JPS5833492Y2 - Hot air generator - Google Patents

Hot air generator

Info

Publication number
JPS5833492Y2
JPS5833492Y2 JP10627577U JP10627577U JPS5833492Y2 JP S5833492 Y2 JPS5833492 Y2 JP S5833492Y2 JP 10627577 U JP10627577 U JP 10627577U JP 10627577 U JP10627577 U JP 10627577U JP S5833492 Y2 JPS5833492 Y2 JP S5833492Y2
Authority
JP
Japan
Prior art keywords
damper
heating element
air
temperature
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10627577U
Other languages
Japanese (ja)
Other versions
JPS5432958U (en
Inventor
尚之 岩田
義雄 吉田
清司 森田
康生 竹谷
正史 長田
信道 服部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP10627577U priority Critical patent/JPS5833492Y2/en
Publication of JPS5432958U publication Critical patent/JPS5432958U/ja
Application granted granted Critical
Publication of JPS5833492Y2 publication Critical patent/JPS5833492Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Housings, Intake/Discharge, And Installation Of Fluid Heaters (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Description

【考案の詳細な説明】 この考案は、発熱体として正特性サーミスタを用いて温
風を発生する温風発生装置に関するものである。
[Detailed Description of the Invention] This invention relates to a hot air generator that generates hot air using a positive temperature coefficient thermistor as a heating element.

従来、温風発生装置として電子技術第19巻第2号に記
載されているように例えば第4図に示すようなものがあ
った。
BACKGROUND ART Conventionally, there has been a hot air generator as shown in FIG. 4, for example, as described in Denshi Gijutsu Vol. 19, No. 2.

この図で、21は本体ケースであり、その−側面に空気
の吸込口22を、これと対向する側面に吹出口23が設
けられている。
In this figure, 21 is a main body case, and an air suction port 22 is provided on the negative side of the main body case, and an air outlet 23 is provided on the opposite side.

24はこの吸込口22と吹出口23との間に空気通路を
形成するためのケーシング、25はこの空気通路中、上
記吸込口22の近傍に設けられたフイルター、26は空
気流形成のためのファン、27は空気通路中でかつ上記
吹出口23の近傍に設けられたハニカム状の空胴を有す
る正特性サーミスタからなる発熱体、28はこの発熱体
27と上記ファン26との間に設けられ、発熱体21へ
流れる空気量を調整するためのダンパで調節ツマミ(図
示せず)により回転軸29を回転し、連続的にその角度
が変えられるようになっている。
24 is a casing for forming an air passage between the suction port 22 and the air outlet 23; 25 is a filter provided in the air passage near the suction port 22; and 26 is a casing for forming an air flow. A fan 27 is a heating element made of a positive temperature coefficient thermistor having a honeycomb-shaped cavity provided in the air passage and near the air outlet 23; 28 is a heating element provided between the heating element 27 and the fan 26; , is a damper for adjusting the amount of air flowing to the heating element 21, and its angle can be continuously changed by rotating a rotary shaft 29 using an adjustment knob (not shown).

このような構成になる温風発生装置はファン26を回転
し、発熱体27に電流を流すと、吸込口22から空気を
吸引、フィルター25で塵埃を除去し、ダンパ18によ
る空隙を介して発熱体27を通過するとき加熱されて吹
出口23より温風を吹き出す。
In the hot air generator configured as described above, when the fan 26 is rotated and a current is passed through the heating element 27, air is sucked in from the suction port 22, dust is removed by the filter 25, and heat is generated through the gap formed by the damper 18. When the air passes through the body 27, it is heated and hot air is blown out from the air outlet 23.

このときダンパ28の角度を手動により変え発熱体28
を流れる空気量を変えれば発熱体21の発熱量も変化し
、温度調節することは可能である。
At this time, the angle of the damper 28 is manually changed so that the heating element 28
By changing the amount of air flowing through the heating element 21, the amount of heat generated by the heating element 21 will also change, making it possible to adjust the temperature.

ところがこのような温風発生装置では発熱体27の発熱
量P6iV)は第5図に示すように発熱体27を通過す
る空気量Q (m37m1n)によって大きく変化する
ものの吸込み空気温度T1によっては若干変化するだけ
である。
However, in such a hot air generator, the calorific value P6iV) of the heating element 27 changes greatly depending on the amount of air Q (m37m1n) passing through the heating element 27, as shown in Fig. 5, but it changes slightly depending on the intake air temperature T1. Just do it.

例えば風量Qが0.3m ” /’tnin で吸込み
空気温度T1が20℃のとき発熱体27の発熱量P(ト
)は第5図から約300(W)であり、吸込み空気温度
T1が40℃になったときは第5図より発熱体17の発
熱量Pは280(W)になり、発熱量Pは若干減少する
だけである。
For example, when the air volume Q is 0.3 m''/'tnin and the suction air temperature T1 is 20°C, the calorific value P (g) of the heating element 27 is approximately 300 (W) from FIG. ℃, the calorific value P of the heating element 17 becomes 280 (W) as shown in FIG. 5, and the calorific value P decreases only slightly.

この温風発生装置で吸込み空気温度T1の変化に従って
発熱体270発熱量Pを大きく変化させるためには、手
動により調節ツマ□を操作し回転軸29を中心にダンパ
28を回動し発熱体27への空気量を変化させねばなら
ない。
In order to greatly change the calorific value P of the heating element 270 according to changes in the intake air temperature T1 in this hot air generator, manually operate the adjustment knob □ to rotate the damper 28 about the rotation shaft 29. The amount of air must be changed.

つまり雰囲気温度が変わった場合、発熱量を大きく変化
させるためには手動より調節つまみを動作させねばなら
ないという欠点があった。
In other words, when the ambient temperature changes, the adjustment knob must be operated manually in order to significantly change the amount of heat generated.

特に上記の温風発生装置を狭い密閉空間、例えばやぐら
こたつに用い、20℃の雰囲気から温風発生装置をON
した場合やぐらこたつ内の空気温度は、発熱量Pが30
0Wの発熱体27により暖められた0、3m3/、tn
in の空気によって、やぐら内の空気が混合され暖め
られる。
In particular, when using the hot air generator described above in a narrow closed space, such as a kotatsu tower, turn on the hot air generator from an atmosphere of 20°C.
In this case, the air temperature inside the Yagura Kotatsu will have a calorific value P of 30
0.3m3/,tn heated by 0W heating element 27
The in air mixes and warms the air inside the tower.

このようなこたつにおいてはタイミングよくダンパを操
作することは困難であるので徐々にやぐら内の空気温度
は上昇し、温風発生装置の吸込み空気温度も徐々に上昇
するため、第6図に示すように発熱量は徐々に減少する
もののその変化が少ない。
In such a kotatsu, it is difficult to operate the damper at the right time, so the air temperature inside the tower gradually rises, and the temperature of the air sucked into the hot air generator also gradually rises, as shown in Figure 6. Although the calorific value gradually decreases, the change is small.

従ってやぐら内の空気温度はどんどん上昇するためやぐ
らこたつとしてこの温風発生装置を使用するには温度検
出器によりやぐら内の空気温度を検出し所定温度を越え
たとき発熱体27やファン26への通電を停止する制御
をせざるを得ない。
Therefore, the air temperature inside the tower increases rapidly, so in order to use this hot air generator as a tower kotatsu, a temperature sensor is used to detect the air temperature inside the tower, and when the temperature exceeds a predetermined temperature, the heating element 27 and fan There is no choice but to control the power supply to stop.

しかしそれでは従来の赤外線こたつと同様に温風温度に
脈動を生じたり、ラジオノイズを発生したりするので正
特性サーミスタを使用した利点が失なわれる。
However, this would cause pulsations in the temperature of the hot air and generate radio noise, similar to the conventional infrared kotatsu, so the advantage of using a positive temperature coefficient thermistor would be lost.

そこで本考案者らは先ず被加熱気体温度に応動するバイ
メタルのような熱応動素子によりダンパ29を駆動する
か、ダンパ28を熱応動材料で形成することにより、ダ
ンパ28を自動的に動作せしめて発熱体270発熱量を
連続的に自動制御することを思いついた。
Therefore, the present inventors first made the damper 28 automatically operate by driving the damper 29 with a thermally responsive element such as a bimetal that responds to the temperature of the gas to be heated, or by forming the damper 28 from a thermally responsive material. We came up with the idea of continuously and automatically controlling the calorific value of the heating element 270.

また第4図のような装置に釦いてはダンパ28で完全に
空気通路を完全に閉鎖してしまうとファン26のモータ
が過負荷になるので、ダンパ28の上縁部に隙間を設け
ておく必要がある。
Furthermore, if the air passage is completely closed off by the damper 28 in the device shown in Fig. 4, the motor of the fan 26 will be overloaded, so a gap should be provided at the upper edge of the damper 28. There is a need.

従って発熱体27に流入する空気量が最小の状態でも相
当量の空気が流入し、その風速は早いので発熱体27と
の熱交換量は比較的大きく、発熱量を余り減することが
できなかった。
Therefore, even when the amount of air flowing into the heating element 27 is minimal, a considerable amount of air flows in, and the wind speed is high, so the amount of heat exchanged with the heating element 27 is relatively large, and the amount of heat generated cannot be reduced much. Ta.

それを改善するにはファン26と発熱体27との中間部
に排気口を設け、ダンパ29は上記排気口を閉鎖する位
置と、発熱体27に到る空気通路を閉鎖する位置との間
を回動するようにすればよいことに想到した。
To improve this, an exhaust port is provided between the fan 26 and the heating element 27, and the damper 29 is installed between the position where the exhaust port is closed and the position where the air passage leading to the heating element 27 is closed. I came up with the idea of making it rotate.

すなわち上記空気通路が全開し、排気口が閉鎖されたと
きは発熱体27は送風機26の能力に対して最大の発熱
量になり、排気口が全開し、上記空気通路が閉鎖された
ときは発熱体27の発熱量は最小となる。
That is, when the air passage is fully open and the exhaust port is closed, the heating element 27 generates the maximum amount of heat relative to the capacity of the blower 26, and when the exhaust port is fully open and the air passage is closed, no heat is generated. The amount of heat generated by the body 27 is minimized.

しかしそのような装置を製作するに当って、空気通路の
壁面を直接使ってダンパ28で上記空気通路を閉鎖しよ
うとすると、上記壁面とダンパ28との間に多少の隙間
を設けないとダンパ28は円滑に回動しない。
However, when manufacturing such a device, if an attempt is made to directly use the wall surface of the air passage to close the air passage with the damper 28, the damper 28 must be provided with some clearance between the wall surface and the damper 28. does not rotate smoothly.

この考案の目的は上記問題点を解消することにあり、排
気口とダンパと気体流通路の閉鎖位置で内方に突出し上
記ダンパの周縁部が当接する隙間ふさぎ部を設けること
により、ファン負荷変動を少なくし、かつ発熱体への気
体流量を正確にすることにより発熱体の発熱量を被加熱
気体の温度に応じて発熱体の発熱量の制御巾を拡くかつ
正確にするとともにエネルギを節約することにある。
The purpose of this invention is to solve the above problems, and by providing a gap closing part that protrudes inward at the closed position of the exhaust port, damper, and gas flow path and comes into contact with the peripheral edge of the damper, fan load fluctuations can be improved. By reducing the amount of heat generated by the heating element and making the flow rate of gas to the heating element accurate, the amount of heat generated by the heating element can be controlled widely and accurately according to the temperature of the heated gas, and energy is saved. It's about doing.

従ってこの考案の構成としては、ケーシングによって吸
気口と吹出口とを連通して形成される気体流通路の上記
吸込口と上記吹出口との間に順次配設された気体流発生
用ファンと正特性サーミスタよりなる発熱体、上記ノア
ンと発熱体との間に位置し上記ケーシングに設けられた
排気口、上記気体流通路に設けられ、この排気口と上記
発熱体側の気体流通路の通路断面とを被加熱気体の温度
に応じて回動し、それぞれの所定温度で閉鎖するダンパ
および上記気体流通路断面の閉鎖位置で上記ケーシング
壁内側に突出し、上記ダンパの周縁部が当接する隙間ふ
さぎ部を備えてなるものである。
Therefore, the configuration of this invention is such that a gas flow generating fan and a gas flow generation fan are sequentially arranged between the suction port and the blowout port of the gas flow passage formed by communicating the suction port and the blowout port through the casing. a heating element made of a characteristic thermistor, an exhaust port located in the casing and located between the noan and the heating element, and a passage cross section of the gas flow passage provided in the gas flow passage and between the exhaust port and the gas flow passage on the side of the heating element. a damper that rotates according to the temperature of the gas to be heated and closes at each predetermined temperature; and a gap closing part that protrudes inside the casing wall at the closed position of the cross section of the gas flow path and that the peripheral edge of the damper abuts. It is something to be prepared for.

その作用としては、被加熱気体の温度が低く排気口がダ
ンパによって閉鎖された状態にあっては、ファンによっ
て発生した気体流量のほとんで発熱体を通過するため発
熱量は極太である。
As for its effect, when the temperature of the gas to be heated is low and the exhaust port is closed by the damper, most of the gas flow rate generated by the fan passes through the heating element, so the amount of heat generated is extremely large.

被加熱気体の温度が高まるにつれてダンパは回動し、盤
気口を開き始め、ファンによって発生した気体流量の一
部は排気口より発熱体を通過しないまま排気され、発熱
体を通過する気体流量は減少するので発熱体の発熱量は
減少する。
As the temperature of the gas to be heated increases, the damper rotates and the panel air ports begin to open, and part of the gas flow rate generated by the fan is exhausted from the exhaust port without passing through the heating element, reducing the gas flow rate passing through the heating element. decreases, so the amount of heat generated by the heating element decreases.

そして被加熱気体の温度が所定温度を越えるとダンパは
さらに回動し、隙間ふさぎ部とダンパが当接し、発熱体
への気体流通路は確実に閉鎖され、はとんど漏れ気体が
発熱体に送られることがないので発熱量は極小となり、
その結果被加熱気体の温度に応じて、ファンの負荷変動
のない状態で発熱体の発熱量を正確にかつ大巾に自動制
御でき、安全性の向上、省エネルギ効果が得られる。
Then, when the temperature of the gas to be heated exceeds a predetermined temperature, the damper rotates further, and the gap closing part and the damper come into contact, and the gas flow path to the heating element is reliably closed, and the leaking gas is almost transferred to the heating element. The amount of heat generated is minimal because it is not sent to
As a result, the amount of heat generated by the heating element can be automatically controlled accurately and widely in accordance with the temperature of the gas to be heated without fluctuations in the load on the fan, resulting in improved safety and energy savings.

以下この考案を暖房器の一例として、やぐらこたつに組
み込み、比較的狭い低密閉空間の空気を加熱する場合の
実施例にもとづいて説明する。
This invention will be described below as an example of a heater, based on an example in which it is incorporated into a yagura kotatsu to heat the air in a relatively narrow, low-sealed space.

第1図において、1はやぐら、2はやぐら1の天板の下
に設けられ、吸気ロアおよび吹出口8とを連通してなる
気体流通路である空気流通路12を形成するケーシング
、3は上記空気流通路12内に上記吸気ロア側に設けら
れ、上記空気流通路12に空気流を発生させるファン、
4は上記空気流通路12内に上記吹出口8側に設けられ
上記ファン3によって発生した空気流を加熱する正特性
サーミスタからなる発熱体で、これは円形・矩形・多角
形等の多数の通気孔を有してなるもの、あるいは平板形
・ディスク形等多数空気流に概平行に配列して構成され
るもので、これらが1個あるいは複数個設けており、こ
の発熱体4は正特性サーミスタからなるため、発熱体4
を通過する空気流量が増大すれば、発熱量が増え、通過
する空気流量が減少すれば発熱量も減り、通過する空気
流量が零になったとき発熱量は極少となる。
In FIG. 1, 1 is a tower, 2 is a casing that is provided under the top plate of the tower 1, and forms an air flow passage 12 that is a gas flow passage that communicates with the intake lower and the outlet 8; a fan that is provided in the air flow passage 12 on the intake lower side and generates an air flow in the air flow passage 12;
Reference numeral 4 denotes a heating element made of a positive temperature coefficient thermistor, which is provided in the airflow passage 12 on the side of the air outlet 8 and heats the airflow generated by the fan 3. This heating element 4 is a positive temperature coefficient thermistor. Because it consists of heating element 4
As the air flow rate increases, the amount of heat generated increases; as the air flow rate decreases, the amount of heat generated decreases; and when the air flow rate decreases to zero, the amount of heat generated becomes extremely small.

5は上記空気流通路12の上記ファン3と上記発熱体4
の中間に位置して上記ケーシング2に設けられた排気口
、6はこの排気口5の上記発熱体4側端を支点として所
定角度回動自在に設けられ、上記発熱体4側の上記空気
流通路120通路断面を可変し、上記発熱体4への空気
流量を排気口5に分流することにより調節するダンパで
ある。
5 is the fan 3 and the heating element 4 of the air flow passage 12;
An exhaust port 6 located in the middle of the casing 2 is rotatable by a predetermined angle about the end of the exhaust port 5 on the side of the heating element 4 as a fulcrum, and the air circulation on the side of the heating element 4 is The passage 120 is a damper that adjusts the cross section of the passage by dividing the air flow rate to the heating element 4 to the exhaust port 5.

第2図には、上記ダンパ6と排気口部分の一部を切り欠
いて、その構成を詳細に示した拡大斜視図である。
FIG. 2 is an enlarged perspective view showing the structure of the damper 6 and the exhaust port in detail, with a portion of the damper 6 and the exhaust port cut away.

この図で、9は被加熱気体である、やぐらこたつ内の空
気温度に応じて変位する外周端を固定し、中心を回転軸
10で上記ダンパ6に結合されたうずまき形状のバイメ
タルである。
In this figure, reference numeral 9 denotes a spiral-shaped bimetal whose outer circumferential end is fixed and which moves according to the temperature of the air inside the tower kotatsu, which is the gas to be heated, and whose center is connected to the damper 6 by a rotating shaft 10.

上記バイメタル9は被加熱空気の温度によって第1の所
定温度以上になれば、温度差に対して一定角度の割合い
で上記排気口5を開く方向に上記回転軸10を支点とし
て上記ダンパ6を回転するよう設計されており、さらに
第2の所定温度に上昇すれば、上記空気流通路12に上
記ケーシング2壁内側に突出して設けられ、隙間ふさぎ
部である額縁形状した隙間ふさぎ板11と上記ダンパ6
の周縁部が当接するまで回動し、上記空気流通路12の
上記発熱体4側の通路断面を閉じ、上記発熱体4への空
気流量を概容にする。
When the temperature of the heated air exceeds a first predetermined temperature, the bimetal 9 rotates the damper 6 about the rotary shaft 10 in a direction that opens the exhaust port 5 at a constant angle relative to the temperature difference. When the temperature further rises to a second predetermined temperature, a frame-shaped gap closing plate 11, which is provided in the air flow passage 12 and protrudes from the inner side of the wall of the casing 2 and serves as a gap closing portion, and the damper 6
is rotated until the peripheral edge portions of the heat generating element 4 come into contact with each other, thereby closing the passage cross section of the air flow passage 12 on the side of the heat generating element 4, and approximately adjusting the air flow rate to the heat generating element 4.

またこの隙間ふさぎ板11は上記空気流通路12の通路
断面閉鎖位置における上記ダンパ6と、排気口5の閉鎖
位置におけるダンパ6とが鋭角になるような位置に設け
られており、その中ぐり部はダンパ6よりも小さくなっ
てかり、ダンパ6の周縁部が隙間ふさぎ板と当接するよ
うになっている。
Further, this gap closing plate 11 is provided at a position such that the damper 6 in the passage cross-sectional closed position of the air flow passage 12 and the damper 6 in the closed position of the exhaust port 5 form an acute angle. is smaller than the damper 6, and the peripheral edge of the damper 6 comes into contact with the gap closing plate.

また上記排気口5の開口面形状をダンパ形状より相対的
に小さく設計されている。
Further, the shape of the opening surface of the exhaust port 5 is designed to be relatively smaller than the shape of the damper.

上記のように構成された温風こたつにおいてはスタート
時はこたつ内部の温度はまだ低く、バイメタル9の変形
はないのでダンパ6も回転せず排魚目5はダンパ6によ
り閉塞されているので排気口5から排気される空気流量
はなく発熱体4を通過して吹き出される空気流量は最大
で、したがって発熱体40発熱量は最大であり、こたつ
内部の温度の立ち上りは早急で、また強制送風であるた
めに内部温度も均一となる。
In the warm air kotatsu configured as described above, at the start, the temperature inside the kotatsu is still low, and the bimetal 9 is not deformed, so the damper 6 does not rotate, and the fish discharge eye 5 is blocked by the damper 6, so that the air is exhausted. There is no flow of air exhausted from the opening 5, and the flow of air blown out through the heating element 4 is maximum, so the amount of heat generated by the heating element 40 is maximum, the temperature inside the kotatsu rises quickly, and forced air is Therefore, the internal temperature is also uniform.

こたつの温度が徐々に上り第1の所定値以上になるとダ
ンパ6が徐々に回転し、排気口5より排気される空気流
量が温度上昇に比例して増加し、逆に発熱体4を通過し
て吹出口8から吹き出される空気流量が減少し発熱量も
減少する。
When the temperature of the kotatsu gradually rises and reaches a first predetermined value or higher, the damper 6 gradually rotates, and the flow rate of air exhausted from the exhaust port 5 increases in proportion to the temperature rise, and conversely, the air flow rate passes through the heating element 4. As a result, the flow rate of air blown out from the outlet 8 decreases, and the amount of heat generated also decreases.

また、こたつ内部の温度が下がれば、ダンパ6はバイメ
タル9の変形量の減少に追従して上記と逆方向に回転す
るので発熱体4を通過する空気流量は増加し、発熱量が
増加の方向となる。
Furthermore, when the temperature inside the kotatsu falls, the damper 6 follows the decrease in the amount of deformation of the bimetal 9 and rotates in the opposite direction to the above, so the flow rate of air passing through the heating element 4 increases, and the amount of heat generated increases. becomes.

こたつ内部の温度が第2の所定温度になればダンパ6は
空気流通路に設けられた隙間ふさぎ板11と密着し、空
気流量の全てが排気口5より排気され発熱体4への空気
流は漏れないので発熱量は最小となる。
When the temperature inside the kotatsu reaches the second predetermined temperature, the damper 6 comes into close contact with the gap closing plate 11 provided in the air flow passage, and all of the air flow is exhausted from the exhaust port 5, and the air flow to the heating element 4 is reduced. Since there is no leakage, the amount of heat generated is minimal.

なおダンパ6はその排気口5の閉鎖位置に対し鋭角をな
して隙間ふさぎ板11に当接するので、バイメタル9の
変位とこたつ内空気温度との関係はぼ直線関係にあり、
またダンパ6が隙間ふさぎ板11に圧着されるときのバ
イメタル9の力も大きく、漏れ空気をより少くする利点
がある。
Note that since the damper 6 contacts the gap closing plate 11 at an acute angle with respect to the closed position of the exhaust port 5, the relationship between the displacement of the bimetal 9 and the air temperature inside the kotatsu is approximately linear.
Furthermore, the force of the bimetal 9 when the damper 6 is pressed against the gap closing plate 11 is large, which has the advantage of further reducing air leakage.

しかるに発熱体4は正温度係数のサーミスタであるから
決して過熱せず、高温になれば発熱体4を通過する空気
流量が減少するように設計されているため、発熱体自体
は異常発熱することなく安全である。
However, since the heating element 4 is a thermistor with a positive temperature coefficient, it never overheats, and since it is designed so that the flow rate of air passing through the heating element 4 decreases when the temperature rises, the heating element itself does not generate abnormal heat. It's safe.

又こたつ内の温度が人の出入りによって冷えても、それ
に応じてダンパ6により空気流量が自動調節され発熱量
も自動的に増加するなど常にこたつ内部の温度を一定に
保つような構造になっている。
Furthermore, even if the temperature inside the kotatsu cools down due to people coming and going, the damper 6 automatically adjusts the air flow accordingly and automatically increases the amount of heat generated, so that the temperature inside the kotatsu is always kept constant. There is.

また発熱量が連続的に自動調節されるため、こたつ内の
温度変化も従来の赤外線こたつに比べて少なく、暖をと
る人に不快感を与えない。
Additionally, because the amount of heat generated is continuously and automatically adjusted, there are fewer changes in the temperature inside the kotatsu than with conventional infrared kotatsu, which does not cause discomfort to those seeking warmth.

その上発熱体4を通過する空気流量を、ファン3と発熱
体4の間に排気口5とダンパ6とをもって構成されてい
るのでファン3が発生する風量は常に一定であり、負荷
変動がなくファンモータの冷却効果も大きく、寿命など
も十分長くなる。
Furthermore, since the air flow rate passing through the heating element 4 is controlled by the exhaust port 5 and the damper 6 between the fan 3 and the heating element 4, the air volume generated by the fan 3 is always constant and there is no load fluctuation. The cooling effect of the fan motor is also great, and its lifespan is long enough.

な卦上記実施例では、ダンパ形状でかつダンパより相対
的に小さな孔を中ぐりした額縁形状の隙間ふさぎ板を具
備しているが、空気流通路を構成するケーシングに隙間
ふさぎ板と同形状の突出部分を形成させることによって
も同じ効果が得られる。
Note that in the above embodiment, a frame-shaped gap closing plate is provided which has a damper shape and has a relatively smaller hole than the damper. The same effect can be obtained by forming a protruding portion.

即ち第3図に示すのはダンパ回転中心に所定角度で発熱
体側空気流通路を形成するケーシングの通路断面形状が
ダンパ形状を相対的に小さくした形状の構成にしている
That is, as shown in FIG. 3, the passage cross-sectional shape of the casing, which forms the heating element side air flow passage at a predetermined angle with respect to the damper rotation center, has a configuration in which the damper shape is relatively smaller.

この方法だと部品数や製造工程数等が少なくてすむなど
のメリットがある。
This method has the advantage of reducing the number of parts and manufacturing steps.

なお排気口5の開口部周辺にダンパ形状で、かつダンパ
より相対的に小さな形状を中ぐりした額縁形状の隙間ふ
さぎ板を設ければ排気口閉塞時の空気流の漏れが防止で
きるので温度の立上り特性がさらによくなる。
In addition, if a damper-shaped gap-closing plate is provided around the opening of the exhaust port 5 and has a frame-shaped hole that is relatively smaller than the damper, leakage of airflow when the exhaust port is closed can be prevented, thereby reducing the temperature. The rise characteristics are even better.

また、額縁形状の隙間ふさぎ板を柔軟性のある材料で構
成するか、隙間ふさぎ板、排気口周辺に柔軟性のある材
料を装着する、あるいはダンパの両面に柔軟性のある材
料を装着すると、ダンパと空気流通路との気密性が一層
よくなる。
In addition, if the frame-shaped gap closing plate is made of a flexible material, or flexible materials are attached to the gap closing plate or around the exhaust port, or flexible materials are attached to both sides of the damper, The airtightness between the damper and the airflow passage becomes even better.

上記実施例はこたつに関するものであったがこの考案は
他の湯風発生装置例えば保温器、乾燥器等においても同
様の効果が得られ、被加熱気体は空気以外でもよい。
Although the above-mentioned embodiment relates to a kotatsu, the same effect can be obtained in other hot and wind generating devices such as a heat insulator, a dryer, etc., and the gas to be heated may be other than air.

この考案は以上説明したと訃り、気体流通路にファンと
発熱体との中間に排気口、ダンパむよび隙間ふさぎ部を
設けることによりファンモータの負荷変動が少なく、か
つ発熱体側への気体流通路の閉鎖が確実となり、発熱体
への漏れ気体が少くなるので、モータの安全性・寿命が
向上し、かつ温度制御が確実に行え、省エネルギ効果が
得られる。
This idea is based on the above explanation, and by providing an exhaust port, a damper, and a gap closing part in the gas flow path between the fan and the heating element, the load fluctuation of the fan motor is reduced, and the gas flow to the heating element side is reduced. Since the passageway is reliably closed and less gas leaks to the heating element, the safety and life of the motor are improved, temperature control can be reliably performed, and energy savings can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図はいずれも本考案の一実施例を示すもので第1図は縦
断面図、第2図は主にダンパを取り付けたケーシング部
分の一部切欠いた拡大斜視図、第3図はケーシングの一
部分の縦断面図、第4図は従来装置の縦断面図、第5図
、第6図は正特性サーミスタの特性図である。 図に釦いて、2はケーシング、3は空気流発生用ファン
、4は発熱体、5は排気口、6はダンパ10は回転軸、
11は隙間ふさぎ板、12は空気流通路である。 な訃各図中同−符号は同一または相当部分を示すものと
する。
The figures all show one embodiment of the present invention, and Fig. 1 is a longitudinal sectional view, Fig. 2 is an enlarged perspective view with a partial cutout of the casing portion where the damper is attached, and Fig. 3 is a portion of the casing. 4 is a longitudinal sectional view of a conventional device, and FIGS. 5 and 6 are characteristic diagrams of a positive temperature coefficient thermistor. In the figure, 2 is a casing, 3 is a fan for generating airflow, 4 is a heating element, 5 is an exhaust port, 6 is a damper 10 is a rotating shaft,
11 is a gap closing plate, and 12 is an air flow path. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) ケーシングによって吸気口と吹出口とを連通
して形成される気体流通路の上記吸込口と上記吹出口と
の間に順次配設された気体流発生用ファンと正特性サー
ミスタよりなる発熱体、上記ファンと発熱体との間に位
置し、上記ケーシングに設けられた排気口、上記気体流
通路に設けられ、この排気口と上記発熱体側の気体流通
路の通路断面とを被加熱気体の温度に応じて回動し、そ
れぞれの所定温度で閉鎖するダンパおよび上記気体流通
路断面の閉鎖位置で上記ケーシング壁内側に突出し、上
記ダンパの周縁部が当接する隙間ふさぎ部を備えた温風
発生装置。 (η 排気口の閉鎖位置時におけるダンパと、被加熱気
体の温度に応じて回動し、気体流通路を閉鎖した状態時
の上記ダンパとが鋭角をなすよう隙間ふさぎ部を設けた
ことを特徴とする実用新案登録請求の範囲第(1)項記
載の温に発生装置。 (3)ケーシングの壁部を気体流通路側に突出させ隙間
ふさぎ部としたことを特徴とする実用新案登録請求の範
囲第(1)項または第(2)項記載の温風発生装置。 (4)隙間ふさぎ部のダンパが当接する部分を柔軟性材
料で構成したことを特徴とする実用新案登録請求の範囲
第(1)項乃至第(3)項の何れかに記載の温風発生装
置。 (5)ダンパの隙間ふさぎ部と当接する部分を柔軟性材
料で構成したことを特徴とする実用新案登録請求の範囲
第(1)項乃至第(3)項の倒れかに記載の温風発生装
置。
[Claims for Utility Model Registration] (1) A gas flow generating device arranged in sequence between the inlet and the outlet of a gas flow passage formed by communicating the inlet and the outlet through a casing. A heating element comprising a fan and a positive temperature coefficient thermistor, an exhaust port located between the fan and the heating element and provided in the casing, and a gas flow path provided in the gas flow passage between the exhaust port and the heating element side. A damper that rotates the passage cross section according to the temperature of the heated gas and closes at a predetermined temperature, and protrudes inside the casing wall at a closed position of the gas flow passage cross section, and a peripheral edge of the damper abuts. A hot air generator equipped with a gap closing section. (η A gap closing part is provided so that the damper when the exhaust port is in the closed position and the damper when the gas flow passage is closed by rotating according to the temperature of the heated gas form an acute angle. Claims for registration of a utility model The temperature generating device according to item (1). (3) Claims for registration of a utility model characterized in that the wall portion of the casing projects toward the gas flow passage side and serves as a gap closing portion. The hot air generating device according to item (1) or item (2). (4) Utility model registration claim No. The hot air generating device according to any one of items 1) to (3). (5) Scope of the utility model registration claim, characterized in that the part of the damper that comes into contact with the gap closing part is made of a flexible material. The hot air generator according to any one of items (1) to (3).
JP10627577U 1977-08-09 1977-08-09 Hot air generator Expired JPS5833492Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10627577U JPS5833492Y2 (en) 1977-08-09 1977-08-09 Hot air generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10627577U JPS5833492Y2 (en) 1977-08-09 1977-08-09 Hot air generator

Publications (2)

Publication Number Publication Date
JPS5432958U JPS5432958U (en) 1979-03-03
JPS5833492Y2 true JPS5833492Y2 (en) 1983-07-26

Family

ID=29049304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10627577U Expired JPS5833492Y2 (en) 1977-08-09 1977-08-09 Hot air generator

Country Status (1)

Country Link
JP (1) JPS5833492Y2 (en)

Also Published As

Publication number Publication date
JPS5432958U (en) 1979-03-03

Similar Documents

Publication Publication Date Title
US2649242A (en) Variable capacity blower
JPS5833492Y2 (en) Hot air generator
JPH0370908A (en) Air blower for combustion
JPS5853259B2 (en) Hot air heating device
JPS61217648A (en) Air temperature control device
KR850002139Y1 (en) Hair dryer facilitating the control of air blast
CN118208771A (en) Air conditioner and air conditioner control method
JPS5833491Y2 (en) Hot air generator
JPS5850202Y2 (en) Hot air generator
JPS5850204Y2 (en) Hot air generator
JPS5851556Y2 (en) Hot air supply device
JPS61225522A (en) Warm air room heater
JP2691498B2 (en) Steam heater
JPS6039937B2 (en) Hot air generator
JPS5853258B2 (en) Hot air generator
JPS5850203Y2 (en) Hot air generator
JPS589152Y2 (en) Hot air device
JPS5851557Y2 (en) Hot air supply device
JPS5853257B2 (en) Hot air heating device
JP2613818B2 (en) Hot air heater
JPS5853260B2 (en) Hot air heating device
JPS63716A (en) Temperature controller for warm air blower
JP2564722B2 (en) Gas combustion equipment
CN118208775A (en) Air conditioner and air conditioner control method
JPS584505A (en) Hair dryer