JPS5833156A - Detector for nuclear magnetic resonator signal - Google Patents

Detector for nuclear magnetic resonator signal

Info

Publication number
JPS5833156A
JPS5833156A JP56130309A JP13030981A JPS5833156A JP S5833156 A JPS5833156 A JP S5833156A JP 56130309 A JP56130309 A JP 56130309A JP 13030981 A JP13030981 A JP 13030981A JP S5833156 A JPS5833156 A JP S5833156A
Authority
JP
Japan
Prior art keywords
coil
detection
coils
magnetic field
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56130309A
Other languages
Japanese (ja)
Other versions
JPS6149619B2 (en
Inventor
Hitoshi Sasabuchi
仁 笹渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56130309A priority Critical patent/JPS5833156A/en
Publication of JPS5833156A publication Critical patent/JPS5833156A/en
Publication of JPS6149619B2 publication Critical patent/JPS6149619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34092RF coils specially adapted for NMR spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • G01R33/3635Multi-frequency operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3642Mutual coupling or decoupling of multiple coils, e.g. decoupling of a receive coil from a transmission coil, or intentional coupling of RF coils, e.g. for RF magnetic field amplification
    • G01R33/365Decoupling of multiple RF coils wherein the multiple RF coils have the same function in MR, e.g. decoupling of a receive coil from another receive coil in a receive coil array, decoupling of a transmission coil from another transmission coil in a transmission coil array

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To detect the excitation of resonance and the detection of two nuclides independently by arranging two coils on a cylindrical surface parallel with the axis of a sample tube diagonally while crossing each other at the right angle while a third coil is arranged on the axis intersecting said two coils at the right angle. CONSTITUTION:A first detection coil is arranged on the outer surface of a first glass cylinder coaxially arranged in the perimeter of a sample tube with the axis thereof parallel to the direction of the electrostatic field in such a manner that the coil surface is at 45 deg. to the axis of the cylinder. A second detection is arranged on the inner surface of a second glass cylinder arranged coaxially in concentric circle with the first glass cylinder in such a manner as to have the coil surface thereof intersection the first detection coil at the right angle. A third coil is arranged in such a direction that it crosses the first and second detection coils cross at the right angle and used for an exciting coil. This eliminates interaction between three coils thereby permitting the excitation of the resonance and the detection of two unclides independently.

Description

【発明の詳細な説明】 本発明は、高分解能核磁気共鳴信号検出器に係り、特に
相互作用のない3コイル配置方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-resolution nuclear magnetic resonance signal detector, and particularly to a non-interactive three-coil arrangement.

’H,130等の0でないスピン量子数を有する原子核
を静磁場中に置き、静磁界と直交する方向に振動磁界を
加えると、核種及び静磁場の強さによって定まる一定の
周波数で共鳴し、静磁界と直交する方向に偏向した振動
磁界を発・生ずる。これが核磁気共鳴現象である。共鳴
周波数ω。は静磁界強度をH8、磁気回転比をrとする
とω。−rHoで表される。rは核種に固有の定数であ
る。共鳴周波数は例えば、2.1テスラの静磁界中では
1Hで90 MH2% ” Cで22.6MH2などで
ある。
'When an atomic nucleus with a non-zero spin quantum number such as H, 130 is placed in a static magnetic field and an oscillating magnetic field is applied in a direction perpendicular to the static magnetic field, it resonates at a constant frequency determined by the nuclide and the strength of the static magnetic field. Generates an oscillating magnetic field that is deflected in a direction perpendicular to the static magnetic field. This is the phenomenon of nuclear magnetic resonance. Resonant frequency ω. is ω, where H8 is the static magnetic field strength and r is the gyromagnetic ratio. -rHo. r is a constant specific to the nuclide. The resonance frequency is, for example, 90 MH2 at 1 H and 22.6 MH2 at 2% C in a static magnetic field of 2.1 Tesla.

核磁気共鳴装置では、静磁場中にこれと直交する方向に
コイルを配置し、かかるコイルに試料を挿入する。共鳴
状態において発生する振動磁場により、コイルに誘導電
圧が生じ、共鳴の検出が可能となる。
In a nuclear magnetic resonance apparatus, a coil is placed in a direction perpendicular to a static magnetic field, and a sample is inserted into the coil. The oscillating magnetic field generated in the resonant state creates an induced voltage in the coil, allowing resonance to be detected.

ところで、高分解能核磁気共鳴装置では、複数核種の測
定を同時に行なわなければならない場合がある。例えば
2D 核の共鳴信号を利用して磁場安定化を行ない、同
時に130核の共鳴信号を得るような測定である。この
ような検出器の例を第1図に示す。1は静磁界を発生す
るルノイド形磁石、2は被測定試料を含む試料管、3は
検出コイル、4は検出コイルをその一部に含む検出同調
回路、6は励起コイル、7は励起同調回路である。
By the way, in a high-resolution nuclear magnetic resonance apparatus, there are cases where it is necessary to measure multiple nuclides simultaneously. For example, this is a measurement in which magnetic field stabilization is performed using resonance signals of 2D nuclei, and resonance signals of 130 nuclei are simultaneously obtained. An example of such a detector is shown in FIG. 1 is a lunoid magnet that generates a static magnetic field, 2 is a sample tube containing a sample to be measured, 3 is a detection coil, 4 is a detection tuning circuit that includes the detection coil as a part, 6 is an excitation coil, and 7 is an excitation tuning circuit It is.

第2図に検出同調回路の例を示ψ。LLは検出コイルで
C1,C2と共に13cの共鳴周波数で共振する。又、
C3とL2は+30共鳴周波数において共振し、′3C
受信系と2D受信系を分離する。
Figure 2 shows an example of a detection tuning circuit. LL is a detection coil that resonates with C1 and C2 at a resonance frequency of 13c. or,
C3 and L2 resonate at +30 resonant frequency and '3C
Separate the receiving system and 2D receiving system.

更に全体で2Dの共鳴周波数において共振する。Furthermore, the entire structure resonates at a 2D resonant frequency.

第2図の方式により、′3C核と2D核のような共鳴周
波数の異なる2つの共鳴を同時に検出することは可能で
ある。しかし、この方式では、相互に関連しており、特
に13cの共振回路を調整する為、例えばC1の値を変
化させると、′Dの共振状態も変化するという問題があ
る。更に、測定核種を13cから他の核種、例えば31
p等に変更するような場合、CI、C2の値を大幅に変
更しなければならず、その結果、′D核の共振状態も全
く変わってしまう。このように図2の方式は、測定核種
を変えるような場合には全く使用できないという問題が
ある。
By the method shown in FIG. 2, it is possible to simultaneously detect two resonances having different resonance frequencies, such as the '3C nucleus and the 2D nucleus. However, in this method, there is a problem in that when the value of C1 is changed in order to adjust the resonant circuit 13c, which is related to each other, the resonant state of 'D also changes. Furthermore, the measurement nuclide is changed from 13c to other nuclides, such as 31.
In the case of changing to p, etc., the values of CI and C2 must be changed significantly, and as a result, the resonance state of the 'D nucleus also changes completely. As described above, the method shown in FIG. 2 has a problem in that it cannot be used at all when changing the nuclide to be measured.

以上の方法の他、第3図に示す方法が捉案されている。In addition to the above methods, a method shown in FIG. 3 has been proposed.

7は2D核検出の為の検出コイルであり、本来の検出コ
イル3と直交する方向に配置されている。しかしながら
、この方向に位通常共鳴を励起する為の励起コイル5が
配置されており、同軸上に2つのコイルが並ぶ状態とな
る。この2つのコイルの相互結合の結果、励起効率の低
下、又、2D核検出効率の低下等の問題が生じる。更に
異核様デカップリング等が併せて行なわれる場合、励起
コイルにより強い振動磁場を発生する必要がある。この
場合、かかる振動磁場により2D核検出コイルにも大き
な誘導電流が生じ、コイルを加熱し、検出感度の低下、
あるいは検出同調回路に続く増幅回路を飽和させるとい
う欠点を有する。
7 is a detection coil for 2D nuclear detection, and is arranged in a direction perpendicular to the original detection coil 3. However, an excitation coil 5 for exciting normal resonance is arranged in this direction, and the two coils are arranged coaxially. As a result of this mutual coupling of the two coils, problems such as a decrease in excitation efficiency and a decrease in 2D nuclear detection efficiency occur. Furthermore, if heteronuclear-like decoupling or the like is also performed, it is necessary to generate a strong oscillating magnetic field by the excitation coil. In this case, the oscillating magnetic field also generates a large induced current in the 2D nuclear detection coil, heating the coil and reducing detection sensitivity.
Alternatively, it has the disadvantage of saturating the amplifier circuit following the detection tuning circuit.

本発明の目的は、2核種以上の同時検出を全く独立な構
成で実現する方式を提供するにある。
An object of the present invention is to provide a method for realizing simultaneous detection of two or more nuclides with completely independent configurations.

本発明は、試料管軸に並行な円筒面上に、斜めに且つ相
互に直交する2組のコイルを配置し、且つ、第3のコイ
ルを上記2個のコイルと直交する軸上に配置することに
より、共鳴の励起、及び2核種の検出を独立に行ない得
るようにしたものである。
In the present invention, two sets of coils are arranged diagonally and orthogonally to each other on a cylindrical surface parallel to the sample tube axis, and a third coil is arranged on an axis perpendicular to the above two coils. This makes it possible to excite resonance and detect two nuclides independently.

本発明の実施例を第4図に示す。3は第1の検出コイル
、5は第1の検出コイルが固定されるガラス円筒で試料
管2と同軸同心円状に配置されている。4は第1の検出
同調回路である。8は第2の検出コイル、10は第2の
検出コイルが固定されているガラス円筒で、試料管2と
同軸同心円状に配置されている。9は第2の検出同調回
路、6は励起コイル、7は励起同調回路である。
An embodiment of the invention is shown in FIG. 3 is a first detection coil; 5 is a glass cylinder to which the first detection coil is fixed, and is arranged coaxially with the sample tube 2; 4 is a first detection tuning circuit. 8 is a second detection coil; 10 is a glass cylinder to which the second detection coil is fixed; the glass cylinder is arranged coaxially with the sample tube 2; 9 is a second detection tuning circuit, 6 is an excitation coil, and 7 is an excitation tuning circuit.

本実施例においては、靜磁界の向きに並行な軸を有し、
試料管の周囲に同軸状に配置された第1のガラス円筒外
面上に、コイル面が円筒軸に対して45°の角度をなす
ように第1の検出コイルが配置されている。又、第2の
検出コイルを、第1のガラス円筒と同軸、同心円状に配
置された第2のガラス円筒内面に、第1の検出コイルに
対して直交するコイル面を有するように配置されている
In this example, it has an axis parallel to the direction of the silent magnetic field,
A first detection coil is arranged on the outer surface of a first glass cylinder coaxially arranged around the sample tube so that the coil surface forms an angle of 45° to the cylinder axis. Further, a second detection coil is arranged on the inner surface of a second glass cylinder which is arranged coaxially and concentrically with the first glass cylinder so as to have a coil surface perpendicular to the first detection coil. There is.

一般に2つのコイルの結合形態として、磁気的結合及び
電気的結合があるが、本実施例のような1肉やした2・
−】の°1イル間では、磁気的結合は牛じない、又、電
気的結合は、本実施例では対向Lfll檀が極めて小さ
いことから、実用上問題とならない。
Generally, there are two types of coupling between two coils: magnetic coupling and electrical coupling.
- ], the magnetic coupling is insignificant, and the electrical coupling does not pose a practical problem since the opposing Lfll is extremely small in this embodiment.

本実施例では第1、第2の検出コイルそれぞれと直交す
る方向に第3のコイルが配置されており励起コイルとし
て使用されている。かかる励起コイルは第1、第2のコ
イルと直交していることから、第1・第2の検出コイル
の間に相互作用が存在しないのと全く同様に、それぞれ
の検出コイルと励起コイルの間にも相互作用が存在しな
い。
In this embodiment, a third coil is arranged in a direction perpendicular to each of the first and second detection coils and is used as an excitation coil. Since such excitation coils are orthogonal to the first and second coils, there is no interaction between the respective detection coils and the excitation coils, just as there is no interaction between the first and second detection coils. There is also no interaction.

以上述べたように、本実施例における3つのコイル間に
は相互作用が存在せず、全く独立の系として扱う事が可
能である。即ち、第1の検出コイルをI3C又は31p
等種々の核種の測定系とし、第2の検出コイルを磁場制
御用の2D信号系として使用した場合、第1の検出コイ
ルを含む検出同調回路の共振周波数を変化させても、第
2の検出コイルを含む2D信号検出同調回路及び励起コ
イルを含む励起同調回路には何の影響もなく、その結果
J任意の核種を極めて安定な磁場中で測定することが可
能となる、 従来技術の項で述べたように、核磁気共鳴装置では共鳴
の励起及び検出共に、靜磁界の方向に対して直交する振
動磁場成分を扱う。従って従来のようにコイル軸を静磁
界に直交する面内にとる限り、独立なコイルは2組に限
定される。本発明は各コイルは静磁界に直角な方向の振
動磁場成分を発生、又は検出しながら、コイルの配置上
は、静磁界に並行な成分をも導入することにより、初め
2/ て独立な3コイル成分を実用化したものである。
As described above, there is no interaction between the three coils in this embodiment, and they can be treated as completely independent systems. That is, the first detection coil is I3C or 31p.
When the second detection coil is used as a 2D signal system for controlling the magnetic field, even if the resonance frequency of the detection tuning circuit including the first detection coil is changed, the second detection There is no effect on the 2D signal detection tuning circuit including the coil and the excitation tuning circuit including the excitation coil, which makes it possible to measure any nuclide in an extremely stable magnetic field. As mentioned above, nuclear magnetic resonance apparatuses handle oscillating magnetic field components perpendicular to the direction of the static magnetic field for both resonance excitation and detection. Therefore, as long as the coil axis is set in a plane perpendicular to the static magnetic field as in the conventional case, the number of independent coils is limited to two sets. In the present invention, while each coil generates or detects an oscillating magnetic field component in a direction perpendicular to the static magnetic field, the arrangement of the coils also introduces a component parallel to the static magnetic field. This is a practical version of the coil component.

本発明によれば、3つの独立なコイルを組み込むことが
可能となり、且つ、一つのコイルを含む共振回路の電気
的特性の変化が、他のコイル系には全く影響を及ぼさな
いという効果がある。
According to the present invention, it is possible to incorporate three independent coils, and a change in the electrical characteristics of a resonant circuit including one coil does not affect other coil systems at all. .

実施例においては、第1・第2のコイル共靜磁界の方向
に対して45° を成すように配置されているが、45
° に限定する必要はなく、他の角度でも可能である。
In the embodiment, the first and second coils are arranged at an angle of 45° to the direction of the static magnetic field.
It is not necessary to limit the angle to °; other angles are also possible.

即ち、本発明の基本的要件は第1・第2のコイルが靜磁
界の方向と斜向し、且つ互いに直交するという点にあり
、例えば、第1のコイルヲ50°、第2のコイルを40
°の角度で配置することも可能である。このように2つ
のコイルの角度を変える例は、2つの信号検出系の検出
効率に優先順位をつけ得る場合に有効である。
That is, the basic requirement of the present invention is that the first and second coils are diagonal to the direction of the silent magnetic field and are orthogonal to each other.
It is also possible to arrange it at an angle of . This example of changing the angles of the two coils is effective when it is possible to prioritize the detection efficiency of the two signal detection systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す配置図であり、第2図は第1図の
方式に使用される回路図であり、第3図は従来例を示す
配置図であり、第4図は本発明の実施例を示す配置図で
ある。 第 1 図
FIG. 1 is a layout diagram showing a conventional example, FIG. 2 is a circuit diagram used in the method shown in FIG. 1, FIG. 3 is a layout diagram showing a conventional example, and FIG. It is a layout diagram showing an example of. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、静磁界の方向に並行なコイル軸を有し、且つ、かか
る軸に斜交するコイル面を有する第1のコイルと、第1
のコイルと共通の軸の周囲に第1のコイル面と直交する
コイル面を有する第2のコイルを配置し、更に第1・第
2のコイルを挾んで両側に第1・第2のコイル面と直交
するコイル面を有するコイル対を配置したことを特徴と
する核磁気共鳴信号検出器。
1. A first coil having a coil axis parallel to the direction of the static magnetic field and a coil surface obliquely intersecting the axis;
A second coil having a coil surface orthogonal to the first coil surface is arranged around a common axis with the first coil, and further the first and second coil surfaces are arranged on both sides with the first and second coils in between. 1. A nuclear magnetic resonance signal detector characterized in that a coil pair having a coil plane orthogonal to the above is arranged.
JP56130309A 1981-08-21 1981-08-21 Detector for nuclear magnetic resonator signal Granted JPS5833156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130309A JPS5833156A (en) 1981-08-21 1981-08-21 Detector for nuclear magnetic resonator signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130309A JPS5833156A (en) 1981-08-21 1981-08-21 Detector for nuclear magnetic resonator signal

Publications (2)

Publication Number Publication Date
JPS5833156A true JPS5833156A (en) 1983-02-26
JPS6149619B2 JPS6149619B2 (en) 1986-10-30

Family

ID=15031233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130309A Granted JPS5833156A (en) 1981-08-21 1981-08-21 Detector for nuclear magnetic resonator signal

Country Status (1)

Country Link
JP (1) JPS5833156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701710A (en) * 1984-06-07 1987-10-20 Siemens Aktiengesellschaft Nuclear magnetic resonance tomography apparatus
JP2007181845A (en) * 2006-01-05 2007-07-19 Jfe Steel Kk Apparatus for supplying mold powder for continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701710A (en) * 1984-06-07 1987-10-20 Siemens Aktiengesellschaft Nuclear magnetic resonance tomography apparatus
JP2007181845A (en) * 2006-01-05 2007-07-19 Jfe Steel Kk Apparatus for supplying mold powder for continuous casting

Also Published As

Publication number Publication date
JPS6149619B2 (en) 1986-10-30

Similar Documents

Publication Publication Date Title
US4737716A (en) Self-shielded gradient coils for nuclear magnetic resonance imaging
US4794338A (en) Balanced self-shielded gradient coils
Jelínek A high sensitivity spinner magnetometer
US4184110A (en) Investigation of samples by N.M.R. techniques
US3239754A (en) Thin film magnetometer
JPH06502491A (en) High frequency volume resonator for nuclear magnetic resonance
JPH0350543B2 (en)
EP0615134A1 (en) An improved NMR probe which includes B1 gradient coils
JP3630687B2 (en) Magnetic coil
US4408162A (en) Sensitivity NMR probe
JPH0636025B2 (en) Radio frequency coil for NMR
US3735246A (en) Spin-coupling nuclear magnetic resonance magnetometer utilizing the same coil for excitation and signal pick-up and using toroidal samples
JPS5833156A (en) Detector for nuclear magnetic resonator signal
US4544891A (en) Nuclear magnetic resonance gyroscope
US3406333A (en) Scanned intensity magnet having field homogeneity correction coils in common with its scanning coils
US5451874A (en) Method and system for providing heterodyne pumping of magnetic resonance
US4509014A (en) Nuclear magnetic resonance gyroscope
JPS6057908A (en) Radio wave frequency coil
US5969527A (en) Rf coil assembly
US3909706A (en) Method for measuring a rotational velocity and a gyrometer for the practical application of said method
Avdievich et al. Modified perturbation method for transverse electromagnetic (TEM) coil tuning and evaluation
JPH0723923A (en) Solenoid type rf coil
JP3842929B2 (en) NMR probe
JPH11253418A (en) Rf coil of magnetic resonance imaging device
US3501690A (en) Nuclear magnetic resonance magnetometer of the spin coupling type