JPS5834203A - Impact preventive device - Google Patents

Impact preventive device

Info

Publication number
JPS5834203A
JPS5834203A JP13317481A JP13317481A JPS5834203A JP S5834203 A JPS5834203 A JP S5834203A JP 13317481 A JP13317481 A JP 13317481A JP 13317481 A JP13317481 A JP 13317481A JP S5834203 A JPS5834203 A JP S5834203A
Authority
JP
Japan
Prior art keywords
pressure
main circuit
valve
spool
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13317481A
Other languages
Japanese (ja)
Inventor
Megumi Miyake
三宅 恵
Sen Wada
和田 「せん」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nabco Ltd
Original Assignee
Kobe Steel Ltd
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nabco Ltd filed Critical Kobe Steel Ltd
Priority to JP13317481A priority Critical patent/JPS5834203A/en
Publication of JPS5834203A publication Critical patent/JPS5834203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To improve the shock absorbing effect in a device described at the head which is capable of damping residual oscillation shock produced when a whirling device or so of a shovel loader is stopped by adruptly reducing a fluid pressure in a main circuit at the high pressure side which is developed adjacently to the completion of a pressure control valve for controlling brake pressure. CONSTITUTION:Residual oscillation preventive valves 13 and 13' are placed in parallel with a brake circuit not illustrated between main circuits 2 and 3 for supplying on/discharging pressure oil for or from a hydraulic motor which drives a whirling member of a shovel or so. Among the valves 13 and 13' which are similarly designed, the valve 13 damps shock resulting from a rise in pressure in the main circuit 3 which is developed due to inertia revolution of the motor when a direction change-over valve (not shown) is shifted into the neutral position, with the main circuit 2 supplying the motor with pressure oil. Namely, when the pressure in the main circuit 3 is increased over a certain value, a spool 1 is moved left to lessen force of the pressure oil and when pressure in the main circuit 3 is reduced due to reduction in said inertia force, a check valve 27 is opened to quickly flow the pressure oil into the main circuit 2.

Description

【発明の詳細な説明】 この発明は、建設機械等の被駆動部材の停止時に生じる
被駆動部材の揺れ戻り衝撃を緩和し得る衝撃防止装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impact prevention device capable of mitigating the swinging back impact of a driven member such as a construction machine when the driven member stops.

圧力流体回路全備えたショベル等の建設機械では、圧力
流体源からの圧力流体をアクチュエータに選択的に供給
してこれを作動させ、このアクチュエータに生ずる動力
をブーム等の被駆動部材に伝えてこれを駆動するように
してあり、更に被駆動部材を停止させるために、アクチ
ュエータの背圧側の流体圧力を制御してブレーキ力を作
用させるブレーキ弁を備えたブレーキ回路を併せて設け
である。
In construction machines such as excavators that are equipped with a complete pressure fluid circuit, pressure fluid from a pressure fluid source is selectively supplied to an actuator to operate it, and the power generated in this actuator is transmitted to a driven member such as a boom. In addition, in order to stop the driven member, a brake circuit is also provided with a brake valve that controls the fluid pressure on the back pressure side of the actuator to apply a brake force.

しかしながら、例えばショベルの旋回装置のように、被
駆動部材とその駆動用のアクチュエータとの間に減速機
を有し、該減速機の遊びの分(例えば減速機のギヤーの
パラクラシュの闇ンだけ被mas材が自由に作動し得る
ものでは、アクチュエータを停止させると、その時に被
駆動部材の慣性力が7クチユエータに作用し、この慣性
力による流体圧力が流体回路中に蓄圧されて一旦停止し
た被駆動部材を逆に駆動するカとじて作用するため、被
駆動部材が減速機の遊び分だけ揺れ戻りを生じ、更にこ
の揺れ戻りの慣性により流体圧力が上記と同様に圧力流
体回路に蓄圧されて再び被駆動部材の逆向きの揺れ戻り
を生起する結果、被駆動部材は揺れ戻りを何回が繰返し
て起した後、停止するのである。
However, for example, in a swinging device of an excavator, a reduction gear is provided between a driven member and an actuator for driving the drive member, and the amount of play in the reduction gear (for example, the para-clash of the gears of the reduction gear) is In the case where the mass material can freely operate, when the actuator is stopped, the inertial force of the driven member acts on the actuator, and the fluid pressure due to this inertial force is accumulated in the fluid circuit and the actuator is stopped once. Since the force that drives the driving member in the opposite direction acts as a lock, the driven member swings back by the amount of play in the reducer, and due to the inertia of this swing back, fluid pressure is accumulated in the pressure fluid circuit in the same way as above. As a result of causing the driven member to swing back in the opposite direction again, the driven member swings back several times and then stops.

このような揺れ戻り及びその衝撃を緩和する装置として
、実開昭54−35986号に開示された装置がある。
There is a device disclosed in Japanese Utility Model Application Laid-Open No. 54-35986 as a device for alleviating such back-swinging and its impact.

この装置は、第6図に示すように、被駆動部材(図示せ
ず。)を駆動するアクチュエータlに接続された圧力流
体給排用の2つの主回路2,3の間に、ブレーキ用のリ
リーフ弁4.5を並列に接続すると共に、両側のばね6
,7によって中立位置傾保持されるフリーピストン8を
内蔵せるアキュムレータ9の双方の圧力室10.llを
、夫々絞り12a、12bを介して主回路2゜3に接続
して成るものであって、そして矢印A方向に回転してい
るアクチュエータlを停止させる場合、被駆動部材の慣
性力によって背圧側主回路2内の流体圧力が上昇すると
、リリーフ弁4で圧力制御されて流体が他方の主回路3
へ流出すると共に、アキュムレータ9の一方の圧力室1
0に4゜流入するようになっており、逆に矢印B方向に
回転しているアクチュエータlを停止させる場合には、
主回路3内の昇圧した流体がリリーフ弁5で圧力制御さ
れて主回路2へ流出すると共に、−アキュムレータ9の
他方の圧力室llにも流入するようになっている。従っ
て、アキュムレータ9のばね6,7の張力、圧力室10
.11の容積、及び絞り12a、12bの絞り量を夫々
調整し、リリーフ弁4.5の作動終了時点よりもアキュ
ムレータ9の作動終了時点を遅らせることによって、被
駆動部材の揺れ戻り及びその衝撃を緩和することが可能
となるのである。
As shown in FIG. 6, this device has a brake circuit between two main circuits 2 and 3 for supplying and discharging pressurized fluid connected to an actuator l that drives a driven member (not shown). Relief valves 4.5 are connected in parallel, and springs 6 on both sides are connected in parallel.
, 7, both pressure chambers 10. ll are connected to the main circuit 2゜3 through apertures 12a and 12b, respectively, and when stopping the actuator l rotating in the direction of arrow A, the inertia of the driven member causes the back When the fluid pressure in the pressure side main circuit 2 increases, the pressure is controlled by the relief valve 4 and the fluid is transferred to the other main circuit 3.
and one pressure chamber 1 of the accumulator 9.
To stop actuator l, which is designed to flow 4 degrees to 0 and is rotating in the direction of arrow B, on the other hand,
The pressurized fluid in the main circuit 3 is pressure-controlled by the relief valve 5 and flows out into the main circuit 2, and also flows into the other pressure chamber 11 of the accumulator 9. Therefore, the tension of the springs 6, 7 of the accumulator 9, the pressure chamber 10
.. By adjusting the volume of 11 and the throttle amount of throttles 12a and 12b, respectively, and delaying the end of operation of accumulator 9 from the end of operation of relief valve 4.5, the swinging back of the driven member and its impact are alleviated. This makes it possible to do so.

しかしながら、上記装置の場合、アキュムレータ9には
ブレーキ開始時点から蓄圧が始まるのでブレーキ力、即
ちリリーフ弁4,5の設定圧力を高くするとアキュムレ
ータ9の容積を大きくする必要があり、また蓄圧した圧
力流体を背圧側主回路へ放出する必要もあることから、
充分な揺れ戻り及びその衝撃の防止機能を得ることが出
来ない欠点があった。
However, in the case of the above device, since pressure starts to accumulate in the accumulator 9 from the time when braking is started, if the braking force, that is, the set pressure of the relief valves 4 and 5 is increased, it is necessary to increase the volume of the accumulator 9, and the accumulated pressure fluid It is also necessary to release the pressure to the main circuit on the back pressure side.
There was a drawback that it was not possible to obtain a sufficient function to prevent swinging back and its impact.

この発明は、アクチュエータに接続した圧力流体給排用
の2つの主回路の間に、ブレーキ圧力を制御する圧力制
御弁と、″この制御弁の作動終了時点にオーバシップし
て作動する揺れ戻り防止弁とを並列に設け、圧力制御弁
の作動終了付近において、該揺れ戻り防止弁により、背
圧側主回路のブレーキ圧力(流体圧力)の下がり勾配量
に応じて速やかに反対側主回路へ放出させて急激に降圧
せしめるようになし、もって被駆動部材の揺れ戻り及び
その衝撃を緩和するものである。
This invention provides a pressure control valve that controls brake pressure between two main circuits for supplying and discharging pressurized fluid connected to an actuator, and a pressure control valve that operates in an overship manner at the end of the operation of this control valve. A valve is provided in parallel with the pressure control valve, and near the end of the operation of the pressure control valve, the swing back prevention valve promptly releases the brake pressure (fluid pressure) to the opposite main circuit in accordance with the amount of downward slope of the brake pressure (fluid pressure) in the back pressure side main circuit. This causes the pressure to drop rapidly, thereby alleviating the swinging back of the driven member and its impact.

以下、実施例全示す図面に基づいてこの発明の衝撃防止
装置を詳細に説明する。
Hereinafter, the impact prevention device of the present invention will be explained in detail based on the drawings showing all the embodiments.

第1図はこの発明の一実施例を示す回路図であって、こ
こに1は被駆動部材を駆動するアクチュエータ艷に以下
、モータと記す)であり、このモータ1には、途中にカ
ウンタバランス弁14及び方向切換弁(図示しない。)
が介設された圧力流体給排用の2つの主回路2.3を接
続しである。そして、これら主回路2,30間には、圧
力制御弁15.15’を備えたブレーキ回路16全設け
てあり、これと並列して後述の揺れ戻り防止弁13゜1
3を設けである。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which 1 is an actuator for driving a driven member (hereinafter referred to as a motor), and this motor 1 has a counterbalance installed in the middle. Valve 14 and directional valve (not shown)
Two main circuits 2.3 for supplying and discharging pressurized fluid are connected. Between these main circuits 2 and 30, a brake circuit 16 equipped with pressure control valves 15 and 15' is provided, and in parallel with this, a swing back prevention valve 13°1, which will be described later, is installed.
3 is provided.

前記ブレーキ回路16の一方の圧力制御弁15は主回路
3内の流体圧力全、また他方の圧力制御弁15′は主回
路2内の流体圧力を、夫々制御するもので、例えばバラ
ンスピストン型の圧力制御弁等が使用される。これら圧
力制御弁15.15’は、第4図に実線0号で示すよう
な、圧力Pと流量Qの特性を備えており、従ってモータ
lが例えば矢印A方向の回転状態において主回路2,3
が閉鎖される場合には、背圧側の主回路2内の流体圧力
がPlまで上昇したときから圧力制御弁15’の方が作
動を始め、主回路2内の圧力流体を主回路3へ流出させ
て主回路2内のWLq体pをP2に制御する。
One pressure control valve 15 of the brake circuit 16 controls the total fluid pressure in the main circuit 3, and the other pressure control valve 15' controls the fluid pressure in the main circuit 2, for example, a balance piston type valve. A pressure control valve or the like is used. These pressure control valves 15, 15' have characteristics of pressure P and flow rate Q as shown by the solid line No. 0 in FIG. 3
is closed, the pressure control valve 15' starts operating when the fluid pressure in the main circuit 2 on the back pressure side rises to Pl, and the pressure fluid in the main circuit 2 flows out to the main circuit 3. The WLq body p in the main circuit 2 is controlled to P2.

このためモータIKは、この流体圧力piに相当するブ
レーキ力が作用するのである0逆にモータlが矢印B方
向の回転状態において主回路2.3が閉鎖される場合K
li、もう一方の圧力制御弁15が作動し、主回路3内
の流体圧力t Pzに制御する。
Therefore, a braking force corresponding to this fluid pressure pi is applied to the motor IK. Conversely, when the main circuit 2.3 is closed when the motor I is rotating in the direction of arrow B, K
li, the other pressure control valve 15 is activated and controls the fluid pressure in the main circuit 3 to t Pz.

前記の揺れ戻り防止弁13.13’は、具体的には第2
図又は第3図に示すような構造を有するものである。以
下、これら揺れ戻り防止弁について説明するが、第2図
及び第3図のいずれの場合も、揺れ戻り防止弁13と揺
お戻り防止弁13’は同一の構成であるので、一方の揺
れ戻シ防止弁13についてのみ説明し、他方の揺れ戻り
防止弁13′°については同一部品に同一数字を用いて
ダッシュ全行して表示するにとどめ、その説明を省略す
る。
Specifically, the swing back prevention valve 13.13' is
It has a structure as shown in FIG. These swing back prevention valves will be explained below, but in both cases of FIGS. 2 and 3, the swing back prevention valve 13 and the swing back prevention valve 13' have the same configuration, so one Only the oscillation prevention valve 13 will be explained, and the other swing back prevention valve 13' will only be indicated by using the same numbers for the same parts and dashes in all lines, and the explanation thereof will be omitted.

第2図に例示の揺れ戻り防止弁13は、大径部17と小
径部18を備えた異径のスプール19を内孔20に摺動
自在に嵌納したもので、このスプール19の大径部17
側の端部には第1圧力室21を、小径部18側の端部に
は経1−ル19に一定の押圧力を付与するばね22が内
部に張設された第2圧力室23を、更に大径部17と小
径部18との中間部24の周囲には第3圧力室25を、
夫々形成しである。
The swing back prevention valve 13 illustrated in FIG. Part 17
A first pressure chamber 21 is provided at the side end, and a second pressure chamber 23 is provided at the end on the small diameter portion 18 side, and a spring 22 that applies a constant pressing force to the tube 1-19 is tensioned inside. Furthermore, a third pressure chamber 25 is provided around the intermediate portion 24 between the large diameter portion 17 and the small diameter portion 18.
They are formed respectively.

上記スプール19は内部通路26を貫通形成してあり、
この内部通路26には、絞り孔28を有する逆止弁27
を設けである。この逆止弁27Fi、内部通路26から
中間部24の通孔29を経て第3圧力室25へ向う方向
を順方向とするものである0 前記の第1圧力室21は、接続ポート32.33を介し
て一方の圧力流体給排用の主回路3と接続しており、且
つスプール19の大径部17側の端部開口30及び通孔
31によってスプール内部通路26とも連通している。
The spool 19 is formed to pass through an internal passage 26,
A check valve 27 having a throttle hole 28 is provided in the internal passage 26.
This is provided. The forward direction of this check valve 27Fi is the direction from the internal passage 26 to the third pressure chamber 25 via the through hole 29 of the intermediate portion 24. It is connected to one main circuit 3 for supplying and discharging pressurized fluid through the spool 19, and also communicates with the spool internal passage 26 through an end opening 30 and a through hole 31 on the large diameter portion 17 side of the spool 19.

また第2圧力室23は、スプール19の小径部18側の
端部開口に螺入固定されたばね受は部材34の貫通路3
5、逆止弁27の絞り孔28を経て、スプール19の内
部通路26と連通している0更に、第3圧力室2511
、接続ポー) 33”i介して他方の圧力流体給排用の
主回路2と接続しており、且つ逆止弁27が開くと内部
通路26を経て一方の圧力流体給排用の主回路3とも連
通するものである0 この揺れ戻り防止弁13は、主回路3が昇圧すると、第
1圧力室21.第2圧力室23も共に昇圧するが、この
とき、スプール19には、大径部17と小径部18の受
圧面積の差に流体圧力が作用するので、受圧面積の差に
作用する流体圧力による押圧力がばね22の押圧力に打
ち勝つと、第2圧力室23内の流体が逆止弁27の絞り
28全介して第1圧力室21へ流入するので、第2圧力
室23の方向へ移動する0そして、主回路3が降圧し始
め、スプール19の大径部17と小径部18との受圧面
積の差に作用する主回路3内の流体圧力による押圧力に
ばね22の押圧力が打ち勝つと、スプール19は、第1
圧力室21の方向へ移動するが、このとき、第2圧力室
23へは、流体が第1圧力室21、内部通路26、逆止
弁27の絞り28を介して流入するので、逆上弁27が
絞り28の前後に生じる流体圧力の差により第2圧力室
23の方向へ移動させられる。逆止弁27がこのように
作動すると、主回路2.3が第1圧力室21、内部通路
26及び第3圧力室25を介して連通ずるものである0
従って、スプール19が作動全開始するとき及び復帰を
開始するときの主回路3の流体圧力の値は、スプール1
9の大径部17と小径部18の受圧面積の差、及びばね
22の弾発抗力を変えることによって所望の値に増減調
整することが可能であり、また逆止弁27の開弁時間も
1絞り孔28の絞り量及び第2圧力室23の容積音度え
ることによって所望の時間に調整することが可能である
0そして、この揺れ戻り防止弁13は、主回路3内の流
体圧力が上昇し、この揺れ戻り防止弁13と連動する前
記一方の圧力制御弁15のクラッキング圧力P1より少
し低い圧力値(圧力値Pφとほぼ同値)に達したときス
プール19が第2圧力室23の方へ摺動し始めるように
、そして主回路3内の流体圧力が圧力制御弁15の設定
圧力Pzに制御された後下降し、該クラッキング圧力P
1より少し尚い圧力値P3となったときスプール19が
復帰を開始して逆止弁27が開き始めるように、更忙主
回路3の流体圧力が下降してクラッキング圧力P1より
少し低い圧力値PL+に達したとき逆止弁27が閉じる
と共にその直前にスプール19の復帰が完了するように
、前記の要領でスプール19の作動及び復帰の開始タイ
ミング或は逆止弁27の開弁時間等の調整を行なっであ
る。
In addition, the second pressure chamber 23 has a spring receiver screwed into the end opening on the small diameter portion 18 side of the spool 19 and a through passage 3 of the member 34 .
5. The third pressure chamber 2511 communicates with the internal passage 26 of the spool 19 through the throttle hole 28 of the check valve 27.
, connection port) 33"i to the other main circuit 2 for supplying and discharging pressurized fluid, and when the check valve 27 opens, the main circuit 3 for supplying and discharging one pressurized fluid passes through the internal passage 26. When the pressure in the main circuit 3 increases, the pressure in the first pressure chamber 21 and the second pressure chamber 23 also increases, but at this time, the spool 19 has a large diameter Since fluid pressure acts on the difference in the pressure receiving area between the pressure receiving area 17 and the small diameter portion 18, when the pressing force due to the fluid pressure acting on the difference in the pressure receiving area overcomes the pressing force of the spring 22, the fluid in the second pressure chamber 23 reverses. Since the flow flows into the first pressure chamber 21 through the entire throttle 28 of the stop valve 27, it moves toward the second pressure chamber 23. Then, the pressure in the main circuit 3 begins to decrease, and the large diameter portion 17 and the small diameter portion of the spool 19 move toward the second pressure chamber 23. When the pressing force of the spring 22 overcomes the pressing force due to the fluid pressure in the main circuit 3 which acts on the difference in pressure receiving area between the spool 19 and the spool 18, the spool 19
The fluid moves in the direction of the pressure chamber 21, but at this time, fluid flows into the second pressure chamber 23 via the first pressure chamber 21, the internal passage 26, and the restrictor 28 of the check valve 27. 27 is moved toward the second pressure chamber 23 due to the difference in fluid pressure occurring before and after the throttle 28 . When the check valve 27 operates in this manner, the main circuit 2.3 communicates with the first pressure chamber 21, the internal passage 26 and the third pressure chamber 25.
Therefore, the value of the fluid pressure in the main circuit 3 when the spool 19 starts full operation and when it starts returning is the same as the spool 19.
By changing the difference in pressure receiving area between the large diameter part 17 and the small diameter part 18 of 9 and the elastic resistance of the spring 22, it is possible to increase or decrease the value to a desired value, and the opening time of the check valve 27 can also be adjusted. This swing back prevention valve 13 can be adjusted to a desired time by adjusting the throttle amount of the first throttle hole 28 and the volume of the second pressure chamber 23. When the spool 19 reaches a pressure value (almost the same as the pressure value Pφ) slightly lower than the cracking pressure P1 of the one pressure control valve 15 that operates in conjunction with the swing back prevention valve 13, the spool 19 moves toward the second pressure chamber 23. The fluid pressure in the main circuit 3 is controlled to the set pressure Pz of the pressure control valve 15 and then lowered to reach the cracking pressure Pz.
The fluid pressure in the main circuit 3 decreases to a pressure value slightly lower than the cracking pressure P1 so that the spool 19 starts to return and the check valve 27 starts to open when the pressure value P3 reaches a pressure value slightly lower than 1. The start timing of the operation and return of the spool 19, the opening time of the check valve 27, etc. are adjusted as described above so that the check valve 27 closes when PL+ is reached and the return of the spool 19 is completed immediately before that. Adjustments are being made.

なお、もう一方の揺れ戻り防止弁13’は、第1圧力室
21が圧力流体給排用の主回路2に、第3圧力室25′
が他方の圧力流体給排用の主回路3に接続されており、
このように主回路2,3に対する接続関係が前記の揺れ
戻り防止弁13と逆であって、ブレーキ回路16の圧力
制御弁15′と連動するようにした点金除いては、前記
揺れ戻り防止弁13と同じ構成を有するものである0以
上のような揺れ戻り防止弁13.13’を主回路2.3
の間に圧力制御弁15.15’と並列に設けた第1図の
実施例の作用について、これをショベルのブーム旋回装
置に適用した場合を例に採って、第5図(a) 、 (
b)に示す時間tと圧力Pの関係を表わす特性面#!を
参照しながら説明する0第1図の状態から方向切換弁の
操作によってカウンタバランス弁14が切換位置14a
に切換わると、圧力流体が主回路2を経てモータ1に供
給され、モータ1の流体が主回路3、カウンタ7(ラン
ス弁14、方向切換弁を経てタンク(図示しない。〕に
流出して、モータlは矢印B方向に回転する0この回転
によって、被駆動部材であるブーム(図示しない0)は
減速装置(図示しない0)を介して駆動される0 モータlの回転が定速回転に達すると1主回路2の流体
圧力は、第5図(b)の曲線(イ)に示すように、前記
揺れ戻り防止弁13のスプール19の作動開始圧力P+
よりも低い圧力P&となり、他方、主回路3の流体圧力
は、カウンタバランス弁14や方向切換弁等の回路抵抗
の低い値P7となるOこの回転状態では、主回路2の流
体圧力がブレーキ回路16の圧力制御弁15′及び揺れ
戻多防止弁13′の第1圧力室21′に夫々作用するが
、この流体圧力は圧力制御弁15′のクラッキング圧力
P1及び揺れ戻り防止弁li3′のスプール作動開始圧
力Pメ達していないので、圧力制御弁15′及び揺れ戻
り防止弁13′は共に作動し々い0 このモータlの回転状態において時刻t1で方向切換弁
を中立位置に操作すると、カウンタノくランス弁14が
中立位置14bに切り換わって主回路2.3は閉鎖され
るOこのため、モータ1に対する圧力流体の給排は停止
されるが、モータ1がフ。
The other swing back prevention valve 13' has a first pressure chamber 21 connected to the main circuit 2 for supplying and discharging pressurized fluid, and a third pressure chamber 25' connected to the main circuit 2 for supplying and discharging pressurized fluid.
is connected to the other main circuit 3 for supplying and discharging pressure fluid,
As described above, the connection relationship to the main circuits 2 and 3 is opposite to that of the above-mentioned swing back prevention valve 13, and the above-mentioned swing back prevention valve A swing back prevention valve 13.13' having the same configuration as the valve 13, such as 0 or more, is connected to the main circuit 2.3.
Regarding the operation of the embodiment shown in FIG. 1, which is provided in parallel with the pressure control valves 15 and 15' between 15 and 15', we will take as an example the case where this is applied to the boom swinging device of an excavator.
Characteristic surface #! representing the relationship between time t and pressure P shown in b)! The counterbalance valve 14 is moved to the switching position 14a by operating the directional switching valve from the state shown in FIG.
When the switch is made, pressurized fluid is supplied to the motor 1 via the main circuit 2, and fluid from the motor 1 flows out through the main circuit 3, the counter 7 (the lance valve 14, and the directional control valve) to a tank (not shown). , the motor l rotates in the direction of arrow B.0 This rotation causes the driven member, the boom (0, not shown), to be driven via the reduction gear (0, not shown).0 The rotation of the motor l becomes a constant speed rotation. When the fluid pressure in the main circuit 2 reaches the operating start pressure P+ of the spool 19 of the swing back prevention valve 13, as shown in curve (a) of FIG. 5(b),
On the other hand, the fluid pressure in the main circuit 3 becomes a low value P7 due to the circuit resistance of the counterbalance valve 14, directional control valve, etc. In this rotating state, the fluid pressure in the main circuit 2 becomes lower than that in the brake circuit. The fluid pressure acts on the first pressure chamber 21' of the 16 pressure control valve 15' and the swing back prevention valve 13', respectively, and this fluid pressure is caused by the cracking pressure P1 of the pressure control valve 15' and the spool of the swing back prevention valve li3'. Since the operation start pressure Pm has not been reached, both the pressure control valve 15' and the swing back prevention valve 13' barely operate. When the directional control valve is operated to the neutral position at time t1 while the motor l is rotating, the counter The lance valve 14 is switched to the neutral position 14b and the main circuit 2.3 is closed.Thus, the supply and discharge of pressure fluid to and from the motor 1 is stopped, but the motor 1 is closed.

−ムの慣性力によって矢印B方向に駆動されるので、主
回路3内の流体圧力は第5図(a)の曲線(ロ)に示す
ように急激に上昇し始め、圧力制御弁15及び揺れ戻り
防止弁13に作用するOそして、この主回路3内の流体
圧力が揺れ戻り防止弁13の前記スプール作動開始圧力
Pやに達し、揺れ戻シ防止弁13の第1圧力室21及び
これと連通ずる第2圧力室23の流体圧力が作動開始圧
力P−なると、スプール19の大径部17及び小径部1
8の受圧面積差によって生じるスプール作動力がばね2
2の押圧力よりも大となり、これによってスプール19
は第2圧力室23の方へ摺動し始める0このスプール摺
動時に於ては、第2圧力室23内の圧力流体が逆止弁2
7の絞り孔28を経て第1圧力室21の方へ流れるので
、つまり逆止弁27カ;開く順方向と反対方向に流れる
ので、逆止弁27は閉シたままスプール19と共に第2
圧力室23の方へ変位する0従って、主回路3内の流体
圧力t;上昇している間は、逆止弁27が開力為ないの
で一方の主回路3と他方の主回路2は閉鎖されたままで
ある0かくして主回路3内の流体圧力力S上昇すると、
圧力制御弁15が作動し、これによって流体圧力が制御
弁15の制御設定圧力値P、Lに’[制御される。モー
タlにはこの制御流体圧力に応じた)。
- The fluid pressure in the main circuit 3 begins to rise rapidly as shown in the curve (b) of FIG. 5(a), and the pressure control valve 15 and the Then, the fluid pressure in the main circuit 3 reaches the spool operation start pressure P of the swing back prevention valve 13, and the first pressure chamber 21 of the swing back prevention valve 13 and this When the fluid pressure in the communicating second pressure chamber 23 reaches the operation start pressure P-, the large diameter portion 17 and the small diameter portion 1 of the spool 19
The spool operating force generated by the pressure receiving area difference between springs 8 and 8 is
The pressing force of 2 is greater than that of spool 19.
The spool begins to slide toward the second pressure chamber 23. At the time of this spool sliding, the pressure fluid in the second pressure chamber 23 passes through the check valve 2.
Since the flow flows toward the first pressure chamber 21 through the throttle hole 28 of No. 7, that is, the check valve 27 flows in the opposite direction to the forward direction in which the check valve 27 is opened.
0 is displaced toward the pressure chamber 23. Therefore, while the fluid pressure t in the main circuit 3 is rising, the check valve 27 has no opening force, so one main circuit 3 and the other main circuit 2 are closed. Thus, as the fluid pressure S in the main circuit 3 increases,
The pressure control valve 15 is activated, and thereby the fluid pressure is controlled to the control set pressure values P and L of the control valve 15. motor l depending on this control fluid pressure).

レーキ力が作用することとなり、ブームの慣性力が減少
し始めると共にモータlの回転力も減少し始める0この
とき、主回路3内の流体圧力fd、第4図の圧力制御弁
15の特性曲線eうに従って第5図(a)の(ハ)に示
すように下降し始める0このように、主回路3内の流体
圧力カ;下降して圧力PSに達すると、揺れ戻り防止弁
13の第1圧力室21及び第2圧力室23の流体圧力も
P3Ifpもスプール19の復帰開始圧力となるため、
スプール19に作用する押圧力よりもばね22の押圧力
が打ち勝ち、スプール19は第1圧力室21の方向へ復
帰し始める0スプール195;復帰し始めると、第2圧
力室23の容積拡大に伴ない、第1圧力室21側の圧力
流体が逆止弁27の絞り孔28を通って第2圧力室23
側へ流れ込むが、絞り孔28を通過する゛流量が少ない
ので、第2圧カ室23側には負圧が生じ、第1圧力室2
1側の流体圧力よりも低圧となる。このように圧力差が
生じると、逆止弁27が開き始め、双方の主回路2.3
が第1圧力室21.スプール内部通路26及び第3圧力
室25を介して連通ずるので、主回路3内の圧力流体は
他方の主回路2へ速やかに流出する。この逆止弁27の
開弁時には、モータ1の回転力もかなり減少し且つブー
ムの慣性力も減少しているので、主回路3内の圧力流体
が他方の主回路2へ流出すると、主回路3内の流体圧力
は第5図(a)の曲線に)に示すように急激に下降する
。そして主回路3内の流体圧力がp4に達する直前にス
プール19の復帰が完了し、P、に達したとき逆止弁2
7が閉じて双方の主回路2,3全遮断するので、モータ
lは停止する。
A rake force is applied, and the inertial force of the boom begins to decrease, and the rotational force of the motor l also begins to decrease.At this time, the fluid pressure fd in the main circuit 3, the characteristic curve e of the pressure control valve 15 in FIG. Accordingly, as shown in FIG. Since the fluid pressure in the pressure chamber 21 and the second pressure chamber 23 as well as P3Ifp become the return start pressure of the spool 19,
The pressing force of the spring 22 overcomes the pressing force acting on the spool 19, and the spool 19 begins to return toward the first pressure chamber 21. When the spool 19 begins to return, the volume of the second pressure chamber 23 increases. The pressure fluid on the first pressure chamber 21 side passes through the throttle hole 28 of the check valve 27 and enters the second pressure chamber 23.
However, since the flow rate passing through the throttle hole 28 is small, negative pressure is generated on the second pressure chamber 23 side, and the first pressure chamber 2
The pressure is lower than the fluid pressure on the first side. When a pressure difference occurs in this way, the check valve 27 begins to open, and both main circuits 2.3
is the first pressure chamber 21. Since the spool internal passage 26 and the third pressure chamber 25 communicate with each other, the pressure fluid in the main circuit 3 quickly flows out to the other main circuit 2. When the check valve 27 is opened, the rotational force of the motor 1 and the inertia of the boom are also reduced, so when the pressure fluid in the main circuit 3 flows out to the other main circuit 2, the inside of the main circuit 3 is reduced. The fluid pressure suddenly decreases as shown in the curve of FIG. 5(a). Then, just before the fluid pressure in the main circuit 3 reaches p4, the return of the spool 19 is completed, and when the fluid pressure reaches P, the check valve 2
7 closes and both main circuits 2 and 3 are completely cut off, so the motor l stops.

なおモータ1が停止してもブームの慣性力は完全に吸収
されていないので、ブームが逆方向に移動(揺れ戻り)
シ、主回路3.2内の流体圧力は第5図(a) 、 (
b)の曲線(ホ)、→゛に示すようになる。
Note that even if motor 1 stops, the inertia of the boom is not completely absorbed, so the boom moves in the opposite direction (swings back).
The fluid pressure in the main circuit 3.2 is as shown in Fig. 5(a), (
The curve (e) in b) becomes as shown in →゛.

以上は、主回路2を供給用、主回路3を排出用として運
転した場合であるが、逆に主回路2を排出用、主回路3
を供給用として運転する場合は、もう一方の圧力制御弁
15’と揺れ戻り防止弁13′が同様に作用するもので
あるから、その詳細な説明は省略する。
The above is a case where main circuit 2 is operated for supply and main circuit 3 is operated for discharge, but conversely, main circuit 2 is operated for discharge and main circuit 3 is operated for discharge.
When operated for supply, the other pressure control valve 15' and swing back prevention valve 13' function in the same way, so a detailed explanation thereof will be omitted.

第3図に例示の揺れ戻り防止弁13aI/i、本体の開
孔20aにスリーブ36を内置固定し、このスリーブ3
6の内部に、大径部17aと小径部18aを備えた異径
のスプール19ai摺動自在に嵌入したもので、内孔2
0aとスリーブ36との間には、ラジアルギャップ37
a1に一部分形成しである0このラジアルギャップ37
aは、5通路38及び接続ボー)33ai経て主回路2
に連通している。
In the swing back prevention valve 13aI/i illustrated in FIG. 3, a sleeve 36 is internally fixed in the opening 20a of the main body.
A spool 19ai of different diameters having a large diameter part 17a and a small diameter part 18a is slidably fitted into the inside of the inner hole 2.
There is a radial gap 37 between Oa and the sleeve 36.
This radial gap 37 is partially formed in a1.
a is the main circuit 2 via the 5 passage 38 and the connecting bow) 33ai
is connected to.

スプール19aの大径部17a側の端部と、この端部を
当止するスリーブ36一端の蓋体39との間には、第1
圧力室21aを形成してあり、スプール19at挾んで
第1圧力室21aと反対側、即ちスプール19aの小径
部18a側の端部には、スプール19aに一定の押圧力
を付与するげね22aが内部に張設された第2圧力室2
3a′Ik形成しである。また、スプール19aの大径
部17aと小径部18aとの中間部24aと、前記スリ
ーブ36との間には、第3圧力室25a’ii形成しで
ある。
A first
A pressure chamber 21a is formed, and a barb 22a that applies a constant pressing force to the spool 19a is provided at the end of the spool 19a on the side opposite to the first pressure chamber 21a, that is, on the small diameter portion 18a side of the spool 19a. Second pressure chamber 2 stretched inside
3a'Ik is formed. Further, a third pressure chamber 25a'ii is formed between the intermediate portion 24a between the large diameter portion 17a and the small diameter portion 18a of the spool 19a and the sleeve 36.

スプール19aの内部通路26aKifけた逆止弁27
aは、第1圧力室21aから第2圧力室23aへ向う方
向を順方向とするもので、この逆止弁27aは大径部2
7bと小径部27cを有しており、小径部27cの外周
面には大径部27bに連なる環状溝27di形成しであ
るOそして、この逆止弁27aの内部通路40の途中に
は絞り孔28aを設けである0 上記第1圧力室21aは、絞り孔28ak途中に設けた
逆止弁27aの内部通路40、スプール19aの内部通
路26a及びスプール19aの小径部18a側の端部に
固定したばね受は部材34a(小径@ l 8 aと同
じ外径を有するキャップ状部材)の通孔35aを介して
第2圧力室23aと連通しており、更にこの第2圧力室
23aは本体の通路41a及び接続1−)33ataて
主回路3に接続している0また第3圧力室25aは、主
回路2に連通ずる前記ラジアルギャップ37aに対して
スリーブ36の通孔42を介して連通ずると共に、逆止
弁27aの環状溝27dに対してスプール19aの通孔
43を介して連通しているO従って、逆止弁27aが開
けば、双方の主回路2゜3は本体の通路38、ラジアル
ギャップ37a1第3圧力室25a1環状溝27d1内
部通路26a1第2圧力室23a及び本体の通路41a
′1に経て連通ずるようになっている0 この揺れ戻り防止弁13も、前述ノ一方ノ圧力制御弁1
5と連動して、第2図の揺れ戻り防止弁13と同様の機
能を発揮するものである0即ち、第1図の矢印B方向の
モータlの回転を停止させるために圧力流体の給排を止
めると、排出側の主回路3の流体圧力が急上昇し、それ
に伴って第1圧力室21a及び第2圧カ室23aの流体
圧力も等しく急上昇するが、この流体圧力がスプール1
9aの作動開始圧力P−達すると、スプール19aの大
径部17aと小径518aの受圧面積差によって生じる
作動圧力がばね22aの押圧力より大きくなり、スプー
ル19aが第2圧カ室23、の方へ向って摺動する。こ
のとき第2圧カ室23aの方から第1圧力室21aの方
向、つまり逆止弁27aが開弁不能な逆方向に圧力流体
がa h ル(7)で逆止弁27 aは閉じたままスプ
ール19aと共に第2圧カ室23aの方へ変位する。
Internal passage 26a of spool 19a Kif-shaped check valve 27
A indicates a direction from the first pressure chamber 21a to the second pressure chamber 23a as the forward direction, and this check valve 27a is connected to the large diameter portion 2.
7b and a small diameter portion 27c, and the outer peripheral surface of the small diameter portion 27c is formed with an annular groove 27di that continues to the large diameter portion 27b.And, in the middle of the internal passage 40 of this check valve 27a, there is a throttle hole. 28a is provided. The first pressure chamber 21a is fixed to the internal passage 40 of the check valve 27a provided in the middle of the throttle hole 28ak, the internal passage 26a of the spool 19a, and the end of the spool 19a on the small diameter portion 18a side. The spring receiver communicates with the second pressure chamber 23a through a through hole 35a of a member 34a (a cap-like member having the same outer diameter as the small diameter @ l 8 a), and furthermore, this second pressure chamber 23a communicates with the passageway of the main body. 41a and connection 1-) 33ata are connected to the main circuit 3, and the third pressure chamber 25a communicates with the radial gap 37a, which communicates with the main circuit 2, through the through hole 42 of the sleeve 36. , communicates with the annular groove 27d of the check valve 27a through the through hole 43 of the spool 19a. Therefore, when the check valve 27a is opened, both main circuits 2°3 are connected to the passage 38 of the main body, the radial Gap 37a1 Third pressure chamber 25a1 Annular groove 27d1 Internal passage 26a1 Second pressure chamber 23a and main body passage 41a
This swing return prevention valve 13 is also connected to the pressure control valve 1 of the above-mentioned one side.
In conjunction with the valve 5, the valve 13 performs the same function as the anti-swing valve 13 shown in FIG. When the main circuit 3 on the discharge side is stopped, the fluid pressure in the main circuit 3 on the discharge side rises rapidly, and the fluid pressures in the first pressure chamber 21a and the second pressure chamber 23a also rise equally rapidly.
When the operating start pressure P- of 9a is reached, the operating pressure generated by the difference in pressure receiving area between the large diameter portion 17a and the small diameter 518a of the spool 19a becomes greater than the pressing force of the spring 22a, and the spool 19a moves toward the second pressure chamber 23. Slide towards. At this time, the pressure fluid flows from the second pressure chamber 23a toward the first pressure chamber 21a, that is, in the opposite direction where the check valve 27a cannot open. It is displaced toward the second pressure chamber 23a together with the spool 19a.

そして主回路3の流体圧力が更に上昇し、圧カ制餌弁1
5の設定圧力P2に超えると、該制御弁15によるブレ
ーキ回路16と主回路3の圧カ制憐が行なわれてモータ
lにブレーキ力が作用するため、モータlの回転数\ぴ
被駆動部材の慣性力が減少し主回路3内の流体圧力も下
降するが、この流体圧力がP3まで下降しそれによって
第1及び第2圧力室21a+23a内の圧力がP、にな
ると、ばね22の押圧力がスプール19aの流体圧力に
よる作動力より大きくなり、スプール19aは第1圧力
室21aの方へ復帰する。このスプール19aの復帰に
より第1圧力室21a内の流体は、逆止弁27aの絞、
928aを介して第2圧カ室23aに流入するので、第
1圧力室21a側の圧力が高くなり、この圧力差によっ
て逆止弁27aが開くので、主回路3内の圧力流体は本
体の通路41、第2圧力室23、ス°プール内部通路2
6a1逆止弁27の環状溝27d1第3圧力室25a1
ラジアルギヤツプ37、通路38を順次通って他方の主
回路2へ流出し、これによって第5図(a)の曲線に)
K示すように主回路3内の流体圧力は急降下する。そし
て流体圧力が4に達する直前にスプール19aの復帰が
完了し、P、に達したとき逆止弁27aが閉じて双方の
主回路2.3を遮断するので、モータlは停止し、停止
後の主回路2.3の流体圧力が第5図(a) 、 (b
)の曲1lA(ホ)、凶のように低圧で且つ大きい変動
を生じないものとなるため、大きい揺れ戻り及びその衝
撃を生じることはなくなるのである0 なシ、もう一方の揺れ戻り防止弁13a′は、第2圧力
室23a′が通路38及び接続ポート33a′を経て主
回路2に、第3圧力室25a′がラジアルギャップ37
a′、通路38′、接続ボート33aを経て他方の主回
路3に接続され、もう一方の圧力制御弁15’と連動し
てモータ停止時に主回路2内の圧力流体を主回路3へ流
出させるようKした点を除いては、揺れ戻り防止弁13
aと全く同じ構成である。
Then, the fluid pressure in the main circuit 3 further increases, and the pressure feed control valve 1
When the pressure exceeds the set pressure P2 of 5, the pressure of the brake circuit 16 and the main circuit 3 is controlled by the control valve 15, and a braking force is applied to the motor l, so that the rotation speed of the motor l decreases. The inertial force of decreases and the fluid pressure in the main circuit 3 also decreases, but when this fluid pressure decreases to P3 and the pressure in the first and second pressure chambers 21a+23a becomes P, the pressing force of the spring 22 decreases. becomes larger than the operating force due to the fluid pressure of the spool 19a, and the spool 19a returns to the first pressure chamber 21a. Due to the return of the spool 19a, the fluid in the first pressure chamber 21a is reduced by the restriction of the check valve 27a.
928a into the second pressure chamber 23a, the pressure on the first pressure chamber 21a side increases, and this pressure difference opens the check valve 27a, so the pressure fluid in the main circuit 3 flows through the main body passage. 41, second pressure chamber 23, spool internal passage 2
6a1 Annular groove 27d1 of check valve 27 3rd pressure chamber 25a1
It sequentially passes through the radial gap 37 and the passage 38 and flows out to the other main circuit 2, resulting in the curve shown in FIG. 5(a))
As shown by K, the fluid pressure in the main circuit 3 suddenly drops. Then, the return of the spool 19a is completed just before the fluid pressure reaches 4, and when it reaches P, the check valve 27a closes and cuts off both main circuits 2.3, so the motor l stops, and after the stop The fluid pressure in the main circuit 2.3 is as shown in Fig. 5 (a) and (b).
) song 11A (E), the pressure is low and does not cause large fluctuations, so large swing back and its impact will not occur. ', the second pressure chamber 23a' is connected to the main circuit 2 through the passage 38 and the connection port 33a', and the third pressure chamber 25a' is connected to the radial gap 37.
a', is connected to the other main circuit 3 via the passage 38', and the connection boat 33a, and works in conjunction with the other pressure control valve 15' to cause the pressure fluid in the main circuit 2 to flow out to the main circuit 3 when the motor is stopped. The swing back prevention valve 13 is
It has exactly the same configuration as a.

以上の説明から理解できるように、この発明の衝撃防止
装置は、圧力流体回路のアクチュエータに接続する2つ
の主回路の間に、アクチュエータのブレーキ力を制御す
る圧力制御弁と、この制御弁の作動終了時点近傍の流体
圧力範囲において作動する揺れ戻り防止弁とを並列に設
けることによって、圧力制御弁の作動終了時付近におけ
る高圧側主回路の流体圧力を急激に降下させるようにな
し、もってアクチュエータで駆動される被駆動部材の揺
れ゛戻り及びその衝撃を緩和する効果を発揮させたもの
であって、被駆動部材の慣性力の大小に応じて圧力制御
弁の設定圧力、揺れ戻り防止弁の作動圧力範囲及び作動
時間等を種々変化させることにより、各種の圧力流体回
路に用いることが可能なものである。そして、該揺れ戻
り防止弁が直動型ではなく、大径部及び小径部を有する
異径スプールを内蔵した差圧型弁であるから、スプール
復帰用のばねを小さくすることが可能であり、また、固
定絞りを備えた切換弁のように流量が一定したものとは
異なり、スプール内の逆上弁が開いている間、高圧側主
回路の流体圧力の降下度合に応じて圧力流体が流量変化
しながら低圧側主回路の方へ効率よく流出し得る等の効
果を有するものである。
As can be understood from the above description, the shock prevention device of the present invention includes a pressure control valve that controls the braking force of the actuator, and a pressure control valve that controls the braking force of the actuator between the two main circuits connected to the actuator of the pressure fluid circuit. By providing a swing back prevention valve that operates in a fluid pressure range near the end of operation in parallel, the fluid pressure in the high-pressure main circuit near the end of operation of the pressure control valve can be rapidly reduced, thereby reducing the pressure of the actuator. This device has the effect of mitigating the swinging return of the driven member and its impact, and the setting pressure of the pressure control valve and the operation of the swinging return prevention valve are adjusted depending on the magnitude of the inertia of the driven member. By varying the pressure range, operating time, etc., it can be used in various pressure fluid circuits. Furthermore, since the swing return prevention valve is not a direct acting type, but a differential pressure type valve that incorporates a different diameter spool having a large diameter part and a small diameter part, it is possible to reduce the size of the spring for returning the spool. , unlike a switching valve with a fixed restrictor that has a constant flow rate, while the reverse valve in the spool is open, the flow rate of the pressure fluid changes depending on the degree of drop in fluid pressure in the high-pressure side main circuit. However, it has the effect of efficiently flowing out toward the low-voltage side main circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回路図、第2図は第
1図の揺れ戻り防止弁の一例を示す断面図、第3図は揺
れ戻り防止弁のもう一つの例を示す断面図、第4図は圧
力制御弁の圧力と流量の特性曲線図、第5図(a)はア
クチュエータの停止操作時における高圧側主回路の時間
と圧力の特性曲線図、第5図(b)は低圧側主回路の時
間と圧力の特性曲線図、第6図は従来技術の回路図であ
る。 l・アクチュエータ、2,3・・・主回路、13゜13
・・揺れ戻り防止弁、14・・カウンタバランス弁、1
5.15’・・圧力制卸弁、17 大径部、18・・・
小径部、19・・スプール、21・・第1圧力室、22
・・ばね、23・・第2圧力室、25・第3圧力室、2
6・・内部通路、27・・・逆止弁、28−絞り孔。 特許出願人    日本エヤーブレーキ株式会社同  
    株式会社 神 戸 製 鋼 所代理人 渡 辺
 三 彦 第3図
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a sectional view showing an example of the swing back prevention valve shown in FIG. 1, and FIG. 3 is a cross section showing another example of the swing back prevention valve. Figure 4 is a characteristic curve of pressure and flow rate of the pressure control valve, Figure 5 (a) is a characteristic curve of time and pressure of the high pressure side main circuit during actuator stop operation, and Figure 5 (b) is a characteristic curve of pressure and flow rate of the pressure control valve. 6 is a characteristic curve diagram of time and pressure of the low-pressure side main circuit, and FIG. 6 is a circuit diagram of the prior art. l・Actuator, 2, 3... Main circuit, 13° 13
・・Swing back prevention valve, 14 ・・Counter balance valve, 1
5.15'...Pressure control outlet valve, 17 Large diameter part, 18...
Small diameter part, 19... Spool, 21... First pressure chamber, 22
・・Spring, 23・・Second pressure chamber, 25・Third pressure chamber, 2
6-internal passage, 27-check valve, 28-throttle hole. Patent applicant: Japan Air Brake Co., Ltd.
Kobe Steel Co., Ltd. Representative Mihiko Watanabe Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、 アクチュエータに圧力流体給排用の2つの主回路
を接続した圧力流体回路の該2つの主回路の間に互いに
並列して設けられた圧力制御弁と揺れ揺り防止弁とから
成り、この揺れ戻り防止弁を、大径部と小径1!ヲ有し
且つ内部通路に絞り孔付きの逆止弁全段けた摺動自在η
λスプール、該スプールの大径部側の端部に形成され前
記主回路の一方及び前記内部通路が夫々接続する第1圧
力室と、該スプールの小径部側の端部に形成され該スプ
ールに一定の押圧力を付与するばねを内部に張設してあ
り、前記逆止弁の絞り孔を介して前記第1圧力室に接続
する第2圧力室と、前記主回路の他方及び前記内部通路
に夫々接続すると共に前記逆比弁を介して前記主回路の
一方に接続する第3圧力室とより構成した衝撃防止装置
1. A pressure fluid circuit in which two main circuits for supplying and discharging pressure fluid are connected to an actuator, and a pressure control valve and a vibration prevention valve that are provided in parallel between the two main circuits, and this vibration The return prevention valve has one large diameter part and one small diameter part! A check valve with a throttle hole in the internal passage that can be slid freely across all stages.
A λ spool, a first pressure chamber formed at the end of the large diameter side of the spool and connected to one of the main circuits and the internal passage, respectively; and a first pressure chamber formed at the end of the spool on the small diameter side and connected to the spool. a second pressure chamber having a spring tensioned therein for applying a constant pressing force and connected to the first pressure chamber through the throttle hole of the check valve; the other side of the main circuit and the internal passage; and a third pressure chamber connected to one of the main circuits via the reverse ratio valve.
JP13317481A 1981-08-24 1981-08-24 Impact preventive device Pending JPS5834203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13317481A JPS5834203A (en) 1981-08-24 1981-08-24 Impact preventive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13317481A JPS5834203A (en) 1981-08-24 1981-08-24 Impact preventive device

Publications (1)

Publication Number Publication Date
JPS5834203A true JPS5834203A (en) 1983-02-28

Family

ID=15098399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13317481A Pending JPS5834203A (en) 1981-08-24 1981-08-24 Impact preventive device

Country Status (1)

Country Link
JP (1) JPS5834203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562904A (en) * 2012-01-20 2012-07-11 河海大学常州校区 Main-control hydraulic rotary damper
CN104455156A (en) * 2014-05-22 2015-03-25 阜新北鑫星液压有限公司 Hydraulic energy consumption brake device for rapid shock absorption of road roller shock wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562904A (en) * 2012-01-20 2012-07-11 河海大学常州校区 Main-control hydraulic rotary damper
CN104455156A (en) * 2014-05-22 2015-03-25 阜新北鑫星液压有限公司 Hydraulic energy consumption brake device for rapid shock absorption of road roller shock wheel

Similar Documents

Publication Publication Date Title
CN201198850Y (en) Delaying and buffering brake mechanism of hydraulic reversing device
JPS5834203A (en) Impact preventive device
JPS5848763B2 (en) Actuator brake circuit
JP2848900B2 (en) Load pressure compensation pump discharge flow control circuit
JPH08200305A (en) Hydraulic circuit for driving inertial body
JPH0510304A (en) Hydraulic driving device for civil engineering and construction machinery
JP2002206504A (en) Hydraulic motor driving device
JPS5839803A (en) Anti-shock device
JP3669757B2 (en) Swing inertia body hydraulic drive
JP2871909B2 (en) Actuator control device for construction machinery
JPH032722Y2 (en)
JP3766972B2 (en) Hydraulic circuit for construction machinery
JP2003322107A (en) Hydraulic brake
JP3563771B2 (en) Hydraulic drive circuit
JPH05321906A (en) Inertia body reversion preventing valve
JP3585294B2 (en) Hydraulic pilot circuit for construction machinery
JPS5891902A (en) Rock back preventing valve
JP4183356B2 (en) Hydraulic control device
JP3638452B2 (en) Hydraulic motor device having a relief valve
JP3738152B2 (en) Hydraulic control device for power shovel
JPH09256418A (en) Pressure control circuit and brake device
JP2963374B2 (en) Hydraulic control circuit for construction machinery
JP2001065506A (en) Construction equipment
JP2752328B2 (en) Hydraulic drive control device
JP2000145707A (en) Hydraulic motor device having relief valve