JPS5834116B2 - starch - Google Patents

starch

Info

Publication number
JPS5834116B2
JPS5834116B2 JP50015779A JP1577975A JPS5834116B2 JP S5834116 B2 JPS5834116 B2 JP S5834116B2 JP 50015779 A JP50015779 A JP 50015779A JP 1577975 A JP1577975 A JP 1577975A JP S5834116 B2 JPS5834116 B2 JP S5834116B2
Authority
JP
Japan
Prior art keywords
temperature
liquid
steam
surface condenser
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50015779A
Other languages
Japanese (ja)
Other versions
JPS5191341A (en
Inventor
範郎 野長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP50015779A priority Critical patent/JPS5834116B2/en
Publication of JPS5191341A publication Critical patent/JPS5191341A/ja
Publication of JPS5834116B2 publication Critical patent/JPS5834116B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、でんぷん糖を主に酵素分解法で製造処理する
工程の廃熱回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering waste heat from a process in which starch sugar is produced mainly by an enzymatic decomposition method.

一般にでんぷんの糖化工業において、でんぷんを分解し
て甘味物質を製造する方法として酸分解と酵素分解とが
ある。
Generally, in the starch saccharification industry, acid decomposition and enzymatic decomposition are methods for decomposing starch to produce sweet substances.

特に甘味物質としてぶどう糖を製造する場合は、後者の
酵素分解法が酸分解法に比較して高純度のぶどう糖が得
られるので今日では酵素分解法が採用されている。
In particular, when producing glucose as a sweet substance, the enzymatic decomposition method is currently used because it yields glucose with higher purity than the acid decomposition method.

この酵素によるでんぷんの加水分解工程は主として液化
と糖化の二工程で取立し、液化はでんぷん分子を大まか
に切断し水溶性のデキストリンにすることであり、糖化
はこのデキストリンを分解してぶどう糖を生成する工程
であって、液化、糖化工程にはそれぞれに適した酵素を
使用している。
The process of hydrolyzing starch by this enzyme mainly consists of two steps: liquefaction and saccharification. Liquefaction roughly cuts starch molecules into water-soluble dextrin, and saccharification breaks down this dextrin to produce glucose. The liquefaction and saccharification processes use enzymes suitable for each process.

液化工程は単に糖化工程の前処理といったものではなく
、液化の適否は、p過工程やそれに続く脱色などの清浄
工程に悪影響をおよぼすのみならず製品の純度を左右す
る重要な工程である。
The liquefaction process is not simply a pretreatment for the saccharification process; the suitability of liquefaction is an important process that not only has a negative impact on the purification process and subsequent cleaning processes such as decolorization, but also influences the purity of the product.

この液化工程は従来酵素の失活上の点から操作温度を8
0〜90℃の範囲で行なっているが、コンスターチなど
の地上でんぷんを原料とする場合、甘藷でんぷんなどの
地下でんぷんに比べ難溶性でんぷんの含有量が多く、前
記操作条件で行なわれている従来法では難溶性でんぷん
分子の解裂が残存し、満足な液化を行なうことができな
かった。
Conventionally, this liquefaction process was performed at an operating temperature of 8°C in order to deactivate the enzyme.
The temperature range is 0 to 90°C, but when using above-ground starch such as cornstarch as a raw material, the content of poorly soluble starch is higher than underground starch such as sweet potato starch, so the conventional method is carried out under the above operating conditions. In this case, cleavage of poorly soluble starch molecules remained, and satisfactory liquefaction could not be achieved.

この難溶性でんぷんを完全に液化する方法として液化工
程を一次、3二次と二段に分け、−次液化で残存する難
溶性でんぷん分子を高温高圧条件下において膨潤解裂さ
せた後、再度酵素の作用する温度まで下げ二次液化を行
なういわゆる二段液化法カコンスターチ等難溶性でんぷ
んの処理に適しているが、この二段液化法は従来の一般
液化に比較すると高温高圧条件を作るために蒸気消費量
は犬となる。
As a method to completely liquefy this poorly soluble starch, the liquefaction process is divided into two stages, the first and third stages, and after the remaining liquefied starch molecules are swollen and decomposed under high temperature and high pressure conditions, the liquefaction process is carried out again using enzymes. The so-called two-stage liquefaction method, in which the temperature is lowered to a temperature at which the Steam consumption will be a dog.

−次液化としてでんぷん乳を高温に加熱し液化酵素また
は酸等の触媒を入れ加水分解を行ないぶどう糖に転換さ
せるが、プロセス中の液は高温高圧(5kg/crAG
、130℃程度)であることと、またデキストリン他の
凝固性でんぷん蛋白を含んでいるためスケーリングが発
生し易いので、一般にはフラッシュクーラーにより常圧
に戻し液温を90℃程度まで低下させる。
- In the next liquefaction, starch milk is heated to a high temperature and a catalyst such as a liquefaction enzyme or acid is added to hydrolyze it and convert it into glucose.
, about 130°C) and also contains coagulable starch proteins such as dextrin, which tends to cause scaling, so generally the pressure is returned to normal using a flash cooler and the liquid temperature is lowered to about 90°C.

この時発生する蒸気はバロメトリックコンデンサ−で凝
縮すれるが、その際の廃熱は排水と共に外部に放出され
、即ち、このバロメトリックコンデンサ−の冷却水を低
温水として回収し製造工程での温水として使用したとし
ても必要とする温水量に比して冷却水は多量であること
から大半は廃水として捨てられることとなったり、クー
リンゲタソーにて放散されたりして例えば約30%も棄
てられ熱効率が悪く、廃熱利用が殆んど行なわれないば
かりか、また温排水などの公害問題をひきおこしていた
し、製造コストも割り高で設備費も高く不経済で、また
清浄工程中の加熱に生蒸気を用いているので製品が過熱
し着色などの欠陥を生ずるおそれがあった。
The steam generated at this time is condensed in a barometric condenser, but the waste heat at that time is released to the outside together with waste water.In other words, the cooling water of this barometric condenser is recovered as low-temperature water and used as hot water in the manufacturing process. Even if the cooling water is used, the amount of cooling water is large compared to the amount of hot water required, so most of it is discarded as waste water or dissipated in the cooling water saw, resulting in about 30% being wasted, reducing thermal efficiency. Unfortunately, not only was waste heat hardly utilized, but it also caused pollution problems such as heated waste water, the manufacturing cost was relatively high, the equipment cost was high and it was uneconomical, and live steam was used for heating during the cleaning process. There was a risk that the product would overheat and cause defects such as discoloration.

さらに液化工程で発生した蒸気を凝縮させる方法として
従来では、バロメトリックコンデンサ−を使用している
がこれは冷却水と蒸気を直接気液接触させて凝縮させる
方式である事から冷却水の代りに糖液を使用する場合、
凝縮水の混入による糖液の希釈、汚染が考えられ清浄工
程での加熱方式として適当でない。
Furthermore, barometric condensers are conventionally used as a method to condense the steam generated in the liquefaction process, but since this is a method of condensing by bringing cooling water and steam into direct gas-liquid contact, it can be used instead of cooling water. When using sugar solution,
This method is not suitable as a heating method in the cleaning process because the condensed water may dilute and contaminate the sugar solution.

本発明は、でんぷん糖製造工程全体を検討し、液化工程
に関係した冷却工程により得られた熱を、後の清浄工程
に関する加熱工程で適量を回収することにより、従来の
ものの前記の欠点を除き、廃熱の回収が有効にはかれて
熱効率が高く、また製品の過熱を防止することができる
酵素分解法を利用した有効なでんぷん糖製造工程の廃熱
回収方法を提供することを目的とするものである。
The present invention eliminates the above-mentioned drawbacks of the conventional one by considering the entire starch sugar production process and recovering an appropriate amount of the heat obtained in the cooling process related to the liquefaction process in the heating process related to the subsequent cleaning process. The purpose of the present invention is to provide an effective method for recovering waste heat in a starch sugar production process using an enzymatic decomposition method that can effectively recover waste heat, have high thermal efficiency, and prevent overheating of the product. It is something.

本発明は、液化工程に関する複数段冷却工程において最
初の一次液化工程で生じた蒸気を、清浄工程に関する加
熱工程のサーフェスコンデンサーに選択的に導くため加
熱後の熱媒の出口温度の液温を検出し、液系路のバルブ
が操作されてサーフェスコンデンサーの液に与えられる
加熱容量を変化せしめることを特徴とするでんぷん糖製
造工程の廃熱回収方法である。
The present invention detects the liquid temperature at the exit temperature of the heating medium after heating in order to selectively guide the vapor generated in the first primary liquefaction step in the multi-stage cooling step related to the liquefaction step to the surface condenser in the heating step related to the cleaning step. This method of recovering waste heat from a starch sugar production process is characterized in that the heating capacity applied to the liquid in the surface condenser is changed by operating a valve in the liquid line.

本発明を実施例につき説明すれば、第1図に示す如き酵
素糖化プロセスにおいて、原料のでんぷん乳を二段液化
法の最初の一次液化工程において5に9/cm、130
℃程度の高温高圧下で処理した後、二次液化を行なうた
めに液温を80〜90℃迄冷却するわけであるが、この
冷却方法としては一般に真空源に接続したフラッシュク
ーラー1内での自己蒸発冷却法で行なわれ、この際発生
した熱を棄てずに蒸気と共に後述の清浄工程の加熱工程
に導く。
To explain the present invention with reference to an example, in the enzymatic saccharification process as shown in FIG.
After processing at a high temperature and high pressure of approximately 100°C, the liquid temperature is cooled to 80 to 90°C for secondary liquefaction, and this cooling method is generally carried out in a flash cooler 1 connected to a vacuum source. This is carried out by a self-evaporative cooling method, and the heat generated at this time is not discarded but is led together with steam to the heating step of the cleaning step described later.

即ち、二次液化の完了した液は糖化工程を経て糖化液と
して沢過および清浄処理を行ない製品となるわけである
が、この清浄工程においては、一般に活性炭とイオン交
換の組合わせによる方法が主に採用されており、これら
の清浄設備は最適温度が、活性炭プロセスは約70℃の
高温、イオン交換プロセスは約40℃の低温であるので
加熱冷却を行なう必要がある。
In other words, the liquid that has undergone secondary liquefaction goes through a saccharification process and is then purified as a saccharified liquid through filtration and cleaning processes to produce a product.In this cleaning process, the main method is generally a combination of activated carbon and ion exchange. The optimal temperature for these cleaning equipment is a high temperature of about 70°C for the activated carbon process, and a low temperature of about 40°C for the ion exchange process, so heating and cooling must be performed.

このイオン交換脱色を行なった約40℃の液は次の活性
炭脱色を行なうために約70℃にまで加熱されるが、こ
の際、従来フラッシュクーラー1で発生してバロメトリ
ックコンデンサ−2などで凝縮廃棄していた蒸気をサー
フェスコンデンサー3に導きこれを糖液の加熱源として
用いる。
The liquid at about 40°C that has been subjected to ion exchange decolorization is heated to about 70°C for the next activated carbon decolorization. The waste steam is led to the surface condenser 3 and used as a heating source for the sugar solution.

一般にこの加熱に必要な熱量は、フラッシュクーラー1
で発生した熱量とほぼ同量なので、この利用方法はでん
ぷん糖製造処理に非常に有効である。
Generally, the amount of heat required for this heating is 1 flash cooler.
Since the amount of heat generated is almost the same as the amount of heat generated in

前記サーフェスコンデンサー3の伝熱面積は、発生蒸気
の全量を凝縮するに足るように決められる。
The heat transfer area of the surface condenser 3 is determined to be sufficient to condense the entire amount of generated steam.

一方、液は流量や温度などの流量変動があるのでサーフ
ェスコンデンサー3の容量が一定の場合には出口液温度
が変動するおそれがある。
On the other hand, since the liquid has fluctuations in flow rate, temperature, etc., if the capacity of the surface condenser 3 is constant, there is a possibility that the outlet liquid temperature will fluctuate.

これを防ぎ出口液温度をほぼ一定に保つために実施例と
して次の如き制御方式を採用する。
In order to prevent this and keep the outlet liquid temperature almost constant, the following control method is adopted as an embodiment.

即ち、液化工程で発生した蒸気は清浄工程で必要とする
熱量より多少多めに発生するので糖液のサーフェスコン
デンサー出口温度を検出し蒸気を加減する事で設定値に
保つ必要があり、一方液化工程で発生した蒸気は全量凝
縮して系外に排出する必要がある。
In other words, since the steam generated in the liquefaction process generates a little more heat than the amount of heat required in the cleaning process, it is necessary to detect the exit temperature of the surface condenser of the sugar solution and adjust the steam to maintain it at the set value. All of the steam generated must be condensed and discharged from the system.

このためサーフェスコンデンサーの入口蒸気を直接加減
出来ないのでサーフェスコンデンサーにバイパス配管を
設けそこに設けた自動弁を加減する事で余剰の蒸気はそ
の後に設けるバロメトリックコンデンサ−で凝縮させで
ある。
For this reason, the steam at the inlet of the surface condenser cannot be adjusted directly, so by installing a bypass pipe in the surface condenser and controlling the automatic valve installed there, excess steam is condensed in the barometric condenser installed afterwards.

この方式では一般に供給蒸気熱量に対して、液側の必要
熱量が少ない場合が多いので、これに対する制御として
、第2図に示す如くサーフェスコンデンサー3の出口液
4の温度を検出しバイパス5に設けたバルブ6を自動的
に操作する温度調節器7を設け、液に対して蒸気が余剰
となり、出口液4の温度が上ると温度調節器7により、
バルブ6を開き余剰の蒸気はバイパス5を通って直接バ
ロメトリックコンデンサ−2に入り廃棄してサーフェス
コンデンサー3の液に与えられる熱量制御を行なう。
In this system, the amount of heat required on the liquid side is generally smaller than the amount of heat supplied by the steam, so in order to control this, the temperature of the outlet liquid 4 of the surface condenser 3 is detected and installed in the bypass 5 as shown in Figure 2. A temperature regulator 7 is provided to automatically operate the valve 6. When steam becomes surplus to the liquid and the temperature of the outlet liquid 4 rises, the temperature regulator 7 automatically operates the valve 6.
The valve 6 is opened, and the excess steam passes through the bypass 5 and directly enters the barometric condenser 2 and is disposed of, thereby controlling the amount of heat given to the liquid in the surface condenser 3.

また、別の制御方式の実施例としては第3図に示すよう
に、サーフェスコンデンサー3の出口液4の温度を検出
し、サーフェスコンデンサー3のドレーン回路8を開閉
するバルブ9を自動的に操作する温度調節器10を設け
、液に対して蒸気が余剰となり、出口液4の温度が上る
と温度調節器10の操作によりバルブ9が閉じられ、サ
ーフェスコンデンサー3内にドレーンが溜ると、伝熱面
積が減少するので液に与えられる熱量も減少し出口液4
の温度は下がり余剰の蒸気はバロメ) IJラックンデ
ンサー2に入り廃棄し、サーフェスコンデンサー3の液
に与えられる熱量制御を行なう。
In addition, as an example of another control method, as shown in FIG. 3, the temperature of the outlet liquid 4 of the surface condenser 3 is detected and the valve 9 for opening and closing the drain circuit 8 of the surface condenser 3 is automatically operated. A temperature regulator 10 is provided, and when steam becomes surplus to the liquid and the temperature of the outlet liquid 4 rises, the valve 9 is closed by operating the temperature regulator 10, and when drain accumulates in the surface condenser 3, the heat transfer area increases. Since the amount of heat given to the liquid decreases, the amount of heat given to the liquid also decreases, and the outlet liquid 4
The temperature of the liquid decreases and the excess steam enters the IJ rack condenser 2 and is disposed of, controlling the amount of heat given to the liquid in the surface condenser 3.

この方式は第一の制御実施例の方式に比べ一般に配管サ
イズが小さいこと、バイパス配管が不要なことなどから
設置上、価格上有利である。
Compared to the method of the first control embodiment, this method is advantageous in terms of installation and cost because the piping size is generally smaller and bypass piping is not required.

このようなプロセスにおいては、プラント起動時には蒸
気は発生してから数日の遅れで液はサーフェスコンデン
サー3に到達し、またプラント停止時には蒸気がなくな
ってから数日後まで液が残る。
In such a process, when the plant is started, steam is generated and the liquid reaches the surface condenser 3 with a delay of several days, and when the plant is stopped, the liquid remains until several days after the steam has disappeared.

これに対処するために第4図に示す如くバイパス弁11
を設け、起動時にまだ液がなくサーフェスコンデンサー
3による蒸気の凝縮ができないので、このバイパス弁1
1を開いて直接バロメトリックコンデンサ−2に全量を
送って凝縮し、また、サーフェスコンデンサー3の出口
液4の温度を検出し別の蒸気源より蒸気を導入するバル
ブ12を操作する温度調節器13を設け、停止時に蒸気
がなくなり加熱源がなくなるのを補うため、この温度調
節513により出口液4の温度を検出し必要に応じてバ
ルブ12を開き蒸気を補ない液温度を設定値に維持する
のが有効である。
To deal with this, a bypass valve 11 as shown in FIG.
Since there is no liquid yet at startup and steam cannot be condensed by surface condenser 3, this bypass valve
1 to open the valve 1 and send the entire amount directly to the barometric condenser 2 for condensation, and also detect the temperature of the outlet liquid 4 of the surface condenser 3 and operate the valve 12 for introducing steam from another steam source. In order to compensate for the lack of steam and the lack of a heating source when the system is stopped, the temperature control 513 detects the temperature of the outlet liquid 4 and opens the valve 12 as necessary to maintain the liquid temperature at the set value without compensating for steam. is valid.

第2図および第3図において、通常の運転ではヒーター
は不要であるが、停止時は液化プロセスが終了した後糖
化槽に至るまで約3日程度の遅れがあるため加熱用ヒー
ターを設置するものである。
In Figures 2 and 3, a heater is not required during normal operation, but when the liquefaction process is stopped, there is a delay of about 3 days until it reaches the saccharification tank, so a heating heater is installed. It is.

温度調節器14を用も・ヒーター出口温度を検出し別の
蒸気源からのバルブ15を操作し必要に応じて蒸気を導
入して液温を制御する。
The temperature controller 14 is used to detect the heater outlet temperature and operate a valve 15 from another steam source to introduce steam as necessary to control the liquid temperature.

通常運転時、発生と消費の熱量がバランスしていればバ
ロメトリックコンデンサ−2は不要となルカ、アンバラ
ンスの場合および特に起動時サーフェスコンデンサー3
に液がない場合などに対処するために必要となる。
During normal operation, if the amount of heat generated and consumed is balanced, barometric capacitor 2 is not necessary. In the case of unbalance, and especially during startup, surface capacitor 3
This is necessary in case there is no liquid in the tank.

また、この方式は酵素法のみに限らず従来行なわれる酸
分解による連続糖化法(例えばクロイヤー法、コーンプ
ロダクト法、オンレータ−法)などの高温高圧下の糖化
プロセスに附属したフラッシュク・−ラーを持つ設備に
おいても第5図に示す如く同様の熱回収が可能である。
In addition, this method is not limited to the enzymatic method, but also uses the flash cooler attached to the saccharification process under high temperature and high pressure, such as conventional continuous saccharification methods using acid decomposition (e.g. Kroyer method, Cohn product method, Onlater method). Similar heat recovery is also possible in equipment that has the same type of heat as shown in Figure 5.

本実施例においては上述の如く構成されているので、液
化に関する冷却工程にて発生した蒸気を無駄に廃棄する
ことなく、清浄工程の加熱工程となるサーフェスコンデ
ンサーの液に与えられる熱量の増減に活用することによ
り、熱の合理的回収が図れ、従来法に比べ運転コストを
大巾に低減し、かつ排熱による公害を未然に防止するこ
とができるし、また従来の方法では清浄工程での糖液の
加熱に生蒸気を用いていたため、糖液が過熱しやすいそ
して糖液は高温に長時間接触すると過熱による着色の危
険が有り着色は清浄工程の負荷の増大しいては製品の欠
陥につながる事になる。
Since this embodiment is configured as described above, the steam generated in the cooling process related to liquefaction is not wasted and is used to increase or decrease the amount of heat given to the liquid in the surface condenser, which is the heating process of the cleaning process. By doing so, it is possible to achieve rational heat recovery, greatly reduce operating costs compared to conventional methods, and prevent pollution caused by waste heat. Because live steam was used to heat the liquid, the sugar liquid was easily overheated, and if the sugar liquid was in contact with high temperatures for a long time, there was a risk of coloring due to overheating.Coloring would increase the load on the cleaning process and lead to product defects. It's going to happen.

このため過熱着色する危険を防ぐため複雑な計装制御設
備カ必要であったが、この方式においてはフラッシュク
ーラーにて発生する蒸気は90℃以上にはならず、また
、所要量に応じて加熱供給量が制御されるので、液の過
熱のおそれは全くなく、また計装制御設備が不要となり
、でんぷん糖製造には特にその設備構造や取扱いが簡単
になる。
For this reason, complicated instrumentation and control equipment was required to prevent the risk of overheating and discoloration, but in this method, the steam generated in the flash cooler does not rise above 90°C, and it is heated according to the required amount. Since the feed rate is controlled, there is no risk of overheating the liquid, and no instrumentation control equipment is required, which simplifies the equipment structure and handling, especially for starch sugar production.

即ち、ぶどう糖製造工場で使用される生蒸気は通常12
0〜160℃位の飽和温度を持っておりこの蒸気を清浄
工程に於ける加熱工程に使用する場合例らかの事故で糖
液の移送が停止した場合高温状態に長期間さらされる事
になる不都合を防止するため計装制御設備で糖液の停止
状態を検出し自動で蒸気の供給を停止する等の安全装置
が必要になるのに対し本方式では液化工程で発生する蒸
気は80〜90℃の低温である事からこの回収蒸気を利
用したことでこれらの問題は全く発生する恐れがないの
で安全装置並びにこれに附帯する機器類は不用であって
使用しやすさも大きな利点となる。
That is, the live steam used in a glucose manufacturing factory is usually 12
It has a saturation temperature of about 0 to 160℃, and if this steam is used for the heating process in the cleaning process, it will be exposed to high temperature conditions for a long period of time if the transfer of sugar solution is stopped due to an accident. In order to prevent any inconvenience, safety devices such as instrumentation control equipment that detects the stoppage of the sugar solution and automatically stops the supply of steam are required, but with this method, the steam generated during the liquefaction process is Due to the low temperature of this recovered steam, there is no risk of these problems occurring at all, so safety equipment and associated equipment are unnecessary, and ease of use is also a major advantage.

また、従来法ではバロメトリックコンデンサ−を使用し
ているので冷却水が多量に必要であり、温廃水対策上か
らも不利であるが、サーフェスコンデンサーにおいて蒸
気を凝縮することにより、冷却水は不要となってでんぷ
ん糖製造処理を有利な**ものとでき、さらに酵素法の
みならず酸分解による連続糖化法においても容易に適用
することができ、糖化・濃縮設備に使用する蒸気の量が
大幅に節減できる。
In addition, the conventional method uses a barometric condenser, which requires a large amount of cooling water, which is disadvantageous in terms of measures against hot waste water, but by condensing steam in a surface condenser, no cooling water is required. This makes starch sugar production process advantageous**, and can be easily applied not only to enzymatic methods but also to continuous saccharification methods using acid decomposition, and the amount of steam used in saccharification and concentration equipment can be greatly reduced. You can save money.

本方式を用いた時に、ある実施例については、節約され
る蒸気量は下表の如く約15%にも達することが確認さ
れtも しかもでんぷん糖製造処理に不可欠の清浄工程中に生蒸
気を用いることがなくなって過熱による製品の欠陥も防
ぎ良質のでんぷん糖を安価に製造できる実用上極めて大
なる効果を有するものである。
When using this method, it has been confirmed that in some examples, the amount of steam saved reaches about 15% as shown in the table below. This has an extremely great practical effect in that it prevents product defects due to overheating when it is no longer used, and enables the production of high-quality starch sugar at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すフローチャートであり、第
1図は酵素法によるでんぷん糖製造の全体フローを示し
、第2図および第3図は制御機構を併記したフロー図の
一部を示し、第4図は起動、停止時の制御を示すフロー
図の一部、第5図は酸分解法によるでんぷん糖製造のフ
ロー図を示す。 1・・・・・・フラッシュクーラー、2・・・・・・バ
ロメトリックコンデンサ−13・・・・・・サーフェス
コンデンサー、4・・・・・・出口液、6・・・・・・
バルブ、?、10゜13.14・・・・・・温度調節器
、9,12,15・・・・・・バルブ、11・・・・・
・バイパス弁。
The drawings are flowcharts showing embodiments of the present invention; FIG. 1 shows the overall flow of starch sugar production by an enzymatic method, and FIGS. 2 and 3 show a part of the flowchart together with the control mechanism, FIG. 4 shows a part of a flow diagram showing control at startup and stop, and FIG. 5 shows a flow diagram of starch sugar production by acid decomposition method. 1...Flash cooler, 2...Barometric condenser-13...Surface condenser, 4...Outlet liquid, 6...
valve,? , 10゜13.14...Temperature controller, 9,12,15...Valve, 11...
・Bypass valve.

Claims (1)

【特許請求の範囲】[Claims] 1−次液化、二次液化、糖化、沢過および清浄の各工程
からなるでんぷん糖製造工程において、−次液化で残存
する難溶性でんぷん分子を高温高圧条件下で膨潤解裂さ
せたのち、再度酵素の作用する温度まで下げて二次液化
を行ない、最初のでんぷん乳を高温高圧下で処理する一
次液化工程に続くフラッシュクーラー内での自己蒸発冷
却工程で生じた蒸気を全量後段の清浄工程の加熱工程の
サーフェスコンデンサーに導き、凝縮して前記発生蒸気
の全量を凝縮しうる該サーフェスコンデンサーの出口液
温を検出して操作信号を出す温度調節器で出口液温の変
化に応じて前記サーフェスコンデンサーに導入或いは導
出される熱媒を導入系路又は導出系路に設けられるバル
ブを自動的に操作し、液に対して余剰の蒸気をバイパス
し、前記サーフェスコンデンサーの液に与えられる熱量
を増減して処理することを特徴とするでんぷん糖製造工
程の廃熱回収方法。
In the starch sugar production process, which consists of the steps of primary liquefaction, secondary liquefaction, saccharification, filtration, and purification, the poorly soluble starch molecules remaining in the secondary liquefaction are swollen and decomposed under high temperature and high pressure conditions, and then re-processed. Secondary liquefaction is carried out by lowering the temperature to the temperature at which enzymes act, and the entire amount of steam generated in the self-evaporative cooling process in the flash cooler following the primary liquefaction process in which starch milk is treated under high temperature and pressure is transferred to the subsequent cleaning process. A temperature controller that detects the outlet liquid temperature of the surface condenser and outputs an operation signal by guiding the liquid to a surface condenser in the heating process and condensing the entire amount of the generated steam, and controlling the temperature of the surface condenser according to changes in the outlet liquid temperature. Automatically operates a valve provided in the introduction line or outlet line for the heat medium introduced into or taken out of the surface condenser, bypasses excess steam to the liquid, and increases or decreases the amount of heat given to the liquid in the surface condenser. 1. A method for recovering waste heat from a starch sugar manufacturing process.
JP50015779A 1975-02-06 1975-02-06 starch Expired JPS5834116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50015779A JPS5834116B2 (en) 1975-02-06 1975-02-06 starch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50015779A JPS5834116B2 (en) 1975-02-06 1975-02-06 starch

Publications (2)

Publication Number Publication Date
JPS5191341A JPS5191341A (en) 1976-08-10
JPS5834116B2 true JPS5834116B2 (en) 1983-07-25

Family

ID=11898289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50015779A Expired JPS5834116B2 (en) 1975-02-06 1975-02-06 starch

Country Status (1)

Country Link
JP (1) JPS5834116B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103260B2 (en) * 2008-04-23 2012-12-19 川崎重工業株式会社 Method and apparatus for saccharification and decomposition of cellulosic biomass
JP5314917B2 (en) * 2008-04-23 2013-10-16 川崎重工業株式会社 Method and apparatus for saccharification and decomposition of cellulosic biomass
US20130125877A1 (en) * 2010-09-30 2013-05-23 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus of hydrolytic saccharification of cellulosic biomass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS437920Y1 (en) * 1964-12-12 1968-04-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS437920Y1 (en) * 1964-12-12 1968-04-09

Also Published As

Publication number Publication date
JPS5191341A (en) 1976-08-10

Similar Documents

Publication Publication Date Title
US7566383B2 (en) Heat recovery from a biomass heat source
JPS6121603B2 (en)
US4526590A (en) Cooling and condensing of sulfur and water from Claus process gas
JP3808781B2 (en) Process for producing hydrolysis products from cellulose-containing materials
JPS5834116B2 (en) starch
JP7442877B2 (en) Organic liquid purification and recovery equipment and methods
CN107224745B (en) Quinol solution's system for separating and purifying and method
US4249486A (en) Steam condensate and waste water recycling process
GB1603678A (en) Manufacture of sugar
US4916242A (en) Combined process for thermally and chemically treating lignocellulose-containing biomass and for producing furfural
CN209741031U (en) Solid sodium methoxide alkaline production device for recovering methanol by jet pump
JP6918999B2 (en) An integrated process that separates ethanol from fermentation broth at low temperature applications
CN114716098A (en) Treatment method and treatment system for crystalline silicon texturing wastewater
JP2023537972A (en) Protein recovery system and method for manufacturing ultra-high maltose syrup
JPS61234982A (en) Treatment of waste water containing ammonia, hydrogen sulfide, and so forth
CN210004843U (en) waste heat utilization energy-saving device for crystallization concentration tank
CN219160316U (en) Preheating exhaust steam recovery system
CN220237773U (en) Paramydehyde continuous film distillation plant
CN219423752U (en) Naphthalene front-end purification system for naphthalene-making phthalic anhydride industry
JPS5861900A (en) Treatment of sludge
CN109734104A (en) A kind of device and method of the periodic off-gases system production ammonium hydroxide using synthesis ammonia
CN212669584U (en) Production device for extracting sodium acetate in furfural production
CN217909007U (en) Cellulose solvent recovery device
CN217809225U (en) Energy-saving system for preparing olefin from methanol
CN219429720U (en) Heating system of trichlorosilane synthetic furnace