JPS5834678B2 - Lubrication system for vane type rotary compressor - Google Patents

Lubrication system for vane type rotary compressor

Info

Publication number
JPS5834678B2
JPS5834678B2 JP53060116A JP6011678A JPS5834678B2 JP S5834678 B2 JPS5834678 B2 JP S5834678B2 JP 53060116 A JP53060116 A JP 53060116A JP 6011678 A JP6011678 A JP 6011678A JP S5834678 B2 JPS5834678 B2 JP S5834678B2
Authority
JP
Japan
Prior art keywords
oil
pressure
valve
pressure detection
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53060116A
Other languages
Japanese (ja)
Other versions
JPS54150706A (en
Inventor
喜之 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53060116A priority Critical patent/JPS5834678B2/en
Publication of JPS54150706A publication Critical patent/JPS54150706A/en
Publication of JPS5834678B2 publication Critical patent/JPS5834678B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は自動車用冷房機などのように使用回転数が広範
囲に変化するベーン型回転式圧縮機の給油装置に関する
もので、圧縮機の停止にともない残留圧力による各部の
摺動摩擦個所への給油を停止し、再起動時における潤滑
油の圧縮による圧縮機の破損を防止することを目的の一
つとする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lubricating system for a vane-type rotary compressor in which the number of revolutions used changes over a wide range, such as in an automobile air conditioner. One of the purposes is to stop oil supply to sliding friction points and prevent damage to the compressor due to compression of lubricating oil when restarting.

従来の自動車用冷房機における圧縮機の給油装置は■、
低圧側の貯油室からポンプによる給油と、■、吐出高圧
側の貯油室からポンプによる給油と、■、高圧側の貯油
室と低圧側あるいは高圧、低圧の中間圧側とを連通ずる
油路を通じ、この油路に存在する冷媒圧力差による差圧
利用給油方式などがある。
The compressor oil supply system in conventional automobile air conditioners is
(1) Lubrication by a pump from the oil storage chamber on the low pressure side, (2) Oil supply by the pump from the oil storage chamber on the discharge high pressure side, and (2) Through an oil passage that communicates the oil storage chamber on the high pressure side with the low pressure side or the intermediate pressure side between high pressure and low pressure. There are oil supply systems that utilize differential pressure based on the refrigerant pressure difference that exists in this oil path.

しかしながら、上記したのおよび0項の例では高価なポ
ンプを必要とするばかりでなく、ポンプにまつわるトラ
ブルも発生し、°圧縮機本来の機能をそこなわしめるの
であった。
However, in the above-mentioned example and the example in item 0, not only an expensive pump is required, but also troubles related to the pump occur, impairing the original function of the ° compressor.

また、上記■項の例では給油のためのエネルギーを、高
圧側の供給油に印加される圧縮機の吐出圧力を利用して
いるので、幅広い圧縮機の回転域(約“500〜650
0 R,P、M)に対して回転数とは無関係の給油量と
なる。
In addition, in the example in item (1) above, the energy for oil supply is made use of the discharge pressure of the compressor applied to the supply oil on the high pressure side, so the rotation range of the compressor is wide (approximately 500 to 650
0 R, P, M), the amount of oil supplied is unrelated to the rotation speed.

すなわち、高速回転時に充分な供給油路にすると低速回
転時には過剰給油となり、余剰油が冷媒内に侵入して冷
媒中の含有油量が多くなり、その分だけ吐出冷媒量が減
り圧縮機の効率が低下する。
In other words, if the oil supply path is sufficient during high-speed rotation, over-lubrication occurs during low-speed rotation, and the excess oil enters the refrigerant and increases the amount of oil contained in the refrigerant, which reduces the amount of refrigerant discharged and reduces the efficiency of the compressor. decreases.

一方、低速回転時に必要な給油量が得られるように油路
を設定すれば高速回転時に潤滑油不足を生じ、異常摩耗
、焼付きなどの事故が発生する原因となっていた。
On the other hand, if the oil passages are set so that the required amount of oil can be supplied during low-speed rotation, there will be a shortage of lubricating oil during high-speed rotation, causing accidents such as abnormal wear and seizure.

また、特公昭50−86281号公報に示されるように
、圧縮機の負荷状態あるいは回転数の変動に応じて潤滑
油の供給量を自動的に制御する技術が知られているが、
かかる構造は圧縮機が停止すると高圧の残留圧力で潤滑
油が押圧され、圧縮空間内に溜まって再起動時に油圧縮
を生じ、圧縮機の破損の原因となって何らかの対策が望
まれるものである。
Furthermore, as shown in Japanese Patent Publication No. 50-86281, a technique is known that automatically controls the amount of lubricating oil supplied according to the load condition or rotational speed fluctuation of the compressor.
In such a structure, when the compressor stops, the lubricating oil is pressed by high residual pressure and accumulates in the compression space, causing oil compression when restarted, causing damage to the compressor, so some kind of countermeasure is desired. .

本発明は、上記従来例の欠点を解消するものである。The present invention eliminates the drawbacks of the above-mentioned conventional examples.

以下、本発明の一実施例を添付図面により説明する。An embodiment of the present invention will be described below with reference to the accompanying drawings.

図において、1は前後側壁2,3とで形成したシリンダ
、4は前後側壁2,3に軸受5を介して回転軸6を支承
させたロータで、スロット7にベーン8を出没自在に設
けている。
In the figure, 1 is a cylinder formed by front and rear side walls 2 and 3, 4 is a rotor in which a rotary shaft 6 is supported on the front and rear side walls 2 and 3 via a bearing 5, and a vane 8 is provided in a slot 7 so as to be freely retractable. There is.

9は圧縮室、10はシリンダ1に設けた吐出口で、11
はその吐出弁である。
9 is a compression chamber, 10 is a discharge port provided in the cylinder 1, and 11
is its discharge valve.

12は前後側壁2,3間にボルト13で取付けられた外
筒で、シリンダ1の外周に高圧の油分離室14を形成し
ている。
Reference numeral 12 denotes an outer cylinder attached with bolts 13 between the front and rear side walls 2 and 3, and forms a high-pressure oil separation chamber 14 on the outer periphery of the cylinder 1.

15は油分離室14の下部に形成した油留部、16はロ
ータ4の回転側面に相対向して後側壁3に設けた潤滑油
の供給を行なう環状の油溝、17は油溝16に一端を、
油溜部15に他端をそれぞれ連通して後側壁3に設けた
供給油路で、冷媒吐出圧を利用して油を押し上げて油溝
16に供給する。
15 is an oil reservoir formed at the lower part of the oil separation chamber 14; 16 is an annular oil groove for supplying lubricating oil provided in the rear wall 3 facing the rotating side surface of the rotor 4; 17 is an oil groove in the oil groove 16; One end,
The oil supply passages are provided in the rear wall 3 and communicate with the oil reservoir 15 at their other ends, and the oil is pushed up and supplied to the oil groove 16 using refrigerant discharge pressure.

18は供給油路17の途中において後側壁3に設けた弁
室、19はこの弁室18に設けた開閉弁で、回転軸6に
取付けられ、この軸とともに回転し、かつ軸方向・\摺
動可能に取付けられている。
18 is a valve chamber provided in the rear wall 3 in the middle of the supply oil passage 17, and 19 is an on-off valve provided in this valve chamber 18, which is attached to the rotating shaft 6, rotates with this shaft, and rotates in the axial direction / sliding direction. It is movably mounted.

20は開閉弁19に設けた油の通路で、開閉弁19の摺
動動作により回転軸6にも設けた透孔21と連通して、
供給油路17を開成1.または透孔21に対し、ずれて
閉成するものである。
Reference numeral 20 denotes an oil passage provided in the on-off valve 19, which communicates with a through hole 21 also provided on the rotating shaft 6 by the sliding movement of the on-off valve 19.
Opening the supply oil path 17 1. Or, it closes with a deviation from the through hole 21.

22は吐出弁11前の吐出口10と弁室18を連通する
第1の圧力検出路で、吐出口10の吐出圧を開閉弁19
の一方に導出する。
22 is a first pressure detection path that communicates the discharge port 10 in front of the discharge valve 11 with the valve chamber 18;
Derived to one side.

23は吐出弁10後の油分離室14と弁室18を連通す
る第2の圧力検出路で、油分離室14の高圧を開閉弁1
9の他方に導出する。
23 is a second pressure detection path that communicates the oil separation chamber 14 after the discharge valve 10 with the valve chamber 18;
9 to the other.

24は開閉弁19を押圧して、通路20を供給油路17
からずらすスプリング、25は油分離室の出口、26は
吐出弁11の開き妾を規制するリテーナである。
24 presses the on-off valve 19 to connect the passage 20 to the supply oil passage 17
25 is an outlet of the oil separation chamber, and 26 is a retainer that restricts the opening of the discharge valve 11.

上記構成において、冷凍サイクルにおける蒸発器(図示
せず)から戻った低圧冷媒を圧縮室9において回転する
ロータ4、ベーン8により圧縮すると、高圧の冷媒ガス
となり、吐出口10から吐出弁11を開いて油分離室1
4に入る。
In the above configuration, when the low-pressure refrigerant returned from the evaporator (not shown) in the refrigeration cycle is compressed by the rotating rotor 4 and vane 8 in the compression chamber 9, it becomes high-pressure refrigerant gas, and the discharge valve 11 is opened from the discharge port 10. oil separation chamber 1
Enter 4.

そして、ここでその方向転換時に比重の重い冷凍機油が
その慣性により冷媒ガスから分離されて油溜部15に集
油され、冷媒ガスのみが出口25かS吐出され凝縮器(
図示せず)に至るとともに蒸発器を経て再び圧縮機へと
循環するわけである。
When the direction is changed, the refrigerating machine oil with a heavy specific gravity is separated from the refrigerant gas by its inertia and collected in the oil sump 15, and only the refrigerant gas is discharged from the outlet 25 or S to the condenser (
(not shown) and is circulated again to the compressor via the evaporator.

今ここで、圧縮機の運転が停止されて長時間がすぎ、冷
媒の圧力が均一に安定していると仮定すると、第1、第
2の圧力検出路22.23の差圧はないのでスプリング
24により開閉弁19は第3図に示すごとく左方に移動
しており、供給油路17が閉成されている。
Now, assuming that the compressor has been stopped for a long time and the refrigerant pressure is uniform and stable, there is no differential pressure between the first and second pressure detection paths 22 and 23, so the spring 24, the on-off valve 19 has moved to the left as shown in FIG. 3, and the supply oil passage 17 is closed.

続いて、圧縮機の運転が開始されると、吐出口10の圧
力が、まず上昇する。
Subsequently, when the compressor starts operating, the pressure at the discharge port 10 first increases.

そして、この冷媒ガスの圧力は第1の圧力検出路22を
経て開閉弁19の左方に加わり、スプリング24に抗し
て開閉弁19を第3図中右方へ移動させ第4図に示すよ
うに通路20が供給路17と合致する。
The pressure of this refrigerant gas is applied to the left side of the on-off valve 19 through the first pressure detection path 22, and moves the on-off valve 19 to the right in FIG. 3 against the spring 24, as shown in FIG. Thus, the passage 20 coincides with the supply passage 17.

そしてしばらくすると油分離室14の圧力も上昇するが
、吐出弁10を開く力だけ吐出口10の圧力は油分離室
14の圧力よりも高いので、第4図の状態が保持される
After a while, the pressure in the oil separation chamber 14 also rises, but the pressure at the discharge port 10 is higher than the pressure in the oil separation chamber 14 by the force of opening the discharge valve 10, so the state shown in FIG. 4 is maintained.

そして、回転軸6とともに回転している開閉弁19は、
供給油路17と回転速変に応じて断続して連通ずる。
The on-off valve 19 rotating together with the rotating shaft 6 is
It communicates with the supply oil path 17 intermittently according to changes in rotational speed.

つまり、回転軸6の回転数に対応するインターバルで、
圧力のかかつている油が油溜部15から供給油路17に
流れ油溝16からロータ4の回転両側面、スロット7な
どに送られる。
In other words, at an interval corresponding to the rotation speed of the rotating shaft 6,
Oil under pressure flows from the oil reservoir 15 to the supply oil path 17 and is sent from the oil groove 16 to both rotational sides of the rotor 4, the slot 7, etc.

そして、高速回転時には多量、低速回転時には少量とい
う具合に、各々の回転数に応じた適正油量を供給する。
Then, an appropriate amount of oil is supplied according to each rotational speed, such as a large amount at high speed rotation and a small amount at low speed rotation.

続いて、圧縮機の運転が停止すると、直ちに吐出口10
には高圧が発生しないばかりでなく、ロータ4、ベーン
8などの隙間から冷媒が低圧部にリークし、吐出口10
の圧力は急激に下降する。
Subsequently, when the operation of the compressor is stopped, the discharge port 10 is immediately opened.
Not only does high pressure not occur at
pressure drops rapidly.

一方、吐出弁11が閉じているので油分離室14ならび
に供給油路17の油溜部15側、圧力検出路23の圧力
はいまだ高圧に保持され、第4図における開閉弁19は
第1、第2の圧力検出路22゜23の差圧により左方向
へ移動し、第3図の状態になる。
On the other hand, since the discharge valve 11 is closed, the pressure in the oil separation chamber 14, the oil reservoir section 15 side of the supply oil path 17, and the pressure detection path 23 are still maintained at high pressure, and the on-off valve 19 in FIG. Due to the differential pressure between the second pressure detection paths 22 and 23, it moves to the left, resulting in the state shown in FIG.

したがって、供給油路17は開閉弁19により遮断され
、油分離室14の余剰圧力によって潤滑油および油溜部
15側に残在する高温高圧の冷媒ガスが油溝16、スロ
ット7などを介して圧縮室9へ流入することがなくなる
Therefore, the supply oil path 17 is shut off by the on-off valve 19, and the excess pressure in the oil separation chamber 14 causes the lubricating oil and high-temperature, high-pressure refrigerant gas remaining on the oil reservoir 15 side to flow through the oil groove 16, slot 7, etc. It will no longer flow into the compression chamber 9.

その結果、圧縮機の再運転時に圧縮室9で潤滑油が圧縮
され、液圧縮される現象は起らなくなる。
As a result, when the compressor is restarted, the lubricating oil is compressed in the compression chamber 9, and the phenomenon of liquid compression does not occur.

また油溜部15内に残在する高温高圧の冷媒ガスがシリ
ンダ1内に流入して圧縮機の自然冷却を阻害することも
ない。
Further, the high temperature and high pressure refrigerant gas remaining in the oil reservoir 15 does not flow into the cylinder 1 and impede natural cooling of the compressor.

もちろん、圧縮機の運転停止が長時間になれば、蒸発器
の入口付近に設けた膨張弁(図示せず)の微少隙間によ
り高圧冷媒と低圧冷媒は平衡化され、冷凍サイクル全体
が均一圧に落付くことはいうまでもない。
Of course, if the compressor is stopped for a long time, the high-pressure refrigerant and low-pressure refrigerant will be balanced by the small gap in the expansion valve (not shown) installed near the evaporator inlet, and the entire refrigeration cycle will be at a uniform pressure. Needless to say, it will fall off.

なお、本実施例では開閉弁19を回転させて、その通路
20を供給油路1γ、透孔21と断続的に連通させ油量
調節をしている。
In this embodiment, the on-off valve 19 is rotated to intermittently communicate the passage 20 with the supply oil passage 1γ and the through hole 21 to adjust the oil amount.

しかし、開閉弁19を回転することなく軸方向のみに摺
動するように回転軸6に設け、そして第1、第2の圧力
検出路22.23の差圧により摺動する開閉弁19の通
路20と供給油路17、透孔21との重合妾合によって
油量の供給調節もできる。
However, the on-off valve 19 is provided on the rotating shaft 6 so that it slides only in the axial direction without rotating, and the on-off valve 19 slides due to the differential pressure between the first and second pressure detection paths 22 and 23. The amount of oil supplied can also be adjusted by overlapping the oil supply passage 20 with the supply oil passage 17 and the through hole 21.

ただ、この場合は圧縮機の回転数の若干の変化にも応じ
て、上記した差圧が得られないので、上記実施例よりは
回転数に応じた油量調節を鋭敏にできない欠点がある。
However, in this case, the above-mentioned differential pressure cannot be obtained even in response to slight changes in the rotational speed of the compressor, so there is a drawback that the oil amount cannot be adjusted more sensitively depending on the rotational speed than in the above embodiment.

また、上記実施例では通路20は回転軸6の透孔21を
介して供給油路17と連通する構造であるが、開閉弁1
9のみに通路20を設けても可能であり、この時は回転
軸6の部分をさけて蛇行した通路となる。
Further, in the above embodiment, the passage 20 has a structure in which it communicates with the supply oil passage 17 through the through hole 21 of the rotating shaft 6, but the on-off valve 1
It is also possible to provide the passage 20 only in the rotary shaft 9, and in this case, the passage becomes a meandering passage that avoids the rotation shaft 6.

また開閉弁19を回転軸6の中に設置する構成としても
よく、さらにスプリング24は必ずしも必要でないこと
はもちろんである。
Further, the on-off valve 19 may be installed in the rotating shaft 6, and the spring 24 is not necessarily required.

上記実施例より明らかなように、本発明におけるベーン
型回転圧縮機の給油装置は、円筒状のシリンダと、この
シリンダの内壁面に接して回転するピストンと、このピ
ストンに出没可能に設けられたベーンと、前記シリンダ
に形成された吐出口と、この吐出口に設けられた吐出弁
と、これらを収納しかつ底部に油溜部を形成する外筒と
、この外筒の両端開口およびシリンダの両端開口を閉塞
する側壁により回転式圧縮機を構成し、さらに前記側壁
に、一端が第1の圧力検出回路を介して前記吐出口内部
に連通し、他端が第2の圧力検出回路を介して前記外筒
内部空間に連通した弁室と、この弁室を介して一端が前
記油溜部内に開口し、他端が前記ロータと側板の摺動部
へ連通した供給油路をそれぞれ設け、また前記弁室に、
前記第1の圧力検出回路と第2の圧力検出回路の圧力差
により摺動動作する弁体を設け、さらにこの弁体に、前
記摺動動作により前記供給油路の連通あるいは遮断を行
う通路を設けたもので、圧縮機の運転時は、吐出弁前後
の圧力差によって弁体が摺動動作し供給油路を連通ずる
ため、外筒内の圧力によって潤滑油を各摺動部へ供給す
ることができ、油ポンプが不要となって構成の簡素化が
はかれ、加えて圧縮機が停止すると弁体が摺動復帰して
供給油路を遮断するため、外筒内の残留圧力によって連
続して潤滑油が押出され、潤滑油がシリンダ内の低圧側
へ流出して再起動時の液圧縮の原因となることもなく、
圧縮機の保護がはかれる。
As is clear from the above embodiments, the oil supply device for a vane rotary compressor according to the present invention includes a cylindrical cylinder, a piston that rotates in contact with the inner wall surface of the cylinder, and a piston that is provided so as to be retractable from the cylinder. A vane, a discharge port formed in the cylinder, a discharge valve provided in the discharge port, an outer cylinder that houses these and forms an oil reservoir at the bottom, openings at both ends of the outer cylinder, and a discharge valve provided in the discharge port. A rotary compressor is constituted by a side wall that closes openings at both ends, and the side wall is further connected to the side wall, one end of which communicates with the inside of the discharge port via a first pressure detection circuit, and the other end of which communicates with the inside of the discharge port via a second pressure detection circuit. and a valve chamber communicating with the inner space of the outer cylinder, and a supply oil passage having one end opening into the oil reservoir and the other end communicating with the rotor and the sliding portion of the side plate through the valve chamber, In addition, in the valve chamber,
A valve body is provided that slides due to the pressure difference between the first pressure detection circuit and the second pressure detection circuit, and the valve body is further provided with a passage that connects or shuts off the supply oil path by the sliding movement. When the compressor is operating, the valve body slides due to the pressure difference before and after the discharge valve and communicates the supply oil path, so lubricating oil is supplied to each sliding part by the pressure inside the outer cylinder. This eliminates the need for an oil pump, simplifying the configuration. In addition, when the compressor stops, the valve body slides back and shuts off the supply oil path, so the residual pressure inside the outer cylinder allows continuous The lubricating oil is pushed out, and the lubricating oil does not flow into the low pressure side of the cylinder and cause liquid compression when restarting.
The compressor is protected.

さらに、供給油路が遮断されることから油溜部内に残存
する高温高圧の冷媒ガスがシリンダ内へ流入し、圧縮機
の自然冷却作用を阻害して圧縮機の効率を低下させるこ
ともないなど、種々の利点を有するものである。
Furthermore, since the supply oil path is blocked, the high-temperature, high-pressure refrigerant gas remaining in the oil sump will not flow into the cylinder, inhibiting the natural cooling action of the compressor and reducing compressor efficiency. , which has various advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における給油装置を具備した
ベーン型回転圧縮機の正面断面図、第2図は第1図のA
−A線による断面図、第3図は第2図におけるB部の圧
縮機停止時の拡大断面図、第4図は同圧縮機の運転時の
拡大断面図である。 1・・・・・・シリンダ、2,3・・・・・・側壁、4
・・・・・・ロータ、8・・・・・・ベーン、10・・
・・・・吐出口、11・・・・・・吐出弁、12・・・
・・・外筒、17・・・・・・供給油路0.19・・・
・・・開閉弁、20−・・・・・通路、21・・・・・
・透孔、22・・・・・・第1の圧力検出路、23・・
・・・・第2の圧力検出路。
FIG. 1 is a front cross-sectional view of a vane-type rotary compressor equipped with an oil supply device according to an embodiment of the present invention, and FIG. 2 is an A of FIG. 1.
3 is an enlarged sectional view of section B in FIG. 2 when the compressor is stopped, and FIG. 4 is an enlarged sectional view taken when the compressor is in operation. 1...Cylinder, 2, 3...Side wall, 4
...Rotor, 8...Vane, 10...
...Discharge port, 11...Discharge valve, 12...
... Outer cylinder, 17 ... Supply oil path 0.19 ...
...Opening/closing valve, 20-...Passage, 21...
・Through hole, 22...First pressure detection path, 23...
...Second pressure detection path.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒状のシリンダと、このシリンダの内壁面に接し
て回転するピストンと、このピストンに出没可能に設け
られたベーンと、前記シリンダに形成された吐出口と、
この吐出口に設けられた吐出弁と、これらを収納しかつ
底部に油溜部を形成する外筒と、この外筒の両端開口お
よびシリンダの両端開口を閉塞する側壁により回転式圧
縮機を構成し、さらに前記側壁に、一端が第1の圧力検
出回路を介して前記吐出口内部に連通し、他端が第2の
圧力検出回路を介して前記外筒内部空間に連通した弁室
と、この弁室を介して一端が前記油溜部内に開口し、他
端が前記ロータと側板の摺動部へ連通した供給油路をそ
れぞれ設け、また前記弁室に、前記第1の圧力検出回路
と第2の圧力検出回路の圧力差により摺動動作する弁体
を設け、さらにこの弁体に、前記摺動動作により前記供
給油路の連通あるいは遮断を行う通路を設けたベーン型
回転圧縮機の給油装置。
1. A cylindrical cylinder, a piston that rotates in contact with an inner wall surface of the cylinder, a vane that is removably provided on the piston, and a discharge port formed in the cylinder;
A rotary compressor is composed of a discharge valve provided at the discharge port, an outer cylinder that accommodates these and forms an oil reservoir at the bottom, and side walls that close openings at both ends of the outer cylinder and both ends of the cylinder. and further includes a valve chamber in the side wall, one end of which communicates with the inside of the discharge port via a first pressure detection circuit, and the other end of which communicates with the inner space of the outer cylinder via a second pressure detection circuit; A supply oil passage is provided through the valve chamber, with one end opening into the oil reservoir and the other end communicating with the rotor and the sliding portion of the side plate, and the first pressure detection circuit is provided in the valve chamber. and a second pressure detection circuit, the vane type rotary compressor is provided with a valve body that slides due to the pressure difference between the first pressure detection circuit and the second pressure detection circuit, and further includes a passage provided in the valve body that communicates or cuts off the supply oil path by the sliding movement. refueling device.
JP53060116A 1978-05-19 1978-05-19 Lubrication system for vane type rotary compressor Expired JPS5834678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53060116A JPS5834678B2 (en) 1978-05-19 1978-05-19 Lubrication system for vane type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53060116A JPS5834678B2 (en) 1978-05-19 1978-05-19 Lubrication system for vane type rotary compressor

Publications (2)

Publication Number Publication Date
JPS54150706A JPS54150706A (en) 1979-11-27
JPS5834678B2 true JPS5834678B2 (en) 1983-07-28

Family

ID=13132819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53060116A Expired JPS5834678B2 (en) 1978-05-19 1978-05-19 Lubrication system for vane type rotary compressor

Country Status (1)

Country Link
JP (1) JPS5834678B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036281A (en) * 1973-08-03 1975-04-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036281A (en) * 1973-08-03 1975-04-05

Also Published As

Publication number Publication date
JPS54150706A (en) 1979-11-27

Similar Documents

Publication Publication Date Title
US4321019A (en) Swash plate type compressor
JP2585380Y2 (en) Rotary compressor
US3760478A (en) Method for assembling a rotary sliding vane compressor
US4468180A (en) Vane compressor having intermittent oil pressure to the vane back pressure chamber
JPS644076B2 (en)
JP2000080983A (en) Compressor
US4447196A (en) Rotary vane compressor with valve control of undervane pressure
JPS609436Y2 (en) Movable vane rotary compressor
JPS5827105Y2 (en) Lay By Atsushiyukuki
CN107893758B (en) Scroll compressor and air conditioner with same
JP4013552B2 (en) Hermetic compressor
CN108072198B (en) Compressor assembly, control method thereof and refrigerating/heating system
JPH04175492A (en) Compressor
JPS5834678B2 (en) Lubrication system for vane type rotary compressor
CN115163493A (en) Scroll compressor and refrigeration equipment
JPS6237239B2 (en)
US4487562A (en) Rotary vane type compressor
US1857276A (en) Compressor
KR840000809B1 (en) Swash plate type compressor
JP2000027756A (en) Compressor
JP2001304152A (en) Scroll compressor
JPS585109Y2 (en) Rotary compressor lubrication system
JP2590493B2 (en) Compressor
JP2563590B2 (en) Scroll compressor
JPH07117320B2 (en) Lubricator for turbo refrigerator