JPS5834372A - Measurement system for c/n ratio - Google Patents
Measurement system for c/n ratioInfo
- Publication number
- JPS5834372A JPS5834372A JP13365881A JP13365881A JPS5834372A JP S5834372 A JPS5834372 A JP S5834372A JP 13365881 A JP13365881 A JP 13365881A JP 13365881 A JP13365881 A JP 13365881A JP S5834372 A JPS5834372 A JP S5834372A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- signal
- agc
- burst signal
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/26—Measuring noise figure; Measuring signal-to-noise ratio
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、受信信号における搬送波レベルと雑音レベル
との比を測定するC/J%’測定方式に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a C/J%' measurement method for measuring the ratio between the carrier level and the noise level in a received signal.
C7X比は、受信信号における搬送波電力(のと雑音電
力(N)の比であって、受信信号の品位を評価するため
に広く用いられている。The C7X ratio is the ratio of carrier power (N) to noise power (N) in a received signal, and is widely used to evaluate the quality of the received signal.
例えば衛星通信におけるPCM−TDMA 信号はバ
ースト状に到来し、その先頭に受信局における搬送波再
生回路を同期させるための無変調信号を有する。そこで
PCM−TDMA受信信号の品位を評価するため、この
無変調信号部分のC7N比を測定する方法が用いられて
いる。For example, a PCM-TDMA signal in satellite communication arrives in a burst form, and has an unmodulated signal at the beginning for synchronizing a carrier recovery circuit in a receiving station. Therefore, in order to evaluate the quality of the PCM-TDMA received signal, a method of measuring the C7N ratio of this unmodulated signal portion is used.
第1図は従来のC/N測定方式の構成を示している。同
図において、1は増幅器であって受信バースト信号を一
定利得で増幅する。2はハイブリッド(II)であって
、増幅器1の出力を2分して出力する。3は帯域通過フ
ィルタであって、ハイブリッド2から入力されたバース
ト信号から搬送波だけを抽出する。4は帯域阻止フィル
タであって、ハイブリッド2から入力されたバースト信
号から搬送波のみを除去する。5.6は検波器でおって
、それぞれ搬送波フィルタ3.搬送波除去フィルタ4の
出力を検波して直流化する。7,8はサンプリングホー
ルド回路(S/H)であって、無変調波予測信号に応じ
て、それぞれ検波器5.乙の検波電圧をサンプリングし
て保持する。9は割算器(DIV)であって、サンプリ
ングホールド回路7の出力電圧を、サンプリングホール
ド回路80出力笥1圧で割算して、割算結果の出力を発
生する。10はディスプレイでおって、割算器9の割算
結果の出力を適当な可視的表示等によって表示する。FIG. 1 shows the configuration of a conventional C/N measurement method. In the figure, reference numeral 1 denotes an amplifier that amplifies a received burst signal with a constant gain. 2 is a hybrid (II) which divides the output of amplifier 1 into two and outputs the divided output. 3 is a band pass filter that extracts only the carrier wave from the burst signal input from the hybrid 2; A band rejection filter 4 removes only the carrier wave from the burst signal input from the hybrid 2. 5.6 are detectors, and carrier filters 3.6 and 5.6 are detectors, respectively. The output of the carrier removal filter 4 is detected and converted to DC. Reference numerals 7 and 8 are sampling and hold circuits (S/H), which detect detectors 5, 5, and 8, respectively, in accordance with the non-modulated wave prediction signal. Sample and hold the detection voltage of B. A divider (DIV) 9 divides the output voltage of the sampling and holding circuit 7 by the output voltage of the sampling and holding circuit 80, and generates an output of the division result. A display 10 displays the output of the division result of the divider 9 using a suitable visual display or the like.
第1図において、無変調部予測信号は、受信信号におけ
る次の無変調部の出現のタイミングを予測する信号であ
って、図示されない同期部において、バースト信号の繰
返し周期を抽出することによって発生する。従って無変
調部予測信号によってサンプリングホールド回路7,8
においてそれぞれサンプリングを行うことによって、バ
ースト信号の先頭の無変調部における搬送波レベルおよ
び雑音レベルに対応する検波電圧が保持されるので、割
算器9によって両室圧の比を求めることによって、c/
A+比に対応する信号が得られるので、これを適当なデ
ィスプレイによって表示を行う。In FIG. 1, the non-modulated part prediction signal is a signal that predicts the timing of the appearance of the next non-modulated part in the received signal, and is generated by extracting the repetition period of the burst signal in a synchronization part (not shown). . Therefore, the sampling and holding circuits 7 and 8 are
By performing sampling at , the detected voltage corresponding to the carrier level and noise level in the non-modulated portion at the beginning of the burst signal is maintained, so by calculating the ratio of both chamber pressures using the divider 9, c/
Since a signal corresponding to the A+ ratio is obtained, this is displayed on a suitable display.
しかしながら受信装置における着信レベルは、空間状態
の変化等に基づいて大きく変動する。そ(3)
のためC7N比の測定を精度よく行おうとすると、搬送
波および雑音に対する検波器のダイナミックレンジを非
常に広くすることが要求されることになシ、実現上の困
難を伴う。また両検波電圧の比を演算する割算器は、高
価なだけでなく温度変動に伴う誤差が大きい。However, the incoming signal level at the receiving device varies greatly based on changes in spatial conditions and the like. (3) Therefore, in order to accurately measure the C7N ratio, it is necessary to make the dynamic range of the detector with respect to the carrier wave and noise very wide, which is difficult to realize. Furthermore, the divider that calculates the ratio of both detection voltages is not only expensive but also has large errors due to temperature fluctuations.
本発明はこのような従来技術の欠点を除去しようとする
ものであって、その目的は、搬送波および雑音を検波す
る検波器のダイナミックレンジを狭くすることができ、
かつ両検波電圧の比を演算1する割算器を省略すること
ができる方式を提供することにある。The present invention aims to eliminate such drawbacks of the prior art, and its purpose is to narrow the dynamic range of a detector that detects carrier waves and noise,
Moreover, it is an object of the present invention to provide a system that can omit a divider that calculates the ratio of both detected voltages.
本発明のφ測定方式は、搬送波の検波出力電圧を制御信
号として受信信号に対する増幅器にAGCをかけること
によって、検波器に要求されるダイナミックレンジを狭
くするとともに、雑音検波電圧によって直接C/Nを表
示させることによって、割算器を省略したものである。The φ measurement method of the present invention narrows the dynamic range required of the detector by applying AGC to the amplifier for the received signal using the detection output voltage of the carrier wave as a control signal, and also directly measures the C/N using the noise detection voltage. By displaying it, the divider is omitted.
以下、実施例について本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to Examples.
第2図は、本発明のc/pr測定方式の一実施例の(4
)
構成を示している。同図において、第1図におけると同
じ部分は同じ番号で示されており、それらの動作は第1
図の場合と同様である。11はAGC増幅器でおって、
搬送波の検波電圧を無変調部予測信号によってサンプリ
ング保持する、サンプルホールド回路7の出力をAGC
制御電圧として加えられて、AGC動作を行う。FIG. 2 shows (4) one embodiment of the c/pr measurement method of the present invention.
) shows the configuration. In this figure, the same parts as in Figure 1 are indicated by the same numbers, and their operations are similar to those in Figure 1.
This is the same as the case shown in the figure. 11 is an AGC amplifier,
The output of the sample and hold circuit 7, which samples and holds the detected voltage of the carrier wave using the non-modulation part prediction signal, is
It is applied as a control voltage to perform AGC operation.
今、搬送波の検波電圧を6.、雑音の検波電圧をらとす
ると、ψ比は次式によって示される。Now, set the detection voltage of the carrier wave to 6. , the noise detection voltage is , then the ψ ratio is expressed by the following equation.
’/x =(’c/a n )暑 ・・
・・・・・・・(11第2図においてAGCのループゲ
インが十分大きいときは、搬送波検波電圧は、受信バー
スト信号入力レベルに無関係に#1は一定となる。この
ときの搬送波検波電圧をEcとすれば、C7N比は第2
図の回路において、次式のようになる。'/x = ('c/a n) heat...
(11 In Fig. 2, when the AGC loop gain is sufficiently large, the carrier detection voltage #1 is constant regardless of the received burst signal input level.The carrier detection voltage at this time is If Ec, then the C7N ratio is the second
In the circuit shown in the figure, the equation is as follows.
C/N = (EC)” ・・・・・
・・・・(2)ら
(2)式から明らかなように、ψ比は雑音検波電圧の2
乗に逆比例し、従って雑音検波電圧を直接ψ比の目盛に
おきかえて表示することができる。C/N = (EC)”...
As is clear from equations (2) and (2), the ψ ratio is 2 of the noise detection voltage.
Therefore, the noise detection voltage can be directly replaced and displayed on the scale of the ψ ratio.
本発明のφ測定方式の場合、従来の方式に比べて検波器
のダイナミックレンジを狭くすることができる。すなわ
ち搬送波に対する検波器は入力レベルが常にほぼ一定で
ちゃ、雑音に対する検波器はそのダイナミックレンジが
C/N測定レンジと等しくなり、いずれにしても従来の
方式に比べて検波器のダイナミックレンジを著しく狭く
することが可能となる。In the case of the φ measurement method of the present invention, the dynamic range of the detector can be narrowed compared to the conventional method. In other words, the input level of the detector for the carrier wave must always be almost constant, and the dynamic range of the detector for noise is equal to the C/N measurement range. It is possible to make it narrower.
を九本発明のC/N測定方式においては、搬送波検波電
圧がはげ一定となる結果、(2)式に示されるごとく割
算器を使用することなく、雑音検波電圧によって直接C
β比を表示させることが可能となる。従って回路構成が
簡単になって、価格を低下できるだけでなく、温度変動
の影響を受けやすい割算器を使用しないので、測定精度
を向上できる利点がある。In the C/N measurement method of the present invention, as a result of the carrier detection voltage being constant, the C/N measurement method is directly calculated by the noise detection voltage without using a divider as shown in equation (2).
It becomes possible to display the β ratio. Therefore, not only the circuit configuration becomes simple and the price can be reduced, but also the measurement accuracy can be improved because a divider which is susceptible to temperature fluctuations is not used.
第1図は従来のc/N測定方式の構成を示すブロック図
、第2図は本発明のc/y測定方式の一実施例の構成を
示すブロック図である。
1・・・増幅器、2・・・ハイブリッド(H)、3・・
・帯域通過フィルタ、4・・・帯域阻止フィルタ、5.
6・・・検波器、7.8・・・サンプリングホールド回
路(s/II)、9・・・割算器(vrv )、10・
・・ディスプレイ、11・・・AGC増幅器。
特許出願人 富士通株式会社
代理人 弁理士玉蟲久五部 (外3名)(7)FIG. 1 is a block diagram showing the structure of a conventional c/N measurement method, and FIG. 2 is a block diagram showing the structure of an embodiment of the c/y measurement method of the present invention. 1...Amplifier, 2...Hybrid (H), 3...
-Band pass filter, 4...Band rejection filter, 5.
6... Detector, 7.8... Sampling hold circuit (s/II), 9... Divider (vrv), 10...
...Display, 11...AGC amplifier. Patent applicant Fujitsu Limited agent Patent attorney Gobe Tamamushi (3 others) (7)
Claims (1)
する第2のフィルタと、前記第1のフィルタの出力を検
波して前記増幅器にAGC制御電圧として帰還する第1
の検波器と、前記第2のフィルタの出力を検波して出力
する第2の検波器とを具え、該第2の検波器の検波出力
電圧によって受信信号のC7N比を表示することを特徴
とするC7N比測定方式。a second filter that generates an output that blocks only a carrier wave from the output of the amplifier; and a first filter that detects the output of the first filter and feeds it back to the amplifier as an AGC control voltage.
and a second detector that detects and outputs the output of the second filter, and displays the C7N ratio of the received signal based on the detected output voltage of the second detector. C7N ratio measurement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13365881A JPS5834372A (en) | 1981-08-26 | 1981-08-26 | Measurement system for c/n ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13365881A JPS5834372A (en) | 1981-08-26 | 1981-08-26 | Measurement system for c/n ratio |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5834372A true JPS5834372A (en) | 1983-02-28 |
Family
ID=15109910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13365881A Pending JPS5834372A (en) | 1981-08-26 | 1981-08-26 | Measurement system for c/n ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5834372A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6220017U (en) * | 1985-07-23 | 1987-02-06 | ||
US5318453A (en) * | 1992-10-30 | 1994-06-07 | Hwang Chung Ho | Electric wall receptacle |
US5575677A (en) * | 1994-12-06 | 1996-11-19 | Buckner; Gregory W. | Electrical power plug retainer |
US6375487B1 (en) * | 2000-04-27 | 2002-04-23 | Ge Medical Systems Information Technologies, Inc. | Removable connector cable having bend and strain relief with integral seal |
US8932073B2 (en) | 2010-10-04 | 2015-01-13 | Robert Bosch Gmbh | Electrical clip connector, electrical clip connection and also ready-to-use electrical cable |
-
1981
- 1981-08-26 JP JP13365881A patent/JPS5834372A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6220017U (en) * | 1985-07-23 | 1987-02-06 | ||
US5318453A (en) * | 1992-10-30 | 1994-06-07 | Hwang Chung Ho | Electric wall receptacle |
US5575677A (en) * | 1994-12-06 | 1996-11-19 | Buckner; Gregory W. | Electrical power plug retainer |
US6375487B1 (en) * | 2000-04-27 | 2002-04-23 | Ge Medical Systems Information Technologies, Inc. | Removable connector cable having bend and strain relief with integral seal |
US8932073B2 (en) | 2010-10-04 | 2015-01-13 | Robert Bosch Gmbh | Electrical clip connector, electrical clip connection and also ready-to-use electrical cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6071966A (en) | Digital spectrum analyzer | |
JPS5834372A (en) | Measurement system for c/n ratio | |
US4135243A (en) | Single sampler heterodyne method for wideband frequency measurement | |
JPS6324450Y2 (en) | ||
US4111559A (en) | Apparatus for determining the transmissivity of an optical medium | |
US3375701A (en) | Methods and apparatus for interpreting overlapping signals | |
CN110662025A (en) | Video color subcarrier frequency detection device and detection method | |
JPS5930068A (en) | System for measuring occupied frequency band width in high speed spectrum analysis | |
JPS58172559A (en) | Measuring system of signal power to noise power ratio | |
JPH0545386A (en) | Measuring device of peak to peak value of waveform signal | |
JPH0113527B2 (en) | ||
JPS5892964A (en) | Apparatus for measuring amplitude frequency characteristic of waveform | |
JPH0646013A (en) | C/n measuring instrument | |
McClellan et al. | Investigation of a PAM Tester Using PN Waveforms | |
US3436652A (en) | Method for measuring delay and distortion of frequency components | |
JPH0666603B2 (en) | Spectral signal amplifier for time-of-flight mass spectrometer | |
SU966621A1 (en) | Device for determining phase fluctuation standard deviation | |
CN117544245A (en) | Down-conversion signal frequency recovery method and device based on modulation characteristics | |
JPS5765048A (en) | Measuring system of signal-to-noise ratio | |
SU1200206A1 (en) | Apparatus for measuring ratio of resistor current noise | |
KR970056086A (en) | Frequency offset measurement device and method of measurement in digital mobile communication system | |
US3045182A (en) | Precise doppler measurement | |
JPH056943B2 (en) | ||
SU808995A1 (en) | Device for measuring signal-to-noise ratio | |
JPS6352077A (en) | Space wave tracking method for loran c signal |