JPS5834183A - Electrolyzing method of steam - Google Patents

Electrolyzing method of steam

Info

Publication number
JPS5834183A
JPS5834183A JP56130054A JP13005481A JPS5834183A JP S5834183 A JPS5834183 A JP S5834183A JP 56130054 A JP56130054 A JP 56130054A JP 13005481 A JP13005481 A JP 13005481A JP S5834183 A JPS5834183 A JP S5834183A
Authority
JP
Japan
Prior art keywords
steam
electrode
solid electrolyte
electromotive force
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56130054A
Other languages
Japanese (ja)
Inventor
Takeshi Arakawa
剛 荒川
Jiro Shiokawa
塩川 二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56130054A priority Critical patent/JPS5834183A/en
Publication of JPS5834183A publication Critical patent/JPS5834183A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:To produce inexpensive hydrogen by electrolyzing steam by the use of electrodes having the structure wherein the surface of a solid electrolyte is coated with noble metals. CONSTITUTION:Paste of noble metals (e.g.; Ag) is coated on the interface of a solid electrolyte (e.g.; ZrO2 stabilized by Y2O3) expressed by the formula and after drying, the paste is sintered at 600-800 deg.C in dry N2, whereby an electrode structural body coated with a noble metal electrode 2 is produced. When steam is electrolyzed by using a steam electrolyzing cell consisting of such electrode structural body, the temp. indicating oxygen ion conductivity shifts to the lower temp. side as compared to such structural body having no electrodes of noble metals. More specifically, the above-described steam electrolyzing cell electrolyzes steam sufficiently at low temp. of 350-450 deg.C, whereby H2 is obtained.

Description

【発明の詳細な説明】 本発明は、固体電解質界面に貴金属を電極として焼き付
け、高品質でかつ安価な水素製造の為の水蒸気電解法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam electrolysis method for producing high-quality and inexpensive hydrogen by baking a noble metal as an electrode on a solid electrolyte interface.

従来、水からの水素製造の方法は、種々提案されている
が、主流は水の電解である。最近この電解水素のコスト
高から、水蒸気電解法も検討されるようになってきた。
Conventionally, various methods for producing hydrogen from water have been proposed, but the mainstream is water electrolysis. Recently, due to the high cost of electrolytic hydrogen, steam electrolysis has also been considered.

しかし、現状では作動に約1000℃の高温を必要とす
る欠点がある。
However, the current drawback is that it requires a high temperature of about 1000° C. for operation.

本発明の目的は上記の欠点を除いた低温で作動し、かつ
安価な水素を製造しつる水蒸気電解法を提供することに
ある。
The object of the present invention is to provide a steam electrolysis method which eliminates the above-mentioned drawbacks, operates at low temperatures, and produces hydrogen at low cost.

すなわち本発明の水蒸気電解法は、一般式AOm−BO
nで表わされる固体電解質の表面をMで被覆した構造を
もつ電極よりなる水蒸気電解槽を用いたものである。第
1図、第2図は本発明による電極の構成、水蒸気電解槽
を示す。第1図、第2図において】は固体電解質、2は
電極、3はアルミナ管、4はステンレス管、5,6はリ
ード線、7゜8は熱電対、8はしんちゅう製止め具、9
は0−リングである。10は酸素分圧、水蒸気分圧を変
えられるようにした系に直結するパイプであご。11は
酸素分圧を変えられるようにした系に直結するパイプで
ある。
That is, the steam electrolysis method of the present invention uses the general formula AOm-BO
A steam electrolytic cell is used, which includes an electrode having a structure in which the surface of a solid electrolyte represented by n is coated with M. FIG. 1 and FIG. 2 show the structure of an electrode and a steam electrolytic cell according to the present invention. In Figures 1 and 2] is a solid electrolyte, 2 is an electrode, 3 is an alumina tube, 4 is a stainless steel tube, 5 and 6 are lead wires, 7°8 is a thermocouple, 8 is a brass stopper, 9
is the 0-ring. 10 is a pipe that is directly connected to the system that can change the oxygen partial pressure and water vapor partial pressure. Reference numeral 11 denotes a pipe directly connected to a system that can change the oxygen partial pressure.

上記固体電解質は良好な酸素イオン伝導性を示す事はす
でに報告されているが、本発明者はその酸素イオン伝導
性を示す温度が固体電解質の表面に上記貴金属を被覆し
た構造をもつ電極においては、貴金属の電極のないもの
に較べて低温側に移行することを見出し本発明に到達し
た。これを以下の実施例によって具体的に説明する。
It has already been reported that the above-mentioned solid electrolyte exhibits good oxygen ion conductivity. The present invention was achieved by discovering that the temperature shifts to the lower temperature side compared to that without noble metal electrodes. This will be specifically explained using the following examples.

実施例1 第1図、第2図におけるlの固体電解質としてイツトリ
アY2O3にて安定化したジルコニアZrO2,2の電
極としてAgを用いた時の温度と起電力との関係を図3
に示す。12は電極を用いた場合、13は電極がない場
合の結果である。図中の実線は(1)式より求めた起電
力である。ただしP(jt = 159 Torr(0
2)、PO2== 8.OTorr、  (02)であ
る。また、ηはlである。すなわち、酸素イオン移動固
体電解質においては電解質の両面で酸素濃度に差がある
場合、酸素分圧の高い方から低い方へ酸素が移動し、そ
の間に(1)式に示す起電力が生じる。ところで、起電
力を測定できる温度は、〜電極のある方が電極のないも
のに比べて著しく低温側へシフトする。これは次の様に
考えられる。酸素が分圧の高い方から低い方へ移動する
際、まず酸素分子が電極表面に解離吸着し、原子状酸素
となって電極中を拡散する。このとき酸素原子と金属原
子との間に金属酸化物が生成しこれの熱的安定性が電極
の性能を決めると考えられる。この考えに従えば、本実
施例の如く起電力が測定できる温度3oo℃はAgtO
の分解温度に匹敵する。
Example 1 Figure 3 shows the relationship between temperature and electromotive force when Ag is used as the electrode of zirconia ZrO2,2 stabilized with yttria Y2O3 as the solid electrolyte in Figures 1 and 2.
Shown below. 12 is the result when electrodes are used, and 13 is the result when no electrodes are used. The solid line in the figure is the electromotive force determined from equation (1). However, P(jt = 159 Torr(0
2), PO2== 8. OTorr, (02). Further, η is l. That is, in an oxygen ion transfer solid electrolyte, when there is a difference in oxygen concentration on both sides of the electrolyte, oxygen moves from the side with a higher oxygen partial pressure to the side with a lower oxygen partial pressure, and an electromotive force shown in equation (1) is generated during this time. By the way, the temperature at which the electromotive force can be measured is significantly shifted to the lower temperature side when there is an electrode than when there is no electrode. This can be considered as follows. When oxygen moves from a higher partial pressure to a lower partial pressure, oxygen molecules first dissociate and adsorb onto the electrode surface, become atomic oxygen, and diffuse through the electrode. At this time, a metal oxide is formed between the oxygen atom and the metal atom, and the thermal stability of this metal oxide is thought to determine the performance of the electrode. According to this idea, the temperature of 30°C at which the electromotive force can be measured as in this example is AgtO
decomposition temperature.

銀電極の調製法は次の方法によった。図3の結果は(m
)の方法により得た電極の結果であるが、(1)。
The silver electrode was prepared by the following method. The results in Figure 3 are (m
(1).

(IQの方法で得た電極でも図3と同じ結果を得た。(The same results as in Figure 3 were obtained with the electrodes obtained by the IQ method.

(1)銀ペースト(Agの微粉末を界面活性剤+エタノ
ール+セルロース溶液などで泥状としたもの)を固体電
解質界面に塗布し、乾燥後、乾燥N2中において600
〜800’Cで約3〜6時間がけて焼結させた。
(1) Silver paste (Ag fine powder made into a slurry with surfactant + ethanol + cellulose solution, etc.) is applied to the solid electrolyte interface, and after drying, it is heated to 600°C in dry N2.
Sintering was performed at ~800'C for approximately 3-6 hours.

(ii)真空中で銀蒸着後、6oo℃、水素気流中で2
時間焼結した。
(ii) After silver deposition in vacuum, at 60°C, in a hydrogen stream for 2
Sintered for hours.

(tri)硝酸銀アンモニア溶液とポルマリンとの混合
溶液を調製し、この調製した溶液中に固体電解質を浸漬
し、銀を析出後水洗したものを600℃で2時間水素気
流中で焼結させた。
(tri) A mixed solution of silver nitrate ammonia solution and Polmarine was prepared, a solid electrolyte was immersed in the prepared solution, silver was precipitated, and then washed with water and sintered at 600° C. for 2 hours in a hydrogen stream.

実施例2 第1図、第2図におけるlの固体電解質としてイツトリ
アY! Oiにて安定化したジルコニアZr 02.2
の電極としてPtを用いた時の温度と起電力との関係を
図4に示す。曲線13はPt電極を用いた場合であり、
曲線14は電極なしの場合である。実線は実施例1で説
明したように(1)式から求めた起電力である。Pt電
極の場合、起電力を測定できる温度は560℃付近から
であり、これは実施例1で説明した様にPtOの分解温
度に近い。Pt電極の作成は実施例1で説明したように
AgペーストをPiペーストに換え(1)の方法で作成
した。
Example 2 Ittria Y! is used as the solid electrolyte l in FIGS. 1 and 2. Zirconia Zr stabilized with Oi 02.2
FIG. 4 shows the relationship between temperature and electromotive force when Pt is used as the electrode. Curve 13 is the case when a Pt electrode is used,
Curve 14 is the case without electrodes. The solid line is the electromotive force determined from equation (1) as explained in Example 1. In the case of a Pt electrode, the temperature at which the electromotive force can be measured is around 560° C., which, as explained in Example 1, is close to the decomposition temperature of PtO. The Pt electrode was created by the method (1) as described in Example 1, replacing the Ag paste with a Pi paste.

実施例3 第1図、第2図における1の固体電解質としてCaOに
て安定化したジルコニアZr0z、2 ノfil 極ト
してAgを用いた時の温度と起電力との関係を図5に示
す。実線は(1)式より求めたものであり、曲線15は
Ag電極を用いた場合であり、曲線16は電極なしの場
合である。起電力は300℃付近から測定可能である。
Example 3 The relationship between temperature and electromotive force when using CaO-stabilized zirconia Zr0z, 2 and Ag as the solid electrolyte in Figures 1 and 2 is shown in Figure 5. . The solid line is obtained from equation (1), curve 15 is the case when an Ag electrode is used, and curve 16 is the case without the electrode. The electromotive force can be measured from around 300°C.

実施例4 第1図、第2図におけるlの固体電解質としてMgOに
て安定化したZrO2,2の電極としてAgを用いた時
の温度と起電力との関係を図6に示す。
Example 4 FIG. 6 shows the relationship between temperature and electromotive force when Ag is used as the electrode of ZrO2,2 stabilized with MgO as the solid electrolyte of 1 in FIGS. 1 and 2.

曲線17は電極のある場合、曲線18は電極のない場合
である。実線は(1)式から求めた起電力である。
Curve 17 is the case with the electrode, and curve 18 is the case without the electrode. The solid line is the electromotive force calculated from equation (1).

起電力は300℃付近から測定可能である。The electromotive force can be measured from around 300°C.

実施例1.3.4に説明したように固体電解質が異なっ
ても銀電極においてほとんど同じ温度付近から起電力の
測定ができることから、実施例1で説明したように、銀
電極中の酸素の拡散が低温度域において十分可能である
と考えられる。また(1)式で説明したように起電力が
測定できることは酸素分圧の高い方から低い方へ酸素が
移動することを意味している。これを実施例5に示す。
As explained in Example 1.3.4, even if the solid electrolyte is different, the electromotive force can be measured at almost the same temperature at the silver electrode. is considered to be fully possible in the low temperature range. Furthermore, as explained in equation (1), the fact that the electromotive force can be measured means that oxygen moves from the side where the oxygen partial pressure is higher to the side where the oxygen partial pressure is lower. This is shown in Example 5.

実施例5 第1図、第2図における1の固体電解質としてイツトリ
アY2O3にて安定化したジルコニアZr0z、2の電
極としてAgを用い、PO’2 = 10−2〜102
Torr(02)、Po2= 10 ’ Torr(0
2)にしたときの、酸素分圧の低い側に拡散してくる1
秒間あたりの酸素量と両端の印加電圧との関係を図7に
示す。20は400℃、PO&、 = 50 Torr
 (Ox ) 、21は350℃、PO’2 = 59
 Torr (02) 、22は400℃、PO′2−
1×10 ”Torr (02)の時の結果である。p
oaが50Torr 前後の時は両端を短絡するだけで
酸素が拡散してくる。またPOaが10−2Torrに
なると酸素を拡散させるのに電圧をかける必要がある。
Example 5 In FIGS. 1 and 2, zirconia Zr0z stabilized with yttria Y2O3 was used as the solid electrolyte 1, Ag was used as the electrode 2, and PO'2 = 10-2 to 102.
Torr (02), Po2 = 10' Torr (0
When setting 2), 1 diffuses to the side where the oxygen partial pressure is low.
FIG. 7 shows the relationship between the amount of oxygen per second and the voltage applied at both ends. 20 is 400℃, PO & = 50 Torr
(Ox), 21 is 350℃, PO'2 = 59
Torr (02), 22 is 400℃, PO'2-
This is the result when 1×10”Torr (02).p
When the oa is around 50 Torr, oxygen will diffuse by simply shorting both ends. Further, when POa is 10 −2 Torr, it is necessary to apply a voltage to diffuse oxygen.

これから、両端に電圧を印加するか、02の分圧比を大
きくすれば、この水蒸気電解槽は容易に作動することが
わかる。かつ酸素は実施例1で示したように起電力の測
定できる低温度域でも十分拡散してくる。
From this, it can be seen that this steam electrolyzer can be easily operated by applying a voltage to both ends or by increasing the partial pressure ratio of 02. Moreover, as shown in Example 1, oxygen diffuses sufficiently even in the low temperature range where electromotive force can be measured.

以上実施例で示したように酸素イオン移動固体電解質に
銀電極を付帯した水蒸気電解槽は低温度域(350°〜
450°C)でも十分水を分解し水素を得ることが示唆
される。これを次の実施例によって説明する。第1表は
本発明による水蒸気電解槽を用い、水蒸気分圧を20〜
30Torrとしたときの水蒸気分解の結果である。
As shown in the examples above, a steam electrolyzer in which a silver electrode is attached to an oxygen ion transfer solid electrolyte can be used in a low temperature range (350° to
It is suggested that water can be sufficiently decomposed and hydrogen can be obtained even at 450°C. This will be explained by the following example. Table 1 shows the water vapor partial pressure of 20~20 using the steam electrolyzer according to the present invention.
These are the results of steam decomposition at 30 Torr.

第1表によれば実施例2で予想されるようにPt電極で
は電流効率100%で水を分解するには700℃以上を
必要とする。一方、Ag電極では400°Cという低温
でも電流効率100%で水の分解ができる。
According to Table 1, as expected in Example 2, the Pt electrode requires a temperature of 700° C. or higher to decompose water with 100% current efficiency. On the other hand, an Ag electrode can decompose water with 100% current efficiency even at a low temperature of 400°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電極の断面図、第2図は水蒸気電解槽の断面図
、第3図はAg1ZrO2二Y20111 AgのPO
’2= 159Torr (02)、Po2= 8 T
orr (02)とした時の起電力と温度との関係を示
す図、第4図はPt1Zro2Y20slPtの起電力
と温度との関係を示す図(条件は第3図に同じ)、第5
図はAg l Zr(h−CaOIAgの起電力と温度
との関係を示す図(条件は第3図に同じ)、第6図はA
g l Zr02−MgOIAgの起電力と温度との関
係を示す図(条件は第3図に同じ)、第7図はAg l
 ZrO+  Y20B1 Agによる拡散酸素量と印
加電圧との関係を示す図である。 湿度じ0) 第4山 一!7L(@ご) −427− オ71刀 C床(v)
Figure 1 is a cross-sectional view of the electrode, Figure 2 is a cross-sectional view of the steam electrolyzer, and Figure 3 is the PO of Ag1ZrO22Y20111 Ag.
'2 = 159 Torr (02), Po2 = 8 T
orr (02), Figure 4 is a diagram showing the relationship between electromotive force and temperature for Pt1Zro2Y20slPt (conditions are the same as Figure 3), Figure 5
The figure shows the relationship between the electromotive force and temperature of Ag l Zr (h-CaOIAg (the conditions are the same as in Figure 3). Figure 6 shows the relationship between the electromotive force and temperature of Ag l Zr (h-CaOIAg).
g l A diagram showing the relationship between the electromotive force and temperature of Zr02-MgOIAg (the conditions are the same as in Fig. 3), and Fig. 7 shows the relationship between the electromotive force and temperature of Zr02-MgOIAg.
FIG. 3 is a diagram showing the relationship between the amount of oxygen diffused by ZrO+ Y20B1 Ag and the applied voltage. Humidity 0) 4th mountain one! 7L (@go) -427- O71 sword C floor (v)

Claims (1)

【特許請求の範囲】[Claims] 一般式AOm−BOn (ただし、AはZrsまたBは
Hg、Ca5Yおよび希土類元素の総称であり、mおよ
びnはそれぞれAおよびBの厚手価によって定まる数値
である。以下同じ。)で表わされる固体電解質の表面を
M(ただしMは、Ru5Rhx  Pd、Ag、Irs
 Ptq Auの総称である。以下同じ。)で被覆した
構造をもつ電極による水蒸気電解法。
A solid represented by the general formula AOm-BOn (where A is Zrs, B is a generic term for Hg, Ca5Y, and rare earth elements, and m and n are numerical values determined by the thickness values of A and B, respectively. The same applies hereinafter). The surface of the electrolyte is M (where M is Ru5Rhx Pd, Ag, Irs
It is a general term for Ptq Au. same as below. ) Steam electrolysis method using an electrode with a structure coated with
JP56130054A 1981-08-21 1981-08-21 Electrolyzing method of steam Pending JPS5834183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130054A JPS5834183A (en) 1981-08-21 1981-08-21 Electrolyzing method of steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130054A JPS5834183A (en) 1981-08-21 1981-08-21 Electrolyzing method of steam

Publications (1)

Publication Number Publication Date
JPS5834183A true JPS5834183A (en) 1983-02-28

Family

ID=15024940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130054A Pending JPS5834183A (en) 1981-08-21 1981-08-21 Electrolyzing method of steam

Country Status (1)

Country Link
JP (1) JPS5834183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303089A (en) * 1987-05-30 1988-12-09 Japan Atom Energy Res Inst Multitude type steam electrolyzing device
WO2005017232A1 (en) * 2003-08-15 2005-02-24 Protegy Limited Enhanced energy production system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303089A (en) * 1987-05-30 1988-12-09 Japan Atom Energy Res Inst Multitude type steam electrolyzing device
WO2005017232A1 (en) * 2003-08-15 2005-02-24 Protegy Limited Enhanced energy production system

Similar Documents

Publication Publication Date Title
JP2824457B2 (en) Cermet electrode and its manufacturing method
Cherevko et al. Gold dissolution: towards understanding of noble metal corrosion
Grubb et al. Batteries with solid ion‐exchange membrane electrolytes: II. Low‐temperature hydrogen‐oxygen fuel cells
Bieberle et al. The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes
JP2779445B2 (en) Electrode of solid oxide electrochemical cell and method of bonding the same
Osinkin et al. Performance and redox stability of a double–layer Sr2Fe1. 5Mo0. 5O6-δ–based electrode for solid state electrochemical application
Nguyen et al. Electrocatalytic reactivity of hydrocarbons on a zirconia electrolyte surface
Schuldiner et al. An Electrochemical Study of Hydrogen Producing Reactions Catalyzed by Gold and Gold–Palladium Cathodes
Kim et al. Cathodic electrochemical deposition: A new strategy to enhance the activity and stability of silver cathodes for thin-film solid oxide fuel cells
CN111048814A (en) Film hydrogen electrode solid oxide battery and preparation method thereof
CN104064792A (en) Method for preparing fuel by synchronously electrolyzing water vapor at high temperature and oxidizing methane
Watanabe et al. Reversible oxygen electrodes
Ianniello et al. A simplified DEMS set up for electrocatalytic studies of porous PtRu alloys
JP4977621B2 (en) Electrochemical cell and method for producing electrochemical cell
JP6221067B2 (en) Formic acid production apparatus and method
US3110622A (en) Method of making fuel cell electrodes and the like
Hibino et al. Medium-temperature electrolysis of NO and CH4 under lean-burn conditions using ytrria-stabilized zirconia as a solid electrolyte
JPS5834183A (en) Electrolyzing method of steam
Hong et al. Electrochemical oxidation of methanol over a silver electrode deposited on yttria-stabilized zirconia electrolyte
Ong et al. Electrocatalytic role of stabilized zirconia on the anodic current—over-potential behavior in hydrocarbon fuel cells
Sakai et al. High performance of electroless-plated platinum electrode for electrochemical hydrogen pumps using strontium-zirconate-based proton conductors
Fu et al. Electrochemical properties of A-site deficient SOFC cathodes under Cr poisoning conditions
CN109599580A (en) A kind of ultra-thin membrane electrode and its preparation method and application for neat liquid fuel cell
KR100631276B1 (en) pH sensing electrode having a solid-state electrolyte layer and pH measuring system containing same
Botukhova et al. Electroreduction of peroxodisulfate anion at platinum rotating disc electrode in the cyclic voltammetry mode