JPS5834734B2 - Evaporator - Google Patents

Evaporator

Info

Publication number
JPS5834734B2
JPS5834734B2 JP13332378A JP13332378A JPS5834734B2 JP S5834734 B2 JPS5834734 B2 JP S5834734B2 JP 13332378 A JP13332378 A JP 13332378A JP 13332378 A JP13332378 A JP 13332378A JP S5834734 B2 JPS5834734 B2 JP S5834734B2
Authority
JP
Japan
Prior art keywords
liquid
evaporator
heat transfer
heat
tube bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13332378A
Other languages
Japanese (ja)
Other versions
JPS5752768A (en
Inventor
隆三 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP13332378A priority Critical patent/JPS5834734B2/en
Publication of JPS5752768A publication Critical patent/JPS5752768A/en
Publication of JPS5834734B2 publication Critical patent/JPS5834734B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements

Description

【発明の詳細な説明】 本発明は蒸発器に係り、特に、飽和温度以下の流体すな
わちサブクール液を供給する蒸発器に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporator, and more particularly to an evaporator that supplies a fluid at or below a saturation temperature, that is, a subcooled liquid.

本−細書において「蒸発器」の用語は、冷凍装置などで
用いられる狭義の蒸発器に限られることなく、石油精製
プラント、一般化学工業プラント、ガス工業などで用い
られるところの液体物質を沸点1で加熱して蒸発させる
機能を持った熱交換器の一種である装置を指称する。
In this specification, the term "evaporator" is not limited to evaporators in the narrow sense used in refrigeration equipment, etc., but is used in petroleum refining plants, general chemical industry plants, gas industries, etc. Refers to a device that is a type of heat exchanger that has the function of heating and evaporating.

一般に、従来の蒸発器にあ・いては、サブクール液は熱
媒が流過されるチューブ・バンドルの下方から蒸発器内
に供給される構造とされているので、サブクール液がチ
ューブ・バンドルの伝熱面との間で自然対流伝熱を行な
うものとして蒸発器を設計しなければならず、したがっ
て、伝熱係数を小さく見積らなければならず、必然的に
伝熱面積が増大され、蒸発器が大型となる欠点がある。
Generally, in conventional evaporators, the subcooled liquid is supplied into the evaporator from below the tube bundle through which the heating medium flows, so the subcooled liquid is transferred through the tube bundle. The evaporator must be designed with natural convection heat transfer between it and the hot surface, and therefore the heat transfer coefficient must be underestimated, which necessarily increases the heat transfer area and It has the disadvantage of being large.

すなわち、第1図1よび第2図に示すように、横型蒸発
器1は、仕切板2によって上下に開成された熱媒体取入
室3釦よび熱媒体取出室4と、これらの室3,4との間
を管板5により創成された円筒状の蒸発室6とを備え、
前記蒸発室6中のサブクール液入は、前記熱媒体取入室
3″J?よび前記熱媒体取出室4に両端を連絡されかつ
前記蒸発室6の長さ方向に延長された複数のU字管7か
らなるチューブ・バンドル8の放熱により加熱される。
That is, as shown in FIGS. 1 and 2, the horizontal evaporator 1 has a heating medium intake chamber 3 button and a heating medium extraction chamber 4 which are opened vertically by a partition plate 2, and these chambers 3, 4. and a cylindrical evaporation chamber 6 created by a tube plate 5 between the
The subcool liquid inlet in the evaporation chamber 6 is formed by a plurality of U-shaped tubes connected at both ends to the heat medium intake chamber 3''J? and the heat medium extraction chamber 4 and extending in the length direction of the evaporation chamber 6. It is heated by the heat dissipation of the tube bundle 8 consisting of 7.

そして、前記サブクール液Aは前記蒸発室6の長さ方向
中間部に開口させたサブクール液取入口9から供給され
、前記蒸発室6中では第2図に矢印Bで示すような対流
現象の影響によりサブクール液Aはチューブ・バンドル
8中を通過する間に加熱され沸騰する。
The sub-cooled liquid A is supplied from a sub-cooled liquid intake port 9 opened at the middle part in the longitudinal direction of the evaporation chamber 6, and is influenced by the convection phenomenon in the evaporation chamber 6 as shown by arrow B in FIG. As a result, the subcooled liquid A is heated and boiled while passing through the tube bundle 8.

したがって、沸騰した液は、液面Cに浮上して泡沫層D
C第2図示)を形成し、この泡沫層りで蒸気と沸点液に
別れ、蒸気は前記液面Cの上方に設けられた蒸気取出口
10から取出される。
Therefore, the boiling liquid rises to the liquid surface C and forms a foam layer D.
The foam layer separates into steam and boiling point liquid, and the steam is taken out from a steam outlet 10 provided above the liquid level C.

換言すれば、前述したような蒸発現象は、自然対流伝熱
若しくはそれに近い現象も存在するため、蒸発器設計時
の熱計算は、サブクール液入の熱交換がチューブ・バン
ドル8の伝熱面との間で行なわれるとして算出される。
In other words, since the above-mentioned evaporation phenomenon also includes natural convection heat transfer or a phenomenon similar to it, the heat calculation when designing the evaporator is based on the fact that the heat exchange between the subcooled liquid and the heat transfer surface of the tube bundle 8. It is calculated as being carried out between.

これを具体的に説明するため、常温すなわち20℃のノ
ルマル・ブタンを供給して一時間にW=10’kgの蒸
気を21kg/cm2gの条件下に発生する場合を考え
ると、この場合のノルマル・ブタンの沸点は120℃で
ある。
To explain this concretely, consider the case where normal butane at room temperature, that is, 20°C, is supplied and steam of W = 10'kg per hour is generated under the condition of 21kg/cm2g. -The boiling point of butane is 120°C.

したがって、比熱cpは0.72 Kcal/〜℃とじ
て、顕熱交換熱量Qsは Qs =WCp(T2−T1) = 10’ X O,
72X(120−20)= 72X10’ (Kcal
/hr) ””(1)式となる。
Therefore, the specific heat cp is 0.72 Kcal/~℃, and the sensible heat exchange heat amount Qs is Qs = WCp (T2-T1) = 10' X O,
72X (120-20) = 72X10' (Kcal
/hr) ""The formula (1) is obtained.

lた、ノルマル・ブタンの120℃における潜熱はλ=
52 KcalA9であるので、潜熱交換熱量QLは また、潜熱域での温度差△tLは △tL=158−120=38℃ ・・・・・・ (5
)式としてそれぞれ得られる。
The latent heat of normal butane at 120℃ is λ=
52 KcalA9, so the latent heat exchange heat amount QL is also the temperature difference △tL in the latent heat region is △tL = 158-120 = 38℃... (5
), respectively.

しかるに、ノルマル・ブタンの自然対流伝熱係数を、h
s”3 Xi 02Kcal/m2hr ’C1沸騰伝
熱係数をh b = 3 X 103Kcal/m2h
r ℃、スチームの伝熱係数をh”= 10’Kcal
/m2hr℃、汚れ 二係数督よび管壁抵抗の合計をr
=4X10 ’m2hrYン’Kcalとすれば、顕
熱域および潜熱域での総括伝熱係数Us、UI、は次式
で与えられ、チューブ・バンドル8の伝熱面積はかなり
大きな値となり、その結果蒸発器の寸法が大型化される
わけで、この原因は比較的熱交換量の小さい対流伝熱に
大きな伝熱面積が必要とされることに起因している。
However, the natural convection heat transfer coefficient of normal butane is h
s"3 Xi 02Kcal/m2hr 'C1 boiling heat transfer coefficient h b = 3 X 103Kcal/m2h
r °C, the heat transfer coefficient of steam is h" = 10'Kcal
/m2hr℃, dirt, the sum of the two-factor director and pipe wall resistance is r
=4X10'm2hrY'Kcal, the overall heat transfer coefficient Us, UI, in the sensible heat region and the latent heat region is given by the following formula, and the heat transfer area of the tube bundle 8 becomes a considerably large value, and as a result, The size of the evaporator is increased because a large heat transfer area is required for convective heat transfer with a relatively small amount of heat exchange.

本発明は、以上のような従来の蒸発器構造の欠陥に鑑み
、サブクール液とチューブバンドルの間の伝熱現象が実
質的に沸騰のみを伴なった伝熱として考え得るような蒸
発器構造を得ることにより、蒸発器の伝熱面積の低減を
図ろうとするものである。
In view of the above-mentioned deficiencies in the conventional evaporator structure, the present invention provides an evaporator structure in which the heat transfer phenomenon between the subcooled liquid and the tube bundle can be considered as heat transfer accompanied only by boiling. By obtaining this, it is intended to reduce the heat transfer area of the evaporator.

以下、第3固転よび第4図に示すケトル・タイプの蒸発
器により本発明の原理を詳細に説明する。
Hereinafter, the principle of the present invention will be explained in detail using the third solidification and kettle type evaporator shown in FIG.

本発明は、新たに供給されるサブクール液を泡沫層りの
表面に散布して、発生する蒸気によってこのサブクール
液を予熱することを特徴としている。
The present invention is characterized in that newly supplied subcooled liquid is sprayed onto the surface of the foam layer, and the generated steam preheats this subcooled liquid.

すなわち、第1図および第2図について述べたサブクー
ル液取入口9は除去され、本発明によれば、このサブク
ール液取入口90代9に蒸発室6の蒸気層中に蒸発器の
長さ方向に延長した2条のサブクール液供給管20.2
1が設けられる。
That is, the subcooled liquid intake 9 described with reference to FIGS. Two subcooled liquid supply pipes 20.2 extended to
1 is provided.

また、前記サブクール液供給管20.21には、それら
の長さ方向に等配された複数の噴霧ノズル23が垂下さ
れ、サブクール液はこれらの噴霧ノズル23から泡沫層
り上に散布されるようにしである。
Further, a plurality of spray nozzles 23 are suspended from the sub-cooled liquid supply pipe 20.21, and the spray nozzles 23 are equally distributed in the length direction, and the sub-cooled liquid is sprayed onto the foam layer from these spray nozzles 23. It's Nishide.

したがって、噴霧ノズル23から噴出された飽和温度以
下のサブクール液は、蒸気と熱交換を行ないつつ泡沫層
りに達し、この泡沫層りにかいて蒸気から潜熱をうばっ
て沸点または沸点近くの温度に達する。
Therefore, the sub-cooled liquid ejected from the spray nozzle 23 at a temperature below the saturation temperature reaches the foam layer while exchanging heat with the steam, absorbs latent heat from the steam through the foam layer, and reaches a temperature at or near the boiling point. reach

この加熱された碇は蒸発室6中に発生する対流現象によ
って、チューブ・バンドル8中に流入するが、液の温度
は既に沸点または沸点近くの温度状態にあるため、直ち
に沸騰する。
This heated anchor flows into the tube bundle 8 due to the convection phenomenon occurring in the evaporation chamber 6, but since the temperature of the liquid is already at or near the boiling point, it immediately boils.

よって、液とチューブ・バンドルとの間の熱交換は、大
部分沸騰伝熱であるため、チューブ・バンドル8の伝熱
面積の算出には、伝熱効率の高い沸騰伝熱係数によれば
よいことになり、チューブ・バンドル8の伝熱面積は従
来のものに比べはるかに小さな値となり、蒸発器の寸法
が小型化でき、それに用いる資材も大幅に削減できる。
Therefore, since most of the heat exchange between the liquid and the tube bundle is boiling heat transfer, the boiling heat transfer coefficient with high heat transfer efficiency can be used to calculate the heat transfer area of the tube bundle 8. Therefore, the heat transfer area of the tube bundle 8 is much smaller than that of the conventional tube bundle, and the size of the evaporator can be reduced, and the materials used therein can also be significantly reduced.

このような利点の理解を容易にするため、第1図および
第2図の場合について前述した熱計算に本発明による場
合を適用すれば、熱交換媒体間の温度差△tは熱媒とサ
ブクール液の沸点との差で与えられ、かつ、伝熱係数は
沸騰伝熱係数hbのみとして考え得るから、 となる。
To facilitate understanding of such advantages, if the case according to the present invention is applied to the thermal calculations described above for the cases of Figs. 1 and 2, the temperature difference △t between the heat exchange medium will be Since it is given by the difference from the boiling point of the liquid, and the heat transfer coefficient can be considered only as the boiling heat transfer coefficient hb, it becomes as follows.

よって、(7)式と(8)式とを比較すれば理解される
ように、本発明によれば、チューブ・バンドル8の伝熱
面積を42係程度削減できるものである。
Therefore, as can be understood by comparing equations (7) and (8), according to the present invention, the heat transfer area of the tube bundle 8 can be reduced by about a factor of 42.

以上のような原理を公知のサーモサイホン・タイプの蒸
発器に適用するためには、次のように構成する。
In order to apply the above principle to a known thermosyphon type evaporator, it is constructed as follows.

すなわち、サーモサイホン−タイプの蒸発器は両端を管
板により支持されたチューブ・バンドルを内蔵する竪型
または横型の熱交換器と、気液分離を行なうアキュムレ
ータとを備えている。
That is, a thermosiphon-type evaporator includes a vertical or horizontal heat exchanger containing a tube bundle supported at both ends by tube plates, and an accumulator for performing gas-liquid separation.

したがって、このアキュムレータの上部内側の蒸気層中
に複数の噴霧ノズルを備えたサブクール液供給管を配設
する。
Therefore, a subcooling liquid supply pipe equipped with a plurality of spray nozzles is arranged in the vapor layer inside the upper part of this accumulator.

該蒸発器は次のように作動する。The evaporator operates as follows.

沸点または沸点近くの温度状態にある液がアキュムレー
タ下部より熱交換器下側に供給され、竪型の場合は伝熱
管内側を、横型の場合は管外側を上方に向って流れる間
に、熱交換器管外側または管内側に供給される熱媒体に
より加熱され、その一部が気化して飽和液との気液混合
の状態となり、熱交換器上部よりアキュムレータ液面上
に戻される。
The liquid at or near the boiling point is supplied from the bottom of the accumulator to the bottom of the heat exchanger, and heat exchange occurs while it flows upward inside the heat exchanger tube in the case of a vertical type, and on the outside of the tube in the case of a horizontal type. It is heated by a heat medium supplied to the outside or inside of the tube, and a portion of it vaporizes to form a gas-liquid mixture with the saturated liquid, and is returned to the liquid level of the accumulator from the upper part of the heat exchanger.

ここで分離した蒸気は上方に設けられた取出口に向って
上昇する。
The separated steam rises toward the outlet provided above.

この上昇蒸気中に、噴霧ノズルよりサブクール液が噴霧
される。
A subcooled liquid is sprayed into this rising steam from a spray nozzle.

このサブクール液は、蒸気に直接触れて蒸気の凝縮によ
る潜熱を得ながら昇温し、泡沫層に達して沸点または沸
点近くの温度に達し、熱交換器から戻って来た飽和液と
ともにアキュムレータ貯液部に落下し、一旦滞留後再び
サーモサイホン効果により熱交換器へ流入する。
This subcooled liquid comes into direct contact with the steam and gains latent heat due to the condensation of the steam, increasing its temperature, reaching the foam layer, reaching a temperature at or near the boiling point, and is stored in the accumulator along with the saturated liquid returned from the heat exchanger. The heat exchanger flows into the heat exchanger once again due to the thermosiphon effect.

したがって、前述の原理説明によって明らかにしたよう
に、蒸発器に卦けるチューブ・バンドルの伝熱面積を低
減でき、蒸発器の小型化および製造コストの低減がはか
れる。
Therefore, as clarified by the above explanation of the principle, the heat transfer area of the tube bundle in the evaporator can be reduced, and the evaporator can be made smaller and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸発器の軸線方向断面図、第2図は第1
図の■−■線に沿う断面図、第3図は本発明の詳細な説
明するためのケトル・タイプの蒸発器の軸線方向断面図
、第4図は第3図のIV−IV線に沿う断面図である。
Figure 1 is an axial cross-sectional view of a conventional evaporator, and Figure 2 is a cross-sectional view of a conventional evaporator.
3 is an axial sectional view of a kettle-type evaporator for explaining the present invention in detail, and FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 気液分離部と、チューブバンドルを有する伝熱部と
が接続されているサーモサイホン・タイプ蒸発器におい
て、前記気液分離部の泡沫層にサブクール液を散布する
ことにより、新たに供給されるサブクール液を沸点また
は沸点近く1での温度に予熱することを壽徴とする蒸発
器。
1. In a thermosiphon type evaporator in which a gas-liquid separation section and a heat transfer section having a tube bundle are connected, a subcooled liquid is newly supplied by spraying a subcooled liquid onto the foam layer of the gas-liquid separation section. An evaporator whose purpose is to preheat subcooled liquid to a temperature at or near the boiling point.
JP13332378A 1978-10-31 1978-10-31 Evaporator Expired JPS5834734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13332378A JPS5834734B2 (en) 1978-10-31 1978-10-31 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13332378A JPS5834734B2 (en) 1978-10-31 1978-10-31 Evaporator

Publications (2)

Publication Number Publication Date
JPS5752768A JPS5752768A (en) 1982-03-29
JPS5834734B2 true JPS5834734B2 (en) 1983-07-28

Family

ID=15102009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13332378A Expired JPS5834734B2 (en) 1978-10-31 1978-10-31 Evaporator

Country Status (1)

Country Link
JP (1) JPS5834734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341302A1 (en) 2008-01-11 2011-07-06 Johnson Controls Technology Company Heat exchanger
US10209013B2 (en) 2010-09-03 2019-02-19 Johnson Controls Technology Company Vapor compression system

Also Published As

Publication number Publication date
JPS5752768A (en) 1982-03-29

Similar Documents

Publication Publication Date Title
US4653572A (en) Dual-zone boiling process
US20070028649A1 (en) Cryogenic air separation main condenser system with enhanced boiling and condensing surfaces
CN103884100A (en) Vacuum hot water boiler
US2426044A (en) Heat transfer device with liquid lifting capillary surface
JPS5834734B2 (en) Evaporator
JP3037073B2 (en) Cryogenic liquid vaporizer
JP2810558B2 (en) Regenerator
JPH0756431B2 (en) Variable conduction heat pipe reinforcement
CN203731683U (en) Vacuum hot water boiler
US1868907A (en) Refrigerating apparatus
JP2944698B2 (en) Fractionation tower
JPS60181587A (en) Cascade cycle type heat converting system
JPS6314293Y2 (en)
JPH0658198B2 (en) Shell tube heat exchanger
JPS5953472B2 (en) Liquid refrigerant vaporization method
JP3037599B2 (en) Liquefied petroleum gas heat exchanger
JPH0789010B2 (en) Condensation evaporator and its operating method
RU2047057C1 (en) Sorption cooling machine
JP3236722B2 (en) Regenerator for absorption refrigerator
JP3236721B2 (en) Regenerator for absorption refrigerator
JPS6330071Y2 (en)
US2478791A (en) Refrigeration plate cooling unit
JPS6321282Y2 (en)
RU1806323C (en) Air heater
US2457561A (en) Evaporator unit