JPS5834551A - Signal processing circuit of field emission scan electronic microscope - Google Patents

Signal processing circuit of field emission scan electronic microscope

Info

Publication number
JPS5834551A
JPS5834551A JP13373481A JP13373481A JPS5834551A JP S5834551 A JPS5834551 A JP S5834551A JP 13373481 A JP13373481 A JP 13373481A JP 13373481 A JP13373481 A JP 13373481A JP S5834551 A JPS5834551 A JP S5834551A
Authority
JP
Japan
Prior art keywords
amplifier
signal
current
processing circuit
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13373481A
Other languages
Japanese (ja)
Other versions
JPH027509B2 (en
Inventor
Shuichi Saito
秀一 斉藤
Yoshihito Harada
原田 芳仁
Yoshiki Tsumita
積田 吉起
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP13373481A priority Critical patent/JPS5834551A/en
Publication of JPS5834551A publication Critical patent/JPS5834551A/en
Publication of JPH027509B2 publication Critical patent/JPH027509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To improve S/N ratio of the signal considerably by amplifying the input signal considerably at the prestage of an amplifier circuit (processing circuit) while to eliminate the unstable factor of the electron beam through the division. CONSTITUTION:In the drawing A'4 will receive the output signal from a current- voltage conversion amplifier A2 at one input terminal while receive the output signal from a current-voltage conversion amplifier A1 at the other input terminal through a level regulation amplifier AVL thus to amplify the differential signal, or it is a differential amplifier. The variable resistor RVL is for regulating the amplification of the amplifier AVL. When constituting the amplifier A'4 in such differential manner, the D.C. component contained in the output signal from the current-voltage conversion amplifier A2 can be eliminated properly, the dynamic range is widened thereby the differential amplifier A' can sufficiently amplify said A.C. component, resulting in the considerable improvement of S/N.

Description

【発明の詳細な説明】 本発明は、2次電子ビーム量に相応する検出電流とプロ
ーブ近傍の電子ビーム量に相応するモニタ11E流を人
力し、演算により2次電子ビーム量に関連し丸亀圧信号
(ビデオ信号)を求めてそれを出力するフィールドエミ
ッション走査電子顕微鏡の信号処理回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention manually calculates the detection current corresponding to the amount of secondary electron beam and the flow of the monitor 11E corresponding to the amount of electron beam near the probe, and calculates the Marugame pressure related to the amount of secondary electron beam. This invention relates to a signal processing circuit for a field emission scanning electron microscope that obtains and outputs a signal (video signal).

一般に、電子銃から発射される電子ビームは若干の変動
を伴うのが普通である。この原因は、電子銃の先端から
の電子放出が変動するためで、ある程度は避けることの
できないものである。
In general, the electron beam emitted from an electron gun usually accompanies some fluctuations. This is caused by fluctuations in electron emission from the tip of the electron gun, and is unavoidable to some extent.

この電子ビームの変動は、電子顕微鏡の倍率が低いとき
には、儂全体のコントラストが強いため特に問題になら
ないが、高倍率の場合は視野が一般にコントラストの弱
い部分に限定されてしまうため、電子ビームの変動の影
響が現われ、儂が揺らいで見にくいという問題が生じる
。従来のフィールドエミッション走査電子顕微鏡の信号
処理回路では、このような影響を避けるため、第7図の
如き構成をとっている0図において1x(t)はグロー
ブの近傍に設置されたアパーチャにより111り出され
たモニタ電流、ts(t)は2次電子ビーム量に相応す
る検出電流で、ム!及びム3は、各々この電流1x(t
)、  1s(t) tg電圧信号変換する畦流−電圧
変換増幅器である。
This fluctuation in the electron beam is not a particular problem when the magnification of the electron microscope is low because the overall contrast is strong, but when the magnification is high, the field of view is generally limited to areas with weak contrast, so the fluctuation of the electron beam is The effect of fluctuations appears, causing the problem that the image is shaky and difficult to see. In order to avoid this kind of influence, the signal processing circuit of a conventional field emission scanning electron microscope has a configuration as shown in Fig. 7. The output monitor current, ts(t), is a detection current corresponding to the amount of secondary electron beam. and M3 are each equal to this current 1x(t
), 1s(t) This is a current-to-voltage conversion amplifier that converts tg voltage signals.

この変換増幅器Al t AIとしては、通常各々低雑
音増幅器、フォトマル等が用いられる。A。
As the conversion amplifier Al t AI, a low noise amplifier, a photomultiplier, or the like is usually used. A.

及びム4は、それぞれ変換増幅器ム1及びA。and M4 are conversion amplifiers M1 and A, respectively.

の出力電圧を増幅する増幅器、Al ri増幅器A1の
出力信号で増幅器A4の出力信号を割算する割算器であ
る。8は割算器A、の出力電圧を適当に分圧する分圧器
で、この分圧器としては、例えば可変抵抗器が用いられ
る。分圧精健及び安定度を向上させるため通常は巻線形
の可変抵抗器が用いられる。ム−は、分圧器Rの出力信
号と直流信号Vシを受けてこれらの差信号を出力する差
動増幅器で、この増幅器A6の出力電圧Voが信号処理
回路の出力となりCRT上に表示されることになる。
A divider divides the output signal of the amplifier A4 by the output signal of the Al ri amplifier A1. A voltage divider 8 appropriately divides the output voltage of the divider A, and a variable resistor is used as this voltage divider, for example. Wound variable resistors are usually used to improve voltage division integrity and stability. A is a differential amplifier that receives the output signal of the voltage divider R and the DC signal V and outputs a difference signal between them, and the output voltage Vo of this amplifier A6 becomes the output of the signal processing circuit and is displayed on the CRT. It turns out.

このように構成された従来回路の動作を概説する。The operation of the conventional circuit configured in this way will be outlined.

先ず、2次電子ビーム量に相応する検出電流口(1) 
に関連した電圧信号(増幅器A4の出力)を、モニ□り
電fiix(t)に関連した信号(増幅器A、  の出
力)で割ることにより電子ビームの変動の影響を除去で
きる原理について説明する。
First, a detection current port (1) corresponding to the amount of secondary electron beam
We will explain the principle by which the influence of electron beam fluctuations can be removed by dividing the voltage signal related to (output of amplifier A4) by the signal related to the monitoring voltage fiix(t) (output of amplifier A, ).

プローブ近傍に設置され九アパーチャにより取り出され
九モニタ’1tfi1.(t)は、電子銃特有の変動分
を含んでおり、その直流分をIx、 li励動率k(t
)として次式で表わされる。
The nine monitor '1tfi1. (t) includes fluctuations specific to the electron gun, and its DC component is Ix, li excitation rate k(t
) is expressed by the following formula.

1x(t) = lx (/ + k (t) )t:
時間 一方、グローブ′直流1p(t)も同様(表わすことが
でき、直流分をIp、変動率t−kiりとして次式で表
わされる。
1x(t) = lx (/+k(t))t:
On the other hand, the globe' direct current 1p(t) can be expressed similarly, and is expressed by the following equation, where the direct current component is Ip and the fluctuation rate is t-ki.

tp(t)= Ip (/・十に’(を月電子ビームを
試料に照射することにより、試料から出現する2次電子
等の信号の収率をり(りとすると、上記電流i z (
t)は次式で表−わされる。
By irradiating a sample with a lunar electron beam, the yield of signals such as secondary electrons emerging from the sample is expressed as tp (t) = Ip
t) is expressed by the following formula.

It (t)= 1(t) i p (t)=η(すI
p(/+kz(す)(3)ここで、[41!(t)及び
ig(すを電圧信号に変換した後、割算# Asの人力
レベルまで電圧増幅して割算を行うと、割算器A、の出
力電圧・0は次式で表わされる。   □ に!定轄 アパーチャより取り出されたモニタ電流1x(t)は、
プローブ近傍の4のであるから、変動率k(t)は変動
率に/(りと殆んど同一と考えてよい、よって(4)式
は次式で表現できる・ Ip 嗜。=にη(t) −= K’η(t)(旬X KI  S定数 即ち、割算器ム湯の出力電圧・。からは変動分が除去さ
れ、観察すべき成分η(1)のみが残ることがわかる。
It (t)=1(t) i p (t)=η(suI
p(/+kz(su)(3) Here, after converting [41!(t) and ig(su) into voltage signals, the voltage is amplified to the human power level of division #As and the division is performed. The output voltage 0 of calculator A is expressed by the following formula.
4 in the vicinity of the probe, the fluctuation rate k(t) can be considered to be almost the same as the fluctuation rate /(. Therefore, equation (4) can be expressed as the following equation. t) -= K'η(t) (X KI S constant, that is, the output voltage of the divider. It can be seen that the fluctuation is removed from the output voltage of the divider, and only the component η(1) to be observed remains. .

さて、第1図に示す従来回路では、電流−電圧変換増幅
器Al及びム1によシミ圧に変換された信号を、そのま
ま電圧増幅器A、及びム4で増幅している。従って、儂
のコントラストに最も寄与する交流分の他に7オトマル
等の出力信号中に含まれていた直流分も増幅することに
なる。
Now, in the conventional circuit shown in FIG. 1, the signal converted into a voltage by the current-voltage conversion amplifiers Al and Mo1 is directly amplified by the voltage amplifier A and Mo4. Therefore, in addition to the alternating current component that contributes most to my contrast, the direct current component included in the output signal such as 7 otomaru is also amplified.

□ 一般に、信号は増幅回路の前段部で#Sする程8/
N比が向上するが、上記従来例においては増幅器Alt
A4  のダイナミックレンジに限界があることと相俟
って、CRT画像のコントラストに寄与する交流分を前
段増幅部で充分に増幅することができない。このため、
第1図に示す回路では前段部で信号の充分な増幅が行え
ないので、87N 比が悪くなる。たとえvk設部の増
幅器A−で直流分Wbを差引いて増幅しても、87N比
の向上は期待できない。
□ Generally, the signal is #S in the front stage of the amplifier circuit.
Although the N ratio is improved, in the above conventional example, the amplifier Alt
Coupled with the limited dynamic range of A4, it is not possible to sufficiently amplify the alternating current component that contributes to the contrast of a CRT image in the front stage amplification section. For this reason,
In the circuit shown in FIG. 1, the signal cannot be amplified sufficiently in the front stage, resulting in a poor 87N ratio. Even if the DC component Wb is subtracted and amplified by the amplifier A- in the vk installation section, an improvement in the 87N ratio cannot be expected.

本発明は、このような点に鑑みてなされたもので、前段
部で上記直流分を適度に差引いて大きく増幅することに
↓す8/N比金改善すると共に、割算処理することによ
り電子ビームの不安定要因を除去したものでるる。
The present invention has been made in view of these points, and it improves the 8/N ratio by appropriately subtracting the DC component and amplifying it significantly in the front stage, and also increases the electronic power by performing division processing. This is the result of removing the beam instability factors.

以下、図面を参照して本発明tl−詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

gλ図は、本発明に係る信号処理回路の−実施例を示す
電気回路図である(第1図の回路と同一部分には同一符
号を付し喀明を省略する)。
The gλ diagram is an electrical circuit diagram showing an embodiment of the signal processing circuit according to the present invention (the same parts as those in the circuit of FIG. 1 are given the same reference numerals and explanations are omitted).

図において、 AS  は、その一方の入力端子で電流
−電圧変換増幅器ム1の出力信号を受け、他方の入力端
子で電流−電圧変換増幅器A、の出力信号をレベル調整
増幅器AvLを経由して受け。
In the figure, AS receives the output signal of the current-voltage conversion amplifier M1 at one input terminal, and receives the output signal of the current-voltage conversion amplifier A at the other input terminal via the level adjustment amplifier AvL. .

て、これら両信号の差を増幅する差動増幅器である・尚
、可変抵抗8マシは増幅器AVI、の増幅率を調整する
ためのものである。増幅器A;を、このように差動構成
することにより、電流−電圧変換増幅器A!の出力信号
中に含まれる直流分を過当に除去できるので、ダイナミ
ックレンジを大きくとれ、差動増幅器A−は上記交流分
を充分に増幅できる拳従って、増幅回路の前段部で入力
信号を大きく増幅できることになり、8/N比は大幅に
同上する・ 直流分がかなりの@度に除去された差動増幅器A;の出
力信号は、副jlL器A、の一方の入力端子に供給され
る。一方、割算器A、の他方の入力端子には、増幅器A
3 の出力信号が供給される。割算器A、の出力信号・
。は、上述と同様の理由により電子ビームの変動分が除
去された信号となっている。この割算器A、の出力信号
・。は、続く分圧器Rにより適当に分圧された後、増幅
器A;に入る。増幅器五二 の出力信号VOは、CRT
  ←図示せず)に供給され、CRT  Kt!、フィ
ールドエミッション銃特有のtS不安定によるノイズが
消去された8/N比の良い高品質の画像が表示される。
This is a differential amplifier that amplifies the difference between these two signals.The variable resistor 8 is used to adjust the amplification factor of the amplifier AVI. By differentially configuring amplifier A in this way, current-voltage conversion amplifier A! Since the DC component contained in the output signal of the amplifier can be excessively removed, a large dynamic range can be obtained, and the differential amplifier A- can sufficiently amplify the AC component. Therefore, the input signal can be greatly amplified in the front stage of the amplifier circuit The output signal of the differential amplifier A, from which the direct current component has been significantly removed, is supplied to one input terminal of the sub-jlL amplifier A. On the other hand, the other input terminal of the divider A is connected to the amplifier A.
3 output signals are provided. Output signal of divider A,
. is a signal from which fluctuations in the electron beam have been removed for the same reason as mentioned above. The output signal of this divider A. After being appropriately divided by a subsequent voltage divider R, it enters an amplifier A; The output signal VO of amplifier 52 is
← (not shown), and the CRT Kt! , a high-quality image with a good 8/N ratio is displayed, with noise due to tS instability peculiar to field emission guns eliminated.

尚、増幅器へ二 を第1図に示す増幅器A・のように差
動構成しないのは、前段部で既に直流分が除去されてい
るので更に除去す漬必賛がないからである。
The reason why the amplifier 2 is not configured differentially as in the amplifier A shown in FIG. 1 is because the DC component has already been removed in the previous stage, so there is no need to remove it further.

以上、詳細に説明したように、本発明によれば、増幅回
路(処理回路)の前段部で人力信号を大きく増幅するこ
とができるので、信号の87N比を大幅に改善すること
ができる。又、割算処理を行うので、電子ビームの不安
定賛因を除去することもできる。
As described in detail above, according to the present invention, the human input signal can be greatly amplified in the front stage of the amplifier circuit (processing circuit), so the 87N ratio of the signal can be significantly improved. Furthermore, since division processing is performed, causes of instability of the electron beam can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Fi信号処理回路の従米例會示す電気回路図であ
る。第一図は本発明に係る信号処理回路の一実施例を示
す電気回路図である。 Aleム鵞・・・電流−電圧費換増幅器ム畠、ム4・・
・増幅器   A二・・・差動増幅器ム、・・・割算器
     ム−・・・差動増幅器ム二一・・増幅器  
   8・・・分圧器ムマb・・・レベル調整増幅器 凰マド・・可変抵抗 !xtt zi 馬1図
FIG. 1 is an electrical circuit diagram showing a conventional example of the Fi signal processing circuit. FIG. 1 is an electrical circuit diagram showing an embodiment of the signal processing circuit according to the present invention. Ale Muu...Current-voltage cost conversion amplifier Muhata, Mu4...
・Amplifier A2...Differential amplifier M,...Divider M-...Differential amplifier M21...Amplifier
8...Voltage divider b...Level adjustment amplifier 凰mad...variable resistor! xtt zi horse 1 diagram

Claims (1)

【特許請求の範囲】[Claims] 2次電子ビーム量に相応する検出電流及びプローブ近傍
の電子ビーム量に相応するモニタ電流を受け、これらを
それぞれ第1及び第コの電圧信号に変換し、これらW4
1及び第コの電圧信号を差動増幅器に人力し、この差動
増幅器の出力信号を、第2の電圧信号を増幅した第3の
電圧信号で割算するように構成した仁と1**とするフ
ィールドエミッション走査電子顕微鏡の信号処理回路。
A detection current corresponding to the amount of secondary electron beam and a monitor current corresponding to the amount of electron beam near the probe are received, and these are converted into first and second voltage signals, respectively, and these W4
The first and second voltage signals are input to a differential amplifier, and the output signal of the differential amplifier is divided by a third voltage signal obtained by amplifying the second voltage signal. A signal processing circuit for a field emission scanning electron microscope.
JP13373481A 1981-08-25 1981-08-25 Signal processing circuit of field emission scan electronic microscope Granted JPS5834551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13373481A JPS5834551A (en) 1981-08-25 1981-08-25 Signal processing circuit of field emission scan electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13373481A JPS5834551A (en) 1981-08-25 1981-08-25 Signal processing circuit of field emission scan electronic microscope

Publications (2)

Publication Number Publication Date
JPS5834551A true JPS5834551A (en) 1983-03-01
JPH027509B2 JPH027509B2 (en) 1990-02-19

Family

ID=15111661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13373481A Granted JPS5834551A (en) 1981-08-25 1981-08-25 Signal processing circuit of field emission scan electronic microscope

Country Status (1)

Country Link
JP (1) JPS5834551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258030A (en) * 2012-06-12 2013-12-26 Jeol Ltd Electron microscope and operation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226613A (en) * 1990-01-31 1991-10-07 Shimadzu Corp Optical extensometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258030A (en) * 2012-06-12 2013-12-26 Jeol Ltd Electron microscope and operation method therefor

Also Published As

Publication number Publication date
JPH027509B2 (en) 1990-02-19

Similar Documents

Publication Publication Date Title
JPS5834551A (en) Signal processing circuit of field emission scan electronic microscope
KR950008683B1 (en) Brightness and automatic kinescope bias control in a video signal processor
JPH0575362A (en) Balanced amplifier
US9685302B2 (en) Electron microscope and method of operating same
JPH02277304A (en) Method of eliminating same-phase voltage in differemial amplifier and differntial amplifer
JP2001148230A (en) Scanning electron microscope
JP2734368B2 (en) Broadband amplifier circuit
JP6719000B2 (en) Electron microscope and method of operating electron microscope
JP3263628B2 (en) Gamma correction device
JPH0594146A (en) Luminance control circuit
JPH03291839A (en) Signal processing circuit for field emission scanning electron microscope
JP2701254B2 (en) Signal processing device
EP3996128A1 (en) Ion detector current converter
JP6660845B2 (en) Electron microscope and method of operating electron microscope
KR100658613B1 (en) Circuit for generating deflection magnetic field in a cathode ray tube using a vector scan method
JPH07212618A (en) Video signal amplifier circuit
JPH0575899A (en) Controur compensation circuit
JP3446632B2 (en) Dynamic focus circuit
JPH057113A (en) Optical reception circuit
JPH0213177A (en) Dynamic focus circuit
JP2919663B2 (en) S-shaped curve creation circuit and vertical drive circuit using the same
JP2000101951A (en) Video amplifier circuit
JPS58223391A (en) Gas laser device
JPH05284385A (en) Dc level shifting circuit
JPH03179654A (en) Electron beam apparatus