JPS5834792B2 - Earthquake telemeter method - Google Patents

Earthquake telemeter method

Info

Publication number
JPS5834792B2
JPS5834792B2 JP53009843A JP984378A JPS5834792B2 JP S5834792 B2 JPS5834792 B2 JP S5834792B2 JP 53009843 A JP53009843 A JP 53009843A JP 984378 A JP984378 A JP 984378A JP S5834792 B2 JPS5834792 B2 JP S5834792B2
Authority
JP
Japan
Prior art keywords
observation
earthquake
motion
motion component
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53009843A
Other languages
Japanese (ja)
Other versions
JPS54104376A (en
Inventor
摂三 宮村
誠 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP53009843A priority Critical patent/JPS5834792B2/en
Publication of JPS54104376A publication Critical patent/JPS54104376A/en
Publication of JPS5834792B2 publication Critical patent/JPS5834792B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は、地震動の伝送において、地震動の各種情報の
うち伝送すべき情報の種類を、地震の震源およびマグニ
チュードを決定するに必要な程度に制限することによっ
て、伝送に要する回線数の節約または低品質回線の有効
利用をはかる地震テレメータ方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention improves the transmission of earthquake motion by limiting the type of information to be transmitted among various information on earthquake motion to the extent necessary to determine the epicenter and magnitude of the earthquake. This paper relates to an earthquake telemeter system that saves the number of lines required or makes effective use of low-quality lines.

従来の地震テレメータ方式の代表例を第1図に示す。A typical example of a conventional seismic telemeter system is shown in Figure 1.

第1図は観測点数が3個所でその中の1観測点を拠点と
して基地局へ地震動を伝送する場合である。
Figure 1 shows a case where there are three observation points and one of them is used as a base to transmit seismic motion to the base station.

第1図において、1a〜3aは観測地域に設けられた観
測点で、1aは基地局に直接接続する拠点を兼ねている
In FIG. 1, 1a to 3a are observation points provided in the observation area, and 1a also serves as a base directly connected to a base station.

4aは観測地域から遠隔の地域にある基地局である。4a is a base station located in an area remote from the observation area.

5a〜7aは地震動信号を伝送する回線である。Lines 5a to 7a transmit seismic motion signals.

観測点1a〜3aが設けられる観測地域は、通常は、常
時微動の影響をさけるため、不便な山間僻地に選ばれ無
人である。
The observation areas where observation points 1a to 3a are provided are usually uninhabited and selected as inconvenient remote areas in the mountains to avoid the influence of constant tremors.

一方、基地局4aは、地震に関する情報を必要とする機
関の所在するところでもあり、通常は部会地に設けられ
る。
On the other hand, the base station 4a is also where an organization that requires information regarding earthquakes is located, and is usually installed at a sub-site.

したがって観測点1aと基地局48間の回線7aは長距
離化する傾向にある。
Therefore, the line 7a between the observation point 1a and the base station 48 tends to have a longer distance.

この回線7aによって伝送しなければならない地震動信
号は、観測点1a〜3aの各々で得られる地震動の上下
動・南北動・東西動の3成分の合計、9成分である。
The seismic motion signal that must be transmitted through the line 7a is a total of nine components of the three components of the vertical motion, north-south motion, and east-west motion of the earthquake motion obtained at each of the observation points 1a to 3a.

−例として電話用回線1回線で地震動3成分は送れる。-For example, three components of seismic motion can be sent over one telephone line.

この例によれば、回線7aは3回線を必要とする。According to this example, line 7a requires three lines.

回線7aのごとく長距離回線を3回線も必要とするので
は、回線数の確保が困難な場合も生じる。
If three long-distance lines such as the line 7a are required, it may be difficult to secure the number of lines.

あるいは、折角、確保できても費用がかさんで維持しき
れなくなるなどの欠点がある。
Or, even if you manage to secure one, there are drawbacks such as the expense increasing and making it impossible to maintain it.

本発明の目的は、これらの欠点を除去するため、伝送す
る地震動の内容を、地震観測の目的が達成できる程度に
制限することによって、テレメータ回線数を減少するよ
うにしたもので、以下詳細に説明する。
The purpose of the present invention is to eliminate these drawbacks by reducing the number of telemeter lines by limiting the content of the seismic motion to be transmitted to the extent that the purpose of earthquake observation can be achieved.This will be described in detail below. explain.

第2図は本発明の第1の実施例であって、観測点数が3
点の場合である。
FIG. 2 shows the first embodiment of the present invention, in which the number of observation points is 3.
This is the case for points.

1は観測地域において拠点とする観測拠点。1 is an observation base in the observation area.

2および3は観測点、4は基地局、5〜7はテレメータ
用伝送回線、8は地実計上下動変換器(以下、■変換器
)、9は地震計南北動変換器(以下、N変換器)、10
は地震計東西動変換器(以下、E変換器)、11は信号
調整器(以下、調整器)、12は送量器、13は受量器
、14は切換器、15は地震判定器、16は送量器、1
7は受量器、18は処理装置である。
2 and 3 are observation points, 4 is a base station, 5 to 7 are telemeter transmission lines, 8 is a geometer vertical motion converter (hereinafter referred to as ■ converter), and 9 is a seismometer north-south motion converter (hereinafter referred to as N converter), 10
11 is a signal regulator (hereinafter referred to as regulator); 12 is a transmitter; 13 is a receiver; 14 is a switch; 15 is an earthquake detector; 16 is a feeder, 1
7 is a receiver, and 18 is a processing device.

次に第1の実施例の動作を説明する。Next, the operation of the first embodiment will be explained.

観測点2および3において、地動は■変換器8、N変換
器9、E変換器10により検出され、電気信号に変換さ
れ、調整器12で増幅・F波等の信号調整を受けて、送
量器12で伝送回線に送出できるよう変調される。
At observation points 2 and 3, ground motion is detected by the converter 8, N converter 9, and E converter 10, converted into an electrical signal, amplified by the regulator 12, subjected to signal adjustment such as F waves, and transmitted. The signal is modulated by the quantizer 12 so that it can be sent to the transmission line.

観測点2の送量器12の出力は伝送回線5を介して、ま
た観測点3の送量器12の出力は伝送回線6を介して、
観測拠点1の受量器13へ送られる。
The output of the meter 12 at observation point 2 is transmitted through the transmission line 5, and the output of the meter 12 at observation point 3 is transmitted through the transmission line 6.
It is sent to receiver 13 of observation base 1.

観測拠点1では、観測点2および3から送られてくる地
動信号のほかに、観測拠点1における地動を、■変換器
8、N変換器9、E変換器10、により検出し、調整器
11で信号調整したものも得られる。
At observation base 1, in addition to the ground motion signals sent from observation points 2 and 3, the ground motion at observation base 1 is detected by converter 8, N converter 9, and E converter 10; You can also obtain the signal adjusted by .

観測拠点1の受量器13では、観測点1および2からの
変調信号を復調して、切換器14に地動信号を供給する
The receiver 13 of the observation base 1 demodulates the modulated signals from the observation points 1 and 2 and supplies the ground motion signal to the switch 14.

観測拠点1における地動信号も調整器から切換器14に
供給される。
The ground motion signal at the observation base 1 is also supplied to the switch 14 from the regulator.

切換器14の入力には観測拠点1、観測点2および3の
地動の上下動・南北動・東西動の3成分、合計9成分が
常時供給されている。
Three components of vertical motion, north-south motion, and east-west motion of ground motion at observation base 1, observation points 2, and 3, nine components in total, are constantly supplied to the input of the switch 14.

切換器14は常時は送量器16へ上下動3成分を送って
いる。
The switch 14 normally sends three components of vertical motion to the feeder 16.

送量器16ではこれを伝送回線に送出できるように変調
する。
The transmitter 16 modulates the signal so that it can be sent to the transmission line.

この変調信号は伝送回線7をとおして、基地局4に送ら
れ、受量器17で復調され、処理装置18に導かれる。
This modulated signal is sent to the base station 4 through the transmission line 7, demodulated by the receiver 17, and guided to the processing device 18.

処理装置18は地震動に関する処理、記録などを行う。The processing device 18 performs processing, recording, etc. related to earthquake motion.

送量器16のもう一つの出力は観測拠点1において、地
震判定器15へ送られる。
Another output of the transmitter 16 is sent to the earthquake determination device 15 at the observation base 1.

地震判定器15人力は、常時は観測拠点1、観測点2,
3の地動信号の上下動成分であるから、地震が発生して
この観測網に地震波が到達すれば、その初動により地動
信号の上下動成分の振幅は、観測網の大きさできまる時
間内で一斉に増大する。
The 15 human-powered earthquake detectors are normally operated at observation base 1, observation point 2,
Since this is the vertical motion component of the ground motion signal in step 3, if an earthquake occurs and seismic waves reach this observation network, the initial motion will cause the amplitude of the vertical motion component of the ground motion signal to increase within the time determined by the size of the observation network. increase all at once.

地震判定器15では、このような地震の徴候を常時監視
していて、もしも地震と判定できれば基地局4の処理装
置18において各上下動成分につき、発震時・押し引き
・振幅・周期などをはかる時間をとってから、切換器1
4に制御信号を供給する。
The earthquake detector 15 constantly monitors signs of such earthquakes, and if an earthquake is determined, the processor 18 of the base station 4 measures the time of occurrence, push/pull, amplitude, period, etc. for each vertical motion component. After some time, switch 1
A control signal is supplied to 4.

処理装置18がこれらをはかってしまえば、震源および
マグニチュードをはかる目的にとっては上下動成分を監
視し続ける必要はないからである。
This is because once the processing device 18 measures these, there is no need to continue monitoring the vertical motion component for the purpose of measuring the epicenter and magnitude.

切換器14はそれまでの上下動3成分から、水平動6成
分に切換えて送量器16に送る。
The switch 14 switches from the previous three vertical motion components to six horizontal motion components and sends them to the feeder 16.

送量器16はこれまでの3成分入力が6成分入力になる
のであるから、変調内容を内部において切換える。
Since the feeder 16 changes the previous three-component input into a six-component input, the modulation content is switched internally.

成分数が2倍になるのであるから、上下動成分伝送の場
合の最高伝送周波数に対し水平動成分伝送の場合は約1
/2とする。
Since the number of components is doubled, the maximum transmission frequency for vertical motion component transmission is approximately 1 for horizontal motion component transmission.
/2.

切換後は、送量器16から伝送回線7を介して基地局4
の受量器17へ、水平動6成分が伝送される。
After switching, the base station 4 is transmitted from the data transmitter 16 via the transmission line 7.
The six horizontal motion components are transmitted to the receiver 17.

受量器17より水平動6成分の地震動信号を受けて、処
理装置18は、S波発震時、S液量大振幅、周期、地震
終結時刻などをはかる。
Receiving the seismic motion signal of six horizontal motion components from the receiver 17, the processing device 18 measures the S wave generation time, the S liquid volume large amplitude, the period, the earthquake end time, and the like.

一方地震判定器15では地震終結時刻を判定して制御信
号を発生し、切換器14を駆動し、常態の上下動3成分
伝送に復旧させる。
On the other hand, the earthquake determiner 15 determines the end time of the earthquake, generates a control signal, drives the switch 14, and restores normal vertical motion three-component transmission.

以上説明した第1の実施例において、観測拠点1、観測
点2および3で構成される観測網は、1辺が数百〜数千
m程度であるから、その伝送回線5または6は自営も可
能であるし、電電公社専用回線が利用できれば、これに
よってもよい。
In the first embodiment described above, since the observation network consisting of observation base 1 and observation points 2 and 3 has a side length of approximately several hundred to several thousand meters, the transmission line 5 or 6 may be privately operated. If it is possible and a dedicated line for the Telegraph and Telephone Public Corporation is available, this may be used.

これに対し観測拠点1と基地局4を結ぶ伝送回線7は、
一般的にいって長距離化する。
On the other hand, the transmission line 7 connecting the observation base 1 and the base station 4 is
Generally speaking, the distance will be longer.

−例としてその数字をあげれば、数十、数百側である。-As an example, the numbers would be in the tens or hundreds.

このような長距離の自営回線を設けることは勿論、電電
公社専用回線を多数使用することは、経済的にも社会的
にもきわめて非効率的である。
It is extremely inefficient both economically and socially to provide such long-distance private lines, as well as to use a large number of lines dedicated to the Telephone and Telecommunications Public Corporation.

第1の実施例では、長距離化する伝送回線を、説明のご
とく3回線から1回線に減少できる利点がある。
The first embodiment has the advantage that the number of long-distance transmission lines can be reduced from three lines to one line, as described above.

今まで説明した第1の実施例は観測拠点1において、常
時は上下動成分を送出しているが地震判定器15からの
切換信号により南北動成分および東西動成分に切換えて
送出するものであったが、第3図に示すごとく、観測拠
点1において南北動成分のみに切換えて送出する構成と
することもできる。
In the first embodiment described so far, the observation base 1 normally sends out the vertical motion component, but it switches to the north-south motion component and the east-west motion component and sends it out based on a switching signal from the earthquake detector 15. However, as shown in FIG. 3, it is also possible to configure the observation base 1 to switch to only the north-south motion component and send it out.

地震動において、南北動成分を全く欠き、東西動成分の
みということは、はとんど無い。
It is rare for an earthquake motion to have no north-south motion component and only have an east-west motion component.

また反対に東西動成分を全く欠くということもない。On the other hand, it does not completely lack an east-west dynamic component.

従って、このように構成しても、常時は上下動成分、切
換時は水平動成分を伝送することができ、第1の実施例
と同じ効果が生じる。
Therefore, even with this configuration, it is possible to transmit the vertical motion component at all times and the horizontal motion component at the time of switching, producing the same effect as in the first embodiment.

また南北動成分の代りに東西動成分を用いても同様であ
る。
The same effect can be obtained by using the east-west motion component instead of the north-south motion component.

第3の実施例としては第4図に示すごとく、観測拠点1
において、自乗和平男根回路20によりN変換器出力の
自乗とE変換器出力の自乗との和の平方根の絶対値をつ
くり、これを水平動成分として、上下動成分と切換えて
送出する構成とすることもできる。
As a third embodiment, as shown in Fig. 4, observation base 1
, the absolute value of the square root of the sum of the square of the output of the N converter and the square of the output of the E converter is created by the square root circuit 20, and this is configured to be sent as a horizontal motion component while being switched to a vertical motion component. You can also do that.

基地局4の処理装置18においても、マグニチュードを
求めるため、自乗和平男根回路と同じ処理をするのであ
るから、これを伝送前に処理しても一向にさしつかえは
ない。
Since the processing device 18 of the base station 4 also performs the same processing as the square peace phallus circuit in order to obtain the magnitude, there is no problem in processing this before transmission.

水平動から得ようとしているもう一つの情報は、横波発
震時であるが、これも自乗和平古根回路出力による方が
、水平動の各成分について見るよりも明瞭になる。
Another piece of information we are trying to obtain from horizontal motion is the time of shear wave oscillation, but this is also clearer from the sum-of-squares root circuit output than from looking at each component of the horizontal motion.

従って、第4図のように構成しても、常時は上下動成分
、切換時は水平動成分を伝送するのと同等である。
Therefore, even if the configuration is as shown in FIG. 4, it is equivalent to transmitting the vertical motion component at all times and the horizontal motion component at the time of switching.

本発明は地震動の信号伝送において、上下動成分、水平
動成分を適時に切換えて伝送しているので、伝送回線数
を減少できる利点があり、したがって伝送距離が長距離
にわたる場合に適用すれば、回線を経済的に利用するこ
とができる。
The present invention has the advantage that the number of transmission lines can be reduced because the vertical motion component and horizontal motion component are switched and transmitted in a timely manner in the signal transmission of seismic motion. Lines can be used economically.

また本発明は観測拠点において地震発生の有無を検出し
ているので、観測点の情報が誤って検出されるおそれが
極めて少ないという効果もある。
Furthermore, since the present invention detects the presence or absence of an earthquake at an observation base, there is also the effect that there is extremely little possibility that information about the observation point will be detected erroneously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の地震テレメータ方式を説明する観測網図
、第2図、第3図、および第4図は本発明の詳細な説明
図である。 1・・・観測拠点、2・・・観測点、3・・・観測点、
4・・・基地局、5〜7・・・テレメータ用伝送回線、
8・・・■変換器、9・・・N変換器、10・・・E変
換器、11・・・信号調整器、12・・・送量器、13
・・・受量器、14・・・切換器、15・・・地震判定
器、16・・・送量器、17・・・受量器、18・・・
処理装置、19・・・切換器、20・・・自釆和平方根
回路。
FIG. 1 is an observation network diagram illustrating a conventional seismic telemeter system, and FIGS. 2, 3, and 4 are detailed explanatory diagrams of the present invention. 1...Observation base, 2...Observation point, 3...Observation point,
4...Base station, 5-7...Telemeter transmission line,
8...■ converter, 9...N converter, 10...E converter, 11...signal conditioner, 12...feeder, 13
...Receiver, 14...Switcher, 15...Earthquake detector, 16...Transfer device, 17...Receiver, 18...
Processing device, 19...Switcher, 20...Automatic sum square root circuit.

Claims (1)

【特許請求の範囲】 1 所定観測地域に多数設けられた観測点における地震
情報を、前記観測点の所定観測点または別個に設けた観
測拠点を介して、前記所定観測地域より遠隔の地点に設
置された基地局に伝送するテレメータ方式において、常
時は前記観測拠点で前記観測点の上下動成分を監視する
と共に前記基地局に送出し、前記観測拠点が地震の発生
を感知したら前記観測拠点から前記基地局に送出してい
る上下動成分の送出を停止して水平動成分を基地局に送
出する事を特徴とする地震テレメータ方式。 2、特許請求の範囲第1項において、水平動成分として
南北動成分または東西動成分を用いた事を特徴とする地
震テレメータ方式。 3 特許請求の範囲第1項において、水平動成分として
南北動成分の値を自乗した値と東西動成分の値を自乗し
た値との和の平方根を求めた値を用いた事を特徴とする
地震テレメータ方式。
[Scope of Claims] 1 Earthquake information at a large number of observation points provided in a predetermined observation area is provided at a point remote from the predetermined observation area via a predetermined observation point or a separate observation base. In the telemetry method, the observation base always monitors the vertical motion component of the observation point and sends it to the base station, and when the observation base senses the occurrence of an earthquake, the observation base An earthquake telemeter system characterized by stopping the transmission of vertical motion components to the base station and transmitting horizontal motion components to the base station. 2. The earthquake telemeter system according to claim 1, characterized in that a north-south motion component or an east-west motion component is used as the horizontal motion component. 3. An earthquake as set forth in claim 1, characterized in that the horizontal motion component is the square root of the sum of the square of the value of the north-south motion component and the square of the value of the east-west motion component. Telemeter method.
JP53009843A 1978-02-02 1978-02-02 Earthquake telemeter method Expired JPS5834792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53009843A JPS5834792B2 (en) 1978-02-02 1978-02-02 Earthquake telemeter method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53009843A JPS5834792B2 (en) 1978-02-02 1978-02-02 Earthquake telemeter method

Publications (2)

Publication Number Publication Date
JPS54104376A JPS54104376A (en) 1979-08-16
JPS5834792B2 true JPS5834792B2 (en) 1983-07-28

Family

ID=11731399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53009843A Expired JPS5834792B2 (en) 1978-02-02 1978-02-02 Earthquake telemeter method

Country Status (1)

Country Link
JP (1) JPS5834792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156264U (en) * 1985-03-18 1986-09-27
JPH0319241Y2 (en) * 1985-09-24 1991-04-23

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991386A (en) * 1982-11-17 1984-05-26 Meisei Electric Co Ltd Seismic data collection system
JPS6235215U (en) * 1985-08-21 1987-03-02
US5420380A (en) * 1993-02-09 1995-05-30 The United States Of America As Represented By The United States Department Of Energy Seismic switch for strong motion measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156264U (en) * 1985-03-18 1986-09-27
JPH0319241Y2 (en) * 1985-09-24 1991-04-23

Also Published As

Publication number Publication date
JPS54104376A (en) 1979-08-16

Similar Documents

Publication Publication Date Title
CA1129032A (en) Remote power controller utilizing communication lines
GB2140182A (en) Infrared extension system
WO1999035818A3 (en) Apparatus for capturing, converting and transmitting a visual image signal via a digital transmission system
KR960039680A (en) Receiving apparatus, signal demodulating method, antenna apparatus, receiving system, and antenna direction adjusting method
WO2002035468A3 (en) Method and system for remote image reconstitution and processing and imaging data collectors communicating with the system
JPS5834792B2 (en) Earthquake telemeter method
JPS5834791B2 (en) Earthquake telemeter method
JPS62235862A (en) Data tarnsfer and collection method using telephone
JPH06284215A (en) Flow measuring device
JPH024040A (en) Terminal control monitor
JP2685914B2 (en) Building remote monitoring device
RU2169385C2 (en) System of remote control over condition of insulation of pipe-line
KR920013962A (en) Fault Diagnosis Device for High Frequency Outdoor Equipment
JPH09116978A (en) Data collection helmet
JP2776676B2 (en) Line connection device
JPS6213135A (en) Power line carrier communication system
Briscoe et al. Surface-wave data acquisition and dissemination by VHF packet radio and computer networking
JPH02146831A (en) Optical terminal station equipment
JPS6388984A (en) Data transmission system
KR20010038880A (en) Apparatus and method for processing satellite data using satellites in time and frequency transmission system
Gladkikh et al. Receiver channel of an acoustic sounder of the atmosphere
KR940013063A (en) Emergency Notification Circuit
JPS60239130A (en) Submarine cable communication system
JPH01155555U (en)
JP2001021660A (en) Data logger