JPS5833304B2 - Katanseiko SoR-CO Gokin - Google Patents

Katanseiko SoR-CO Gokin

Info

Publication number
JPS5833304B2
JPS5833304B2 JP13218575A JP13218575A JPS5833304B2 JP S5833304 B2 JPS5833304 B2 JP S5833304B2 JP 13218575 A JP13218575 A JP 13218575A JP 13218575 A JP13218575 A JP 13218575A JP S5833304 B2 JPS5833304 B2 JP S5833304B2
Authority
JP
Japan
Prior art keywords
alloy
less
added
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13218575A
Other languages
Japanese (ja)
Other versions
JPS5270927A (en
Inventor
義春 越智
茂美 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13218575A priority Critical patent/JPS5833304B2/en
Publication of JPS5270927A publication Critical patent/JPS5270927A/en
Publication of JPS5833304B2 publication Critical patent/JPS5833304B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は、常温での延性にすぐれ又、高温での耐食性高
温強度にすぐれた加工性の良好な高Cr−Co合金に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high Cr-Co alloy which has excellent ductility at room temperature, excellent corrosion resistance and high temperature strength at high temperatures, and good workability.

熱処理工業、窯業等に使用される合金は高温強度にすぐ
れ且つ酸化、硫黄、バナジューム等の腐食に耐えること
が要求されている。
Alloys used in the heat treatment industry, ceramic industry, etc. are required to have excellent high-temperature strength and to resist corrosion by oxidation, sulfur, vanadium, and the like.

こうした目的に適う合金として、25Cr−2ONi
−Fe合金、50Co−28Cr−Fe合金等が使用さ
れているが、25 Cr−20Ni−Fe合金は高温強
度、高温腐食に劣り又50Co−28Cr−Fe合金は
室温での延性が不十分なため、冷間加工性に劣り又、高
温強度も十分ではない等の欠点を有している。
25Cr-2ONi is an alloy suitable for this purpose.
-Fe alloy, 50Co-28Cr-Fe alloy, etc. are used, but 25Cr-20Ni-Fe alloy has poor high-temperature strength and high-temperature corrosion, and 50Co-28Cr-Fe alloy has insufficient ductility at room temperature. However, it has disadvantages such as poor cold workability and insufficient high temperature strength.

本発明は、Co基合金の持つすぐれた耐食性を損うこと
なく、常温延性の改善、高温強度の向上を図るべく高C
r−Co合金に主としてNi、Taを添加した新しい合
金に関する。
The present invention aims to improve cold ductility and high temperature strength without impairing the excellent corrosion resistance of Co-based alloys.
This invention relates to a new alloy in which Ni and Ta are mainly added to an r-Co alloy.

次に添加成分範囲の限定理由を述べる。Next, the reason for limiting the range of added components will be described.

CrはCoの高温耐食性を改良する元素として添加され
るものであり、通常添加量が多い程、高温耐食性も改善
される。
Cr is added as an element that improves the high-temperature corrosion resistance of Co, and the higher the amount added, the better the high-temperature corrosion resistance is.

しかしながら30%を越えて添加されると次第に熱間加
工性が悪くなり、ざらにσ相等の有害な相を析出するよ
うになるので、添加量の上限は32%である。
However, if added in excess of 30%, hot workability gradually deteriorates and harmful phases such as σ phase begin to precipitate, so the upper limit of the amount added is 32%.

他方Crが2626%未満になると耐食性に関して所望
の特性が得られなくなるので、Crの組成範囲は26〜
32%、好ましくは28〜30%である。
On the other hand, if the Cr content is less than 2626%, the desired properties regarding corrosion resistance cannot be obtained, so the composition range of Cr is 26 to 26%.
32%, preferably 28-30%.

NiはCoの高温和である面心立方構造相を安定化する
ことにより常温延性の向上、加工性の改良高温強度の改
善に効果がある元素であるが、15%未満では効果なく
23%を越えると耐食性の劣化を生じる。
Ni is an element that is effective in improving cold ductility, workability, and high-temperature strength by stabilizing the face-centered cubic structure phase, which is a high-temperature summation of Co. Exceeding this will result in deterioration of corrosion resistance.

好ましい範囲は17〜22%である。The preferred range is 17-22%.

Taは、耐食性を劣化させることなく高温強度を改善す
る元素であって、0.5%未満では効果なく、3%を越
えると加工が困難となるので、好適な組成範囲は0.7
〜2.5%である。
Ta is an element that improves high-temperature strength without deteriorating corrosion resistance, and if it is less than 0.5% it is ineffective and if it exceeds 3% it becomes difficult to process, so the preferred composition range is 0.7%.
~2.5%.

Y並びにLaは、生成酸化膜の固着性を増すことにより
合金の耐食性の向上に寄与するもので、通常釜々0.2
%又は合計で0.2%以下好ましくは各々単独又は合計
で0.05〜0.15%残留するように添加される。
Y and La contribute to improving the corrosion resistance of the alloy by increasing the adhesion of the formed oxide film.
% or a total of 0.2% or less, preferably each individual or a total of 0.05 to 0.15%.

CはTaと共に合金の強度向上に著しい寄与をなす合金
元素であって、0.03%未満では効果なく0,3%を
越えると熱間加工が困難になるので、好適な組成範囲は
、0.05〜0.25%である。
C is an alloying element that, together with Ta, makes a significant contribution to improving the strength of the alloy. If it is less than 0.03%, it is ineffective and if it exceeds 0.3%, hot working becomes difficult. Therefore, the preferred composition range is 0. It is .05 to 0.25%.

Feは耐酸化性改善に効果のある元素であって、通常3
%以下好ましくは1〜2%添加される。
Fe is an element that is effective in improving oxidation resistance, and is usually
% or less, preferably 1 to 2%.

Mn、Siは脱酸、脱硫剤として添加される元素であり
通常Mnは2%以下、Siは1%以下、好ましくは、M
n 0.5〜1.5%、Si0.1〜0.6%残留する
ように添加される。
Mn and Si are elements added as deoxidizing and desulfurizing agents, and usually Mn is 2% or less and Si is 1% or less, preferably Mn
It is added so that n 0.5 to 1.5% and Si 0.1 to 0.6% remain.

lは脱酸剤として、Tiは脱酸、脱窒剤として添加され
酸素含有量及び窒素含有量を減少させて熱間加工性及び
高温クリープ強度の改善に寄与するものであるが、各々
0.5%を越えて含有すると加工性を害する。
1 is added as a deoxidizing agent, and Ti is added as a deoxidizing and denitrifying agent to reduce oxygen content and nitrogen content and contribute to improving hot workability and high temperature creep strength. If the content exceeds 5%, processability will be impaired.

好ましくは各々0.03〜0.5%の範囲がよい。Preferably, each content is in the range of 0.03 to 0.5%.

上記特定成分の他に、本発明の主旨を逸脱することなく
他の元素を加えることができる。
In addition to the above specific components, other elements can be added without departing from the spirit of the invention.

これらの元素はZr0.5%以下、Mg0.03%以下
、Bo、03%以下である。
These elements are Zr 0.5% or less, Mg 0.03% or less, and Bo 0.03% or less.

次に本発明の有効性を実証するために、第1表に示す成
分の合金を、真空度10−2〜110−3rrrrnH
で真空誘導溶解し、公称2.5kgのテーパー付鋳型に
鋳込み、次いで1150〜1200℃で3時間加熱後断
面15mmX 15Mの角棒に鍛造成形した。
Next, in order to demonstrate the effectiveness of the present invention, an alloy having the components shown in Table 1 was prepared at a vacuum degree of 10-2 to 110-3rrrrrnH.
The product was vacuum induction melted, cast into a tapered mold of nominal weight 2.5 kg, heated at 1150 to 1200°C for 3 hours, and then forged into a square bar with a cross section of 15 mm x 15 M.

これより直径6.4m、標点距離25mmの丸棒試験片
を切出し1200℃で1時間保持後水冷の溶体化処理を
施し機械試験に供した。
From this, a round bar specimen with a diameter of 6.4 m and a gage length of 25 mm was cut out, held at 1200°C for 1 hour, subjected to solution treatment by water cooling, and subjected to a mechanical test.

表中、合金番号1は比較合金である。In the table, alloy number 1 is a comparative alloy.

当該分野で多用されている50Co−28Cr−Fe合
金であり、合金番号4は本発明から逸脱した組成の合金
である。
This is a 50Co-28Cr-Fe alloy that is widely used in this field, and alloy number 4 is an alloy with a composition that deviates from the present invention.

合金番号2,3は、本発明合金である。Alloy numbers 2 and 3 are alloys of the present invention.

第2表に常温機械試験結果を示す。Table 2 shows the results of the room temperature mechanical test.

本発明合金は比較合金である合金番号1に比し、強度、
延性、共にすぐれていることは明白である。
Compared to the comparative alloy No. 1, the alloy of the present invention has higher strength and
It is clear that both ductility and ductility are excellent.

第3表は温度900℃、応力4.5kg/−で行ったク
リープ破断強度試験結果である。
Table 3 shows the results of a creep rupture strength test conducted at a temperature of 900°C and a stress of 4.5 kg/-.

第3表 高温クリープ破断強度試験結果 本発明合金は比較合金に比し著しく高温強度に於てすぐ
れていることは明らかであろう。
Table 3 High temperature creep rupture strength test results It is clear that the alloys of the present invention are significantly superior in high temperature strength compared to the comparative alloys.

本実施例は鍛造材についてであったが、本発明合金は、
棒、板にも容易に加工可能であって、それら加工材の緒
特性も本実施例と同様であることが確認されている。
Although this example concerned a forged material, the alloy of the present invention
It has been confirmed that it can be easily processed into rods and plates, and the properties of these processed materials are similar to those of this example.

Claims (1)

【特許請求の範囲】 1 重量%で、Cr26〜32%、Ni15〜23%、
Ta0.5〜3%、C0,03〜0.3%Fe3%以下
、Mn2%以下、Si1%以下、Y又はLaを単独又は
合計で0.2%以下、A[0,5%以下、TiO,5%
以下、残余随伴不純物を除き実質的にC。 より成る常温延性高温強度にすぐれた可鍛性高Cr−C
o合金。
[Claims] 1% by weight, Cr26-32%, Ni15-23%,
Ta 0.5-3%, CO 0.03-0.3% Fe 3% or less, Mn 2% or less, Si 1% or less, Y or La individually or in total 0.2% or less, A [0.5% or less, TiO ,5%
The following is substantially C except for residual accompanying impurities. Highly malleable Cr-C with excellent room temperature ductility and high temperature strength.
o Alloy.
JP13218575A 1975-11-05 1975-11-05 Katanseiko SoR-CO Gokin Expired JPS5833304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13218575A JPS5833304B2 (en) 1975-11-05 1975-11-05 Katanseiko SoR-CO Gokin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13218575A JPS5833304B2 (en) 1975-11-05 1975-11-05 Katanseiko SoR-CO Gokin

Publications (2)

Publication Number Publication Date
JPS5270927A JPS5270927A (en) 1977-06-13
JPS5833304B2 true JPS5833304B2 (en) 1983-07-19

Family

ID=15075366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13218575A Expired JPS5833304B2 (en) 1975-11-05 1975-11-05 Katanseiko SoR-CO Gokin

Country Status (1)

Country Link
JP (1) JPS5833304B2 (en)

Also Published As

Publication number Publication date
JPS5270927A (en) 1977-06-13

Similar Documents

Publication Publication Date Title
JP4116677B2 (en) Aluminum-containing iron-based alloys useful as electrical resistance heating elements
US6860948B1 (en) Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
JPS638176B2 (en)
CA1149646A (en) Austenitic stainless corrosion-resistant alloy
JPH06500361A (en) Controlled thermal expansion alloys and products made therefrom
JPS6119738A (en) Manufacture of weldable austenite stainless steel slab
JPH01275738A (en) Austenite stainless steel
US4194909A (en) Forgeable nickel-base super alloy
JPS5833304B2 (en) Katanseiko SoR-CO Gokin
JPS634897B2 (en)
US4050928A (en) Corrosion-resistant matrix-strengthened alloy
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPS61201761A (en) Shape memory alloy
JPS60187652A (en) High-elasticity alloy
JPH03197638A (en) High strength and high corrosion-resistant titanium base alloy
JPH0243816B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS62243743A (en) Austenitic stainless steel for use at high temperature
JPS5919978B2 (en) Malleable Ni-based super heat-resistant alloy
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JPS61174350A (en) Heat-resistant high-chromiun alloy
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH0470382B2 (en)
JPS596910B2 (en) heat resistant cast steel
JPS6353234A (en) Structural member having heat resistance and high strength
JPS6059288B2 (en) Ni-based alloy with excellent intergranular corrosion resistance