を効果的に行う為の検討は非常に少ない、
41金1635−3542では、失活化のjl@につい
て遮べており、中和剤の有機謙体での洗浄についてふれ
ているが、本IA@に於いて述べるような失活化を効果
的に行うための重合物の粉砕につい′Cはふれ文いない
Until now, there has been very little study on how to effectively perform deactivation.
41 Kin 1635-3542 covers the deactivation jl@ and mentions washing the neutralizer with an organic substance, but it is not possible to effectively inactivate the neutralizer as described in this IA@. 'C' does not mention the crushing of polymers for the purpose of pulverization.

脣公@ 4g−8342では、失活°化時に於い【重合
物を粉砕する工程についてふれ【いるが、粉砕機の平均
ml@が5〜20■と大貌径のものでしかすぎない、さ
らに、臀−@ 55−164212では、中和剤楓合機
を用い、重合物の粒径を、゛混合機出口から出る時には
10メツシエのふるいを過過幽来るように粉砕している
。しかし、これは、後の安定化処雅な好適に取扱5為の
ものであり、事実10メツシ工過過揚度の**では、失
活化を効果的に行うことは出来ない0以上の方法では失
活化は充分には行われず、失活化後の共重合物の熱安定
性が低(、従って安定化収率も90〜95嘔と低く、熱
安定性に優れた製品な安@cal進することは出来ない
脣子@4g-8342 talks about the process of pulverizing the polymer during deactivation, but the average ml of the pulverizer is only 5 to 20 cm, which is only a large diameter one. Furthermore, in 臀@55-164212, a neutralizing agent maple mixer is used to reduce the particle size of the polymer so that it passes through a 10 mesh sieve when exiting from the mixer outlet. However, this is for the sake of suitable handling during the subsequent stabilization process, and in fact, with an overlift degree of 10 meters, deactivation cannot be effectively performed. In this method, deactivation is not carried out sufficiently, and the thermal stability of the copolymer after deactivation is low (therefore, the stabilization yield is also low at 90-95 mm, making it difficult to obtain a product with excellent thermal stability). @cal cannot be advanced.

本発明者等は、共重合物の粉砕の失活化への効果につい
て鋭意検討を重ねた鐘来、共重合物の粒1!141=2
0メツシュ以下11c粉砕して失活化させれば、熱安定
性に優れた共重合物が得られ、llの安定化工程で安定
化収率を98%以上に!で上げる。ことがII]簡とな
ることを見い幽し、との細見IIc!l!ついて本発明
をなすKjkつた。
The present inventors have conducted intensive studies on the effect of crushing copolymers on deactivation, and found that the particles of copolymers 1!141=2
If 0 mesh or less is pulverized and deactivated, a copolymer with excellent thermal stability can be obtained, and the stabilization yield can be over 98% in 11 stabilization steps! Raise it with Hosomi IIc! l! Accordingly, the present invention is made.

ここで熱安定性とは、乾燥重合物を真空下、222℃で
50分間加熱した後の重合物の重量の1熱前の重合物の
重量41c対する百分率であり、以下Bマと喝す、Rマ
の値は安定化収率とはとんと一致する。
Here, thermal stability is the percentage of the weight of the polymer after heating the dry polymer at 222° C. for 50 minutes under vacuum to the weight of the polymer before heating (41c), hereinafter referred to as B. The value of Rma is in good agreement with the stabilized yield.

本発明は、トリオキサンと環状エーテル或いは環状ホル
!−ルとのカチオン共重合によって得られるポリオキシ
メチレン共重合物な、塩基性中和剤と接触せしめ:1s
謙を失活化させる際に20メツシユ以下の粒径で接触さ
せることを特徴とする失活化方法に勇するものであるが
、事始@に用いられるトリオキサンはホルムアルデヒド
の環状三量体であり、例えばエチレングリコール、トリ
オキセパン螢の高沸点化合物、水、ギ酸、メタノール、
メラール及びトリオS?すンの重合−等の含有量が極め
て少ないものが用いられ、これ等が含まれる揚台IIc
はあらかじめ布製してから原料として用いられる。
The present invention provides trioxane and a cyclic ether or a cyclic hol! - Contact with a basic neutralizing agent such as a polyoxymethylene copolymer obtained by cationic copolymerization with
This is a deactivation method that is characterized by contacting with particles with a particle size of 20 mesh or less when inactivating the compound, but the trioxane used in the beginning is a cyclic trimer of formaldehyde. For example, ethylene glycol, the high boiling point compound of trioxepane firefly, water, formic acid, methanol,
Meral and Trio S? Lifting platform IIc containing extremely small amounts of polymerized carbonate, etc., is used.
is used as a raw material after being made into cloth in advance.

環状エーテルとしてはエチレンオキシド、ジオ呼ソラン
等が用いられ、通常はエチレンオキシドが用いられる。
As the cyclic ether, ethylene oxide, dioxolane, etc. are used, and ethylene oxide is usually used.

又、環状ホルマールとし又は、ジエチレングリコールホ
ルマール、フタンジオールホルマール及ヒベンタンジオ
ールホルマール等カ用いられ、bill状エーテル或い
はホルマールのトリオキすンに5r′Jする量&10.
1〜30モル囁である。
Further, as a cyclic formal, diethylene glycol formal, phthanediol formal, hibentanediol formal, etc. are used, and the amount of bill-like ether or formal trioxine is 5r'J & 10.
It is 1 to 30 moles whisper.

これ等の原料を触媒あるいは分子量調節剤と共に重合機
に供給し、適当な温度下で重合に至らしめる。触媒とし
ては、弗化ist*のエーテル、フェノールエステル或
いはジアルキルスルフィド等との錯化合物が用いらnる
が、弗化硼素ジブチルエーテレート及び弗化硼素ジエテ
ルエーテレートは好適な部課となる。通常%lA科トジ
トリオキサンしI O”〜1モル%論度で使用される。
These raw materials are fed to a polymerization machine together with a catalyst or a molecular weight regulator and polymerized at an appropriate temperature. As the catalyst, complex compounds of fluoride ist* with ethers, phenol esters, dialkyl sulfides, etc. are used, and boron fluoride dibutyl etherate and boron fluoride diether etherate are suitable. It is usually used at a concentration of 1% to 1% by mole.

好適には10−1〜101モル嘔の濃度で使用される。It is preferably used at a concentration of 10-1 to 101 moles.

部課の1合1mの供給はシクロヘキサン、ベンゼン、ト
ルエン等の**で希釈した**で行なわれる。同時に分
子量調節剤も本siiにてあらかじめ澁度な調節して供
給される。分子量調節剤としてはメチラール、オルンギ
酸メチル等が用いられ通常、トリオキサンに対し、モル
比でI F’−3X 10−”の範囲で、分子量の調節
な行なう。重合は、トリオキサンの融点と沸点の閣、j
lち60〜120 Cの温度下で行なわれる。
The department's supply of 1.1 m is made with ** diluted with ** such as cyclohexane, benzene, toluene, etc. At the same time, the molecular weight regulator is also supplied with sufficient adjustment in advance in this sii. Methylal, methyl orungate, etc. are used as molecular weight regulators, and the molecular weight is usually controlled within a molar ratio of I F'-3X 10-'' to trioxane. Cabinet, j
It is carried out at a temperature of 60 to 120C.

工業的に採用される望ましい重合形式は具状重合である
。塊状重合は溶媒を実質上便用しない為に、#1課の回
収費が少な(なり経済的である。1合の形式として、ロ
ー=yJl(特公昭48−83422、或いは混練機、
例えば2軸のセルフクリーニングm混練機(41−紹5
6−38312)が知られている。
The preferred type of polymerization employed industrially is concrete polymerization. Since bulk polymerization does not substantially use a solvent, the recovery cost in the #1 section is low (and therefore economical. As a form of 1-polymerization, Rho=yJl (Special Publication No. 48-83422, or a kneader,
For example, a two-shaft self-cleaning kneading machine (41-Introduction 5)
6-38312) is known.

重合により【得られる共重合物は、共重合物中の残触謙
を中和する為に、通常、塩基性中和剤と接触させる。
The copolymer obtained by polymerization is usually brought into contact with a basic neutralizing agent in order to neutralize the residual oxidants in the copolymer.

塩基性中和剤としては、通常トリエチルアミン、トリブ
チルアミン、水酸化カルシウム、トリフェニルホスフィ
ン、アンモニア、炭酸アルカリ及ヒアミノアミド等が用
いられる。好fしくは、トリエチルアミン、トリブチル
アミン及び水酸化カルシウムが用いられる。これ咎の塩
基性中和剤を、水或いハ、シクロヘキサン、ベンゼン、
トルエン等の有機溶媒に溶解して用いることも小米るO
この場合、好ましい溶媒としては、トリエチルアミン及
び水酸化カルシウムに対し℃は水、トリブチルアミンに
対してはシクロへ千すン、トルエン及びベンゼン等が用
いられる。使用される中和剤の量は、いずれの場合に1
にい【も、触mに対して、モル比で1−10S優の梶■
で用いられる。計重しくは10倍以上が望ましいが、さ
らに好ましくは10”値以上が1ltLい。
As the basic neutralizing agent, triethylamine, tributylamine, calcium hydroxide, triphenylphosphine, ammonia, alkali carbonate, hyaminoamide, etc. are usually used. Preferably triethylamine, tributylamine and calcium hydroxide are used. This basic neutralizing agent can be mixed with water, cyclohexane, benzene,
Xiaomiru O can also be used by dissolving it in an organic solvent such as toluene.
In this case, preferred solvents include water at °C for triethylamine and calcium hydroxide, and cyclohexane, toluene, benzene, etc. for tributylamine. The amount of neutralizing agent used is in each case 1
[Also, Kaji with a molar ratio of 1-10S to mol.]
used in In terms of weight, it is desirable to have a value of 10 times or more, and more preferably a value of 10” or more is 1ltL.

物めて効果的に失活化を行わせるには、重合後に、共1
合物な中和剤と接触前、或いは接触中に粉砕しなければ
ならない。この場合、20メツシユ以下の粒径にすると
、失活化が飛躍的に進行し、得らnた共重合物の熱安定
性が極めて高くなることが見い出された。共重合物の粒
径を20メツシユ以下の小さな粒径にすると、失活化後
の重合物のRvは98%以上に高められ、その結果、後
の安定化収率も98%以上となり、安定化1撫での重合
物の損失も少なくなり、経済性の点からみても好ましい
結果な生ずることがわかった。失活化後の製品の熱安定
性及び色等の品質に於いても優れることは、容易に推定
される。
In order to carry out deactivation very effectively, after polymerization, co-1
must be crushed before or during contact with the compound neutralizing agent. In this case, it has been found that when the particle size is set to 20 meshes or less, the deactivation progresses dramatically and the thermal stability of the obtained copolymer becomes extremely high. When the particle size of the copolymer is reduced to a small particle size of 20 mesh or less, the Rv of the polymer after deactivation is increased to 98% or more, and as a result, the subsequent stabilization yield is also 98% or more, resulting in stable It has been found that the loss of polymerized products during chemical reaction is also reduced, which is a favorable result from an economic point of view. It is easily assumed that the product after inactivation is excellent in quality such as thermal stability and color.

20メツシュ以上の大きな11価の共重合物では、工業
的に実用的な温度では、8マが98%には至らず、高々
96%、であり、−1の!i!未安定化収亭収率%S0 なお、実質的に20メツシユ以下の粒径であればよいの
であって、全体の熱安定性への影響が出ない1度の少量
の20メツシュ以上の粒径のものが含まれても陶鳳とは
ならない。
In a large 11-valent copolymer with 20 meshes or more, at industrially practical temperatures, 8M does not reach 98%, but is at most 96%, which is -1! i! Unstabilized Yield Yield %S0 It should be noted that it is sufficient that the particle size is substantially 20 mesh or less, and a small amount of particle size of 20 mesh or more that does not affect the overall thermal stability is used. Even if it contains these things, it does not become a porcelain pottery.

粒径が小さくなると、共重合物中に残った触媒と中和剤
とのII−の機会が増加する為に、失活化が効果的に進
行するものと推定される。
It is presumed that as the particle size decreases, the chances of II- interaction between the catalyst remaining in the copolymer and the neutralizing agent increases, and thus deactivation proceeds effectively.

又、失活化に111jる時間は、粒径が小さくなる鴨、
短時間で済み、儒えば、20メツシユ〜40メツシユの
大きさの共重合物では30分、100メツシユの共重合
物では5分程度の撹拌下での接触でも充分である。
In addition, the time required for inactivation is 111j, and the particle size becomes smaller.
It only takes a short time, and contact under stirring for about 30 minutes for a copolymer with a size of 20 to 40 meshes and about 5 minutes for a copolymer with a size of 100 meshes is sufficient.

失活化時の負度については、高い温度の方が失活化を効
果的に進めるが、とりわけ50℃以上で効果的である。
Regarding the degree of negativity during deactivation, higher temperatures promote deactivation more effectively, and temperatures of 50° C. or higher are particularly effective.

七の理由は、粉砕の効果と同様、共重合物中に残った触
媒と中和剤との接触の機会の増mKあると推定される。
The seventh reason is presumed to be the increased chance of contact between the catalyst remaining in the copolymer and the neutralizing agent, as well as the effect of pulverization.

しかし、高銀に於(・ても、20メツシユ以下のs!径
に共重合物を粉砕し1失活化させることが公費である。
However, even at high silver levels, it is public expense to crush the copolymer to a diameter of 20 meshes or less and inactivate it by 1.

例えば、140℃の高瓢でも20メツシュ以上の大きな
粒子では98%以上の高いRvは達成されない。
For example, even when heated at 140° C., a high Rv of 98% or more cannot be achieved with large particles of 20 mesh or more.

一般に、重合機により共重合された共重合物は中和剤威
いはその湛液の入ったタンクに送られるiこの場合、共
1合物が空気に触れないよ5に重合機の出口からタンク
に至る迄窒素を流してシールする。
Generally, the copolymerized product copolymerized by a polymerization machine is sent to a tank containing a neutralizing agent solution. Flow nitrogen all the way to the tank and seal it.

タンクには、共重合物と中和剤との接触効率を上げる為
に、回転式の攪拌機及び、スラリー循環用のポンプが堆
り付けられる。又、失活化の温度を調節−rる為に、熱
交換器が壜り付けられる。
The tank is equipped with a rotary stirrer and a slurry circulation pump in order to increase the efficiency of contact between the copolymer and the neutralizing agent. A heat exchanger is also installed to regulate the deactivation temperature.

以上の方法によっても、共重合物の111!が20メツ
シユ以下にならない場合は、粉砕機が用いられる。粉砕
機としては1畳通の破壊式、粉砕式或いは切断式の破砕
装置、例え壷f尖軸式又は衝撃式四転ミルが用いられる
が1重合中に、例えば2軸のセルフクリーニングjlf
Ih練機の場合の回転這度を上げる或いはクリアランス
を小さくする等によって粉砕することも可能である。失
活化工程後、共重合物は、遠心によって中和剤と分−さ
れ、乾燥後安定化工楊を経て製品となる。
Even with the above method, the copolymer 111! If the amount does not fall below 20 meshes, a pulverizer is used. As a crusher, a crushing type, crushing type, or cutting type crushing device with a 1-tatami passage, such as a jar f pointed shaft type or an impact type four-turn mill, is used, but during one polymerization, for example, a two-shaft self-cleaning machine is used.
It is also possible to crush the material by increasing the rotation speed or reducing the clearance in the case of an Ih kneading machine. After the deactivation process, the copolymer is separated from the neutralizing agent by centrifugation, dried, and then subjected to a stabilization process to become a product.

以上の方法によって得られる効果は、 1、共重合物の失活化後の熱安定性が婉い。The effects obtained by the above method are: 1. The thermal stability of the copolymer after deactivation is low.

2、 安定化収率が高く、製造コストが安価でよい。2. High stabilization yield and low manufacturing cost.

3、最終製品の品質に優れる。(熱安定性、色)等であ
り、工業的に当該失活化方法な利用する意義は働めて大
きい。
3. Excellent quality of final product. (thermal stability, color), etc., and the significance of using this deactivation method industrially is great.

以下、詳細を実施例によってかす。The details will be explained below based on examples.

実施例1゜ 三弗化硼素ジブチルエーテレートをトリオキサンに対し
てlXl0’モル襲シクロヘキサンKflr解して触媒
とし、エチレンオキシドをトリオ千すンニ対して4モル
チ含むトリ万キサンとの混合物から、2軸セルフクリー
ニング型混練徐で、トリオキサンとエチレンオキシドの
共重合物をa造する。但し、分子量調節剤としてあらか
じめメテラールな、部課量に対してモル比で10倍量添
加した。共重合物をタンク中にて0.51量唸トリエチ
ルアミン水浴液と接触させ、約90分、62Cで攪拌機
で攪拌する。共重合物(JJ O,i 9k ) リエ
チルアミン水NICK対する割合は、約20重量囁であ
る。攪拌と4時に、タンク底部より、スフシー状となっ
た共重合物のトリエチルアミン水5at−抜き出し、ラ
インミキサー(41殊機化工業11T、に、パイプライ
ンホモミキサーンを適して共1台物を粉砕した。得られ
たスラリーは遠心機にかけられ。
Example 1 Boron trifluoride dibutyl etherate was decomposed into trioxane with lXl0' mole of cyclohexane Kflr as a catalyst, and from a mixture with trimexane containing 4 moles of ethylene oxide to trioxane, a biaxial self-produced A copolymer of trioxane and ethylene oxide is produced by cleaning type kneading. However, as a molecular weight regulator, metheral was added in advance in an amount of 10 times the part amount in molar ratio. The copolymer is brought into contact with 0.51 volume of triethylamine water bath solution in a tank and stirred with a stirrer at 62C for about 90 minutes. Copolymer (JJ O, i 9k ) The ratio of ethylamine to water NICK is about 20 by weight. After stirring, at 4 o'clock, the triethylamine water 5at of the copolymer which had become sticky was drawn out from the bottom of the tank, and the product was ground using a line mixer (41 Jukika Kogyo 11T) using a pipeline homomixer. The resulting slurry was centrifuged.

共1合物はトリエチルアミン水S液と分けられ、水fl
cされた後、窒素流通下で126℃で約3時間加熱し乾
燥された。得られたt*された重合物を、種々サイズの
メツシュでふるいわけ、$1 m1m1 ic myな
掬定した。Rvの糊定方鉄は、lA!ll書中に記載し
た如く、IE燥した重合物な真!下で222℃、50分
間加熱し、重合を鞠定し、加熱前の重量に対する自分事
を求める。ラインミキサーを使用しなかった場合も含め
て、d&粒粒径の8マtIII図及び纂2#Aに示T0 さらKllられた重合物に重合物に対し、水を31量唸
、トリエチルアミンを0.025重量%加え、200℃
下で押出IIIKかけ、ベント部より弾発性成分をとり
出しに0押出嶺に供給した重合物に対する押出機出口よ
り得られた重合物の重量%を安定化収率とした。粒径と
安定化収率の関係を図1及び2に示した。ラインミキサ
ーを使用しない場合と使用した場合の乾燥後の重合物の
平均Rvは各々945%と9k2%であり、平均の安定
化収率は各々94.1%と97.5%であった。
The co-1 compound is separated from triethylamine water S solution, and water fl
After cooling, it was heated and dried at 126° C. for about 3 hours under nitrogen flow. The obtained t*-treated polymer was sieved through meshes of various sizes and scooped out in an amount of $1 ml. Rv's glue setting iron is lA! As described in the book, IE dried polymers are true! Heat at 222° C. for 50 minutes to determine polymerization and determine the weight relative to the weight before heating. Including the case where a line mixer was not used, 31 parts of water was added to the polymerized product, and 31 parts of triethylamine was added to the polymerized product. Added .025% by weight, 200℃
The stabilized yield was defined as the weight percent of the polymer obtained from the extruder outlet with respect to the polymer fed to the 0 extrusion ridge to take out the elastic component from the vent section. The relationship between particle size and stabilization yield is shown in FIGS. 1 and 2. The average Rv of the polymer after drying without using a line mixer and when using a line mixer was 945% and 9k2%, respectively, and the average stabilization yield was 94.1% and 97.5%, respectively.

6粒径の重合物を安定化した後(、肉眼により畿察した
結釆を*IK示す。
After stabilizing the polymer with a particle size of 6 (*IK indicates the formation observed visually with the naked eye).

纂1aii−纂4図に於いて図の機軸に粒径分liiを
とるが、aS分鋤とは粒径の範■を示し、例えは2G−
12とは粒径が20メツシュ以上12メツシュ以下の意
味である。
In Figures 1aii to 4, the grain size lii is taken as the axis of the figure, but the aS scale indicates the grain size range, and for example, 2G-
12 means that the particle size is 20 mesh or more and 12 mesh or less.

集m例2゜ 実施f11で述べた方法で得られた共1合物をタンク中
で0.5重量%)リエチルアミン水IIl液と接触gせ
、40℃、50C180Cの温度で、約90分、撹拌機
で攪拌して失活化させた。共1合物のトリエチルアミン
水溶液に対する割合は、約20重量うである。クィンミ
キす−は実m例1で述べたのと同じ豐領で用いた。遠心
、am後の1合物につき、粒畿別ecRマを掬定した。
Example 2 - The compound obtained by the method described in Example f11 was brought into contact with 0.5 wt % ethylamine aqueous solution II in a tank at a temperature of 40°C and 50°C and 180°C for about 90 minutes. , and inactivated by stirring with a stirrer. The ratio of compound 1 to the triethylamine aqueous solution is about 20 parts by weight. Quinmikisu was used in the same area as described in Example 1. After centrifugation and AM, ecR samples were collected for each grain.

又、共重合物なO,S重量sトリエチルアミン水S*と
接触させ。
Also, it was brought into contact with a copolymerized O, S weight s triethylamine water S*.

20重量うとしステンレス製マイクロボンベに容れ、m
#5状謙で100℃、120 Kl:、140Cの6%
中で90分、緩やかに8の字11に伽灸し、失活化さゼ
た。失活化後の共重合物は、口過により、トリエチルア
ミン水Stと分け、水洗後、真!!乾燥機中、120℃
で511間乾燥し1粒径j41にふるいわけ、kvを掬
定した鼠マの一定方渋は実Mlilで述べた方法と同じ
である。結果をj13図に示す。
20 weight centrifuges, placed in a stainless steel micro cylinder, m
#5 Condition: 100℃, 120Kl:, 6% of 140C
For 90 minutes inside, I was gently moxibusted to a figure 8 and 11 shape, and it was inactivated. After deactivation, the copolymer was separated from triethylamine water St by mouth filtration, and after washing with water, it was washed with water. ! In the dryer, 120℃
The method of drying it for 511 minutes, sifting it to 1 particle size j41, and scooping out kv was the same as the method described in Mlil. The results are shown in Figure j13.

夾111fl!i3゜ 三弗化m累ジエチルエーテレートをトリオキサンに対シ
ーCO,7X 10−4七ルラ、シクロへdt t ン
に#!解して触媒とし、エチレンオキシドなトリオキサ
ンに対して4モルラ會むトリオキサンとの混合物から2
@セルフクリ一ニングm混錬畿でトリすキサンとエチレ
ンオキシドの共重合41kl&−11造する。但し、分
子量−jI剤としくあらかじめメテラールをモル比で7
僑量−1した。
111fl! i3゜trifluoride m complex diethyl etherate to trioxane to sea CO, 7X 10-4 seven lula, cyclo to dt t #! 2 from a mixture with trioxane in a ratio of 4 molar to ethylene oxide trioxane.
@Self-cleaning 41 kl of copolymerization of tris-xane and ethylene oxide was produced in the m-kneading kiln. However, the molar ratio of metheral is 7 in advance as a molecular weight -jI agent.
Weight -1.

共重合物を、1rui用(キナ−中にあらかじめ容れた
トリブチルアミンめ3重量囁トルエン111EK)ルエ
ン11[tc対して20重量うとなるように受け5 、
 Is、 30,60.90.120分ja接触させ撹
拌した攪拌後負度は62℃である。
Pour the copolymer into 1rui (3 weights of toluene 111EK to tributylamine pre-prepared in quina) and 11 to 20 weights of toluene to 11[tc].
Is, 30, 60, 90, 120 minutes of contact and stirring, the negative temperature after stirring is 62°C.

即ち共重合物は口過、水洗、真空i1E糠による120
C,5時間の乾燥を峠、ふるいKより収11jllK分
けられた。各粒径のRvを一定した。%接触時間に於け
るyB径とRvの関係を!!4四に示す。
That is, the copolymer was passed through the mouth, washed with water, and vacuumed with i1E bran.
C. After drying for 5 hours, 11 ml of the product was separated using a sieve. The Rv of each particle size was kept constant. Relationship between yB diameter and Rv in % contact time! ! 44.

Rvの一定方法は実#A儒lと同じである。The method for determining Rv is the same as that for real #A.

実IIA例4゜ 実施fillで述べたのと同じ方法で得られた共重合物
をクラッシャー(ジヨウクラッシャー)にかけ、粉砕後
タンク中にて0.5重量骨トリブチルアミン水′#旗と
接触させ、約90分、62℃で撹拌機にて攪拌した。共
1合物のO,S重量% ) IJエテルアミン水Stに
対する111合は、約20重量囁である。得られたスラ
リーは遠心機にかけられ、共重合−はトリエチルアミン
水1淑と分けられ、水洗後、1lllAR通下で126
℃、約3時間で加熱乾燥された。得られた重合物は、実
Jlfillで遮べた方法によりRvを一定した。
Practical Example 4 The copolymer obtained in the same manner as described in Practical Fill was crushed by a crusher (Jiyo Crusher), and after being crushed, it was brought into contact with 0.5 weight bone tributylamine water in a tank. The mixture was stirred for about 90 minutes at 62°C using a stirrer. (% by weight of O and S in the compound) 111 to IJ etelamine water St is about 20% by weight. The obtained slurry was centrifuged, and the copolymerized product was separated with 1 cup of triethylamine water, washed with water, and then 126
It was heated and dried at ℃ for about 3 hours. The Rv of the obtained polymer was made constant by the method used to block the actual Jlfill.

乾燥し文共重合物の瓦マは99.0%であり、り2ツー
  シャーに使用しない場合のIIL燥共1合物の凰マ
は94.8%であった。又、実施例1で過べたのと同じ
方法で乾燥後の1合物な安定化したが、安定化*は98
.3%であった。
The dry weight of the IIL copolymer was 99.0%, and the weight of the IIL dry copolymer when not used in the drying process was 94.8%. In addition, the compound after drying was stabilized using the same method as in Example 1, but the stabilization * was 98
.. It was 3%.

実施1i115゜ 実J1if13で述べたのと同じ方法で得られた共重合
物を0.1重量唸の水酸化カルシウム水iniと接触さ
せ、90分、62Cで攪拌機で攪拌した。実施例1と同
様のllL慎でラインミキサ−(籍111m化工業@ 
T、に、パイプラインホモミキサーフな用い、スラリー
を粉砕した。七の後、共1合物は遠心機にて、水酸化カ
ルシウム水1iiiと分けられ、水洗後、ii1累流造
下で126℃、約3時間乾燥された。
The copolymer obtained in the same manner as described in Example 1i115゜Example J1if13 was brought into contact with 0.1 kg of calcium hydroxide water ini and stirred with a stirrer at 62C for 90 minutes. A line mixer (registered 111m Kakogyo@
The slurry was ground using a pipeline homomixer. After step 7, the compound was separated with calcium hydroxide water 1iii in a centrifuge, washed with water, and dried at 126° C. for about 3 hours under iii1 cumulative flow.

[燥された共重合物のRvを実施例1で運べたのと同じ
方法で一定した。Rvは9&5%であった。
[The Rv of the dried copolymer was fixed in the same way as was carried out in Example 1. Rv was 9&5%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はラインミキサーを使用しない場合のRvおよび
安定化収率とa径の関係を示す。 #!2図はラインミキサーを使用した場合のByおよび
安定化収率と粒径の関係を示1゜ 第3図はRvと粒径とのlIl係への失活化負度の影響
を示し、 第4wAはRvと粒径との関係への中和剤との接触時間
の影響を示す。 賛出願人 旭化成工業株式会社 第1図 罐なそり←チh通i(メツ、シュ) 第2図 駄剰?Ju(、%ツ騎) 第3図 #L唾蚤づテaJ(メツシュ) 第4図 米【すしグア4(メツシュ) 手続補正書(自発) 昭和56年11月2ζ日 特許庁長官 島 1)春 樹 殿 1、事件の表示   昭和56年特許願第1320?T
号2 発明の名称 ポリオキシメチレン共重合物の失活化方法a 補正をす
る者 事件との関係  特許出願人 大阪府大阪市北区堂島浜1丁目2番6号屯 補正の対象 明細書の「発明の詳細な説明」の欄 補正の内容 明細書の発明の詳細な説明の欄全下記の通シ補正する。 以  上
FIG. 1 shows the relationship between Rv, stabilization yield, and a diameter when no line mixer is used. #! Figure 2 shows the relationship between By, stabilized yield, and particle size when a line mixer is used. Figure 3 shows the influence of inactivation negativity on the lIl relationship between Rv and particle size. 4wA indicates the effect of contact time with the neutralizing agent on the relationship between Rv and particle size. Supporting Applicant: Asahi Kasei Kogyo Co., Ltd. Figure 1 Can Nasori ← Chih Street i (Metsu, Shu) Figure 2 Waste? Ju (,%tsuki) Fig. 3 #L spitting aJ (metshu) Fig. 4 Rice [Sushi Gua 4 (metshu) Procedural amendment (voluntary) November 2, 1980 Commissioner of the Japan Patent Office Shima 1) Haruki Tono 1, Incident Display 1981 Patent Application No. 1320? T
No. 2 Name of the invention Method for deactivating polyoxymethylene copolymer a Relationship with the case of the person making the amendment Patent applicant 1-2-6-Tun Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture Invention of the specification subject to the amendment Contents of the amendment in the "Detailed explanation of the invention" column The entire "Detailed explanation of the invention" column in the specification will be amended as follows. that's all

Claims (1)

【特許請求の範囲】 (11ト9オ11?ナンと環状エーテル或いは環状ホル
マールとのカチオン共重合によって得られるポリオキシ
メチレン共重合物を、塩基性中和剤と高められたa度で
I!触せしめ、部課を失活化させる際に、20メツシユ
以下の粒径で接触させることを41黴とする失活化方法 (2)ポリオキシメチレン共重合物と塩基性中和剤を1
11馳せしめる時の温度を50℃以上にすることを41
11とする特許請求の範囲II1項記載の失活化方法 (3)  カチオン共重合の触部として三弗化ホウ素一
体な用いること+に一脣黴とする畳奸−車の颯閤纂1哀
記−の失活化方法 (4)三弗化ホウ素錯体が、三弗化ホウ素のジプテルエ
ーテA−或いはジエチルエーテルであることを特徴とす
る特許m本のIK園纂3゛項記載の失活化方法 (5)  塩基性中和剤とし【トリブチルア(ン、トリ
ブチルアばン或いは水酸化カルシクムのいずれかを用い
ることを特徴とする特許−求の範囲第1項記載の失活化
方法 (6)トリオキサンと環状エーテル或いは@状ホルマー
ルとのカチオン共重合によって得られるポリオキシメチ
レン共重合物を水或いは有1111]11Kll解した
塩基性中@IIど高められたILILで接触せしめ、m
atを失活化させる際に、20メツシユ以下の粒径で接
触させることを特徴とする失活化方法
[Claims] A polyoxymethylene copolymer obtained by cationic copolymerization of (11-9-11?nan and a cyclic ether or a cyclic formal) is prepared using a basic neutralizing agent and an increased degree of a! A deactivation method in which 41 molds are contacted with a particle size of 20 mesh or less when contacting and deactivating the parts. (2) Polyoxymethylene copolymer and basic neutralizing agent are
11. Keep the temperature at 50℃ or higher when cooking.41
11 Claim II Deactivation method according to item 1 (3) Integral use of boron trifluoride as a catalyst for cationic copolymerization Deactivation method (4) Deactivation described in Section 3 of IK Encyclopedia of Patent M, characterized in that the boron trifluoride complex is boron trifluoride dipterether A- or diethyl ether. Method (5) Deactivation method (6) Trioxane described in item 1 of the patent-claimed claim, characterized in that one of tributylamine, tributylamine, or calcium hydroxide is used as the basic neutralizing agent. A polyoxymethylene copolymer obtained by cationic copolymerization of and a cyclic ether or @-form formal is contacted with water or an elevated ILIL such as @II in a basic solution decomposed with m
A deactivation method characterized in that when inactivating at, contact is carried out with a particle size of 20 meshes or less
JP13207781A 1981-08-25 1981-08-25 HORIOKISHIMECHIRENKYOJUGOBUTSUNOSHITSUKATSUKAHOHO Expired - Lifetime JPH0235772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13207781A JPH0235772B2 (en) 1981-08-25 1981-08-25 HORIOKISHIMECHIRENKYOJUGOBUTSUNOSHITSUKATSUKAHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13207781A JPH0235772B2 (en) 1981-08-25 1981-08-25 HORIOKISHIMECHIRENKYOJUGOBUTSUNOSHITSUKATSUKAHOHO

Publications (2)

Publication Number Publication Date
JPS5834819A true JPS5834819A (en) 1983-03-01
JPH0235772B2 JPH0235772B2 (en) 1990-08-13

Family

ID=15072965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13207781A Expired - Lifetime JPH0235772B2 (en) 1981-08-25 1981-08-25 HORIOKISHIMECHIRENKYOJUGOBUTSUNOSHITSUKATSUKAHOHO

Country Status (1)

Country Link
JP (1) JPH0235772B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838713A (en) * 1981-09-02 1983-03-07 Asahi Chem Ind Co Ltd Deactivation of polymerization catalyst
JPH03128911A (en) * 1989-10-16 1991-05-31 Asahi Chem Ind Co Ltd Stabilized polyacetal resin molding and its preparation
US5344911A (en) * 1992-03-06 1994-09-06 Polyplastics Co., Ltd. Process for producing polyoxymethylene copolymer having reduced amount of unstable terminal groups
MY119909A (en) * 1996-09-30 2005-08-30 Polyplastics Co Process for producing stabilized oxymethylene copolymer
DE102005062326A1 (en) * 2005-12-24 2007-06-28 Ticona Gmbh Production of oxymethylene (co)polymers for molding, including specified homopolymers, involves heterogeneous polymerization of monomer in presence of formaldehyde acetal and cationic initiator and deactivation in basic homogeneous phase
JP2011516702A (en) * 2008-04-16 2011-05-26 ティコナ ゲーエムベーハー Oxymethylene copolymer and use thereof and method for producing oxymethylene copolymer
WO2017159602A1 (en) * 2016-03-14 2017-09-21 三菱瓦斯化学株式会社 Method for producing oxymethylene copolymer
WO2019053976A1 (en) * 2017-09-12 2019-03-21 三菱瓦斯化学株式会社 Oxymethylene-copolymer manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838713A (en) * 1981-09-02 1983-03-07 Asahi Chem Ind Co Ltd Deactivation of polymerization catalyst
JPH03128911A (en) * 1989-10-16 1991-05-31 Asahi Chem Ind Co Ltd Stabilized polyacetal resin molding and its preparation
US5344911A (en) * 1992-03-06 1994-09-06 Polyplastics Co., Ltd. Process for producing polyoxymethylene copolymer having reduced amount of unstable terminal groups
MY119909A (en) * 1996-09-30 2005-08-30 Polyplastics Co Process for producing stabilized oxymethylene copolymer
DE102005062326A1 (en) * 2005-12-24 2007-06-28 Ticona Gmbh Production of oxymethylene (co)polymers for molding, including specified homopolymers, involves heterogeneous polymerization of monomer in presence of formaldehyde acetal and cationic initiator and deactivation in basic homogeneous phase
JP2011516702A (en) * 2008-04-16 2011-05-26 ティコナ ゲーエムベーハー Oxymethylene copolymer and use thereof and method for producing oxymethylene copolymer
WO2017159602A1 (en) * 2016-03-14 2017-09-21 三菱瓦斯化学株式会社 Method for producing oxymethylene copolymer
US10975189B2 (en) 2016-03-14 2021-04-13 Mitsubishi Gas Chemical Company, Inc. Process for producing oxymethylene copolymer
WO2019053976A1 (en) * 2017-09-12 2019-03-21 三菱瓦斯化学株式会社 Oxymethylene-copolymer manufacturing method
KR20200047682A (en) * 2017-09-12 2020-05-07 미츠비시 가스 가가쿠 가부시키가이샤 Method for producing oxymethylene copolymer
JPWO2019053976A1 (en) * 2017-09-12 2020-08-27 三菱瓦斯化学株式会社 Method for producing oxymethylene copolymer

Also Published As

Publication number Publication date
JPH0235772B2 (en) 1990-08-13

Similar Documents

Publication Publication Date Title
KR100360288B1 (en) Manufacturing method of polyacetal copolymer
JPS5834819A (en) Deactivation of polyoxymethylene copolymer
CN108350164A (en) A method of economically preparing the resin combination for including polyalkylene carbonate with improved thermal stability and processing performance
JP3017376B2 (en) Method for producing polyoxymethylene terpolymer having high polymerization degree
CN105916906A (en) Process for producing polyacetal copolymer
US3884881A (en) Preparation of poly(p-phenylene terephthalamide) by mixing solution of p-phenylene diamine with molten terephthaloyl chloride
CN112313054B (en) Method for producing a polycondensate melt from a primary material and a secondary material
US20110269931A1 (en) Process for obtaining an elastomer in solid phase starting from its polymer solution
JPS6213367B2 (en)
US7897672B2 (en) Process for producing polyoxymethylene copolymer
JPS59227916A (en) Production of trioxane polymer or copolymer
JP6122378B2 (en) Method for producing purified low-substituted hydroxypropylcellulose
US2722520A (en) Preparation of oxetane polymers
CN102453240B (en) Device and method for manufacturing poly(trimethylene terephthalate) and device for removing acrolein
KR101748408B1 (en) Method for preparing polyalkylenecarbonate
JP3134699B2 (en) Method for producing acetal copolymer
JPH0542961B2 (en)
JP2011516703A (en) Method for producing oxymethylene polymer and apparatus suitable for the purpose
JP3208373B2 (en) Method for producing polyacetal copolymer
US4189565A (en) Process for polymerizing trioxane
JPS62129311A (en) Production of oxymethylene copolymer
KR100904356B1 (en) Process and Apparatus for the Industrial Preparation of Methylhydroxyalkylcellulose
JPH10330443A (en) Production of polyacetal copolymer
JP2014095000A (en) Method of manufacturing polyacetal copolymer
JPS629611B2 (en)