JPS5832392B2 - piezoelectric acoustic device - Google Patents

piezoelectric acoustic device

Info

Publication number
JPS5832392B2
JPS5832392B2 JP53067372A JP6737278A JPS5832392B2 JP S5832392 B2 JPS5832392 B2 JP S5832392B2 JP 53067372 A JP53067372 A JP 53067372A JP 6737278 A JP6737278 A JP 6737278A JP S5832392 B2 JPS5832392 B2 JP S5832392B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrode
piezoelectric vibrator
transistor
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53067372A
Other languages
Japanese (ja)
Other versions
JPS54158196A (en
Inventor
順彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP53067372A priority Critical patent/JPS5832392B2/en
Publication of JPS54158196A publication Critical patent/JPS54158196A/en
Publication of JPS5832392B2 publication Critical patent/JPS5832392B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Circuit For Audible Band Transducer (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

【発明の詳細な説明】 本発明は各種の警報、報知等に用いられる圧電式音響装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric acoustic device used for various alarms, notifications, etc.

板状体に接合した圧電素子に交流電圧を印加し、その伸
縮を利用して板状体を屈曲振動させるようにした圧電振
動子を使った圧電式音響装置は従来から存在する。
2. Description of the Related Art Piezoelectric acoustic devices that use a piezoelectric vibrator that applies an alternating current voltage to a piezoelectric element bonded to a plate-shaped body and utilizes its expansion and contraction to cause the plate-shaped body to bend and vibrate have conventionally existed.

即ち、第1図に示すごとく両面に電極を設けた圧電素子
1を接着剤により振動板2に貼り合わせて圧電振動子3
とし、この振動子3に適当な周波数の交流電圧を印加す
ることにより、振動子3を屈曲振動させ、音波を発生さ
せるものである。
That is, as shown in FIG. 1, a piezoelectric element 1 having electrodes on both sides is bonded to a diaphragm 2 with an adhesive to form a piezoelectric vibrator 3.
By applying an alternating current voltage of an appropriate frequency to this vibrator 3, the vibrator 3 is caused to bend and vibrate, thereby generating a sound wave.

従って、この種の圧電式音響装置は無接点で信頼性が高
く、消費電力が少ない等の長所を有している。
Therefore, this type of piezoelectric acoustic device has advantages such as non-contact, high reliability, and low power consumption.

このような圧電式音響装置の発生音圧を出来るだけ大き
くしようと思えば、前記圧電振動子の屈曲振動の振巾を
大きくしなげればならない。
In order to increase the sound pressure generated by such a piezoelectric acoustic device as much as possible, it is necessary to increase the amplitude of the bending vibration of the piezoelectric vibrator.

このためには圧電振動子に印加する電圧の周波数をほぼ
該圧電振動子の共振周波数に合わせ、かつその電圧を大
きく、例えば10V以上にしなげれば警報器等の用途に
合った発生音圧を得られない。
For this purpose, the frequency of the voltage applied to the piezoelectric vibrator should be adjusted to approximately the resonant frequency of the piezoelectric vibrator, and the voltage should be made large, for example, 10 V or more, so that the generated sound pressure can be adjusted to suit the purpose of the alarm. I can't get it.

しかし、1駆動電圧の周波数に対する圧電振動子より発
生する音圧の関係は第3図に示すような曲線となる。
However, the relationship between the sound pressure generated by the piezoelectric vibrator and the frequency of one drive voltage is a curve as shown in FIG.

frは該圧電振動子の共振周波数であり、この周波数で
発生音圧は最大となり、駆動周波数が該共振周波数から
ずれると発生音圧は急激に低下する。
fr is the resonant frequency of the piezoelectric vibrator, and the generated sound pressure reaches a maximum at this frequency, and when the drive frequency deviates from the resonant frequency, the generated sound pressure decreases rapidly.

ところが圧電式音響装置はその特徴の一つである低消費
電力であるが故に乾電池等の小容量電源を利用すること
が多い。
However, one of the characteristics of piezoelectric acoustic devices is low power consumption, so they often use a small-capacity power source such as a dry cell battery.

乾電池等を使用し1.5〜3VDC程度の電源電圧で十
分に大きい発生音圧を得られれば、圧電式音響装置の用
途は大きく拡犬する。
If a sufficiently large generated sound pressure can be obtained using a dry battery or the like with a power supply voltage of about 1.5 to 3 VDC, the applications of piezoelectric acoustic devices will greatly expand.

従来より発振回路自身で周波数を決定し他励的に圧電振
動子を駆動する他励発振回路を使用し、トランス等の昇
電圧部品を組み合わせることにより、低電圧の電源に対
し、圧電振動子に加わる電圧を大きくし、発生音圧の増
大を討つものは存在する。
Conventionally, we have used a separately excited oscillation circuit that determines the frequency by itself and separately drives the piezoelectric vibrator, and by combining it with voltage step-up components such as transformers, it is possible to drive the piezoelectric vibrator from a low voltage power supply. There are devices that increase the applied voltage to counteract the increase in generated sound pressure.

しかしながらこの様な他励発振方式では次の様な問題が
ある。
However, such separately excited oscillation method has the following problems.

即ち例えば円板状圧電振動子の共振周波数は次式で表わ
される。
That is, for example, the resonance frequency of a disc-shaped piezoelectric vibrator is expressed by the following equation.

ここで、tは圧電振動子の厚み、rは圧電振動子の半径
、Eは圧電振動子のヤング率、ρは圧電振動子の密度、
σはポアソン比、そしてαは振動モード等で決定される
定数である。
Here, t is the thickness of the piezoelectric vibrator, r is the radius of the piezoelectric vibrator, E is Young's modulus of the piezoelectric vibrator, ρ is the density of the piezoelectric vibrator,
σ is Poisson's ratio, and α is a constant determined by vibration mode, etc.

従って圧電素子1や振動板20寸法形状や材質がばらつ
くと共振周波数frはばらつき、又圧電振動子の共振周
波数frの温度係数は通常負の値を取るため温度変化に
より共振周波数frは変動する。
Therefore, if the dimensions, shapes, and materials of the piezoelectric element 1 and the diaphragm 20 vary, the resonant frequency fr varies, and since the temperature coefficient of the resonant frequency fr of the piezoelectric vibrator usually takes a negative value, the resonant frequency fr fluctuates due to temperature changes.

又発振回路部品の定数のばらつきや温度特性により、他
励発振回路の発振駆動周波数もばらついたり変動したり
する。
Furthermore, due to variations in constants and temperature characteristics of the oscillation circuit components, the oscillation drive frequency of the separately excited oscillation circuit also varies or fluctuates.

従って第3図より明らかなように如何にトランス等の手
段で圧電振動子の1駆動電圧を上げても、発生音圧が大
きくばらついたり温度により変動したりするため、警報
、報知用等として適さない場合が多い。
Therefore, as is clear from Fig. 3, no matter how much the drive voltage of the piezoelectric vibrator is increased by means such as a transformer, the sound pressure generated varies greatly and fluctuates depending on the temperature, making it unsuitable for alarms, notifications, etc. There are many cases where there is no.

この様な欠・点を補う為に圧電振動子自身から帰還信号
をとり出し自動的に圧電振動子の共振周波数frで圧電
振動子を駆動すべく自動発振回路を使用し、コイルを併
用することにより発生音圧の増大を計った例は、本出願
と同一の発明者等により考案された実願昭51−474
62号(以下先願と言う)に示されている。
In order to compensate for these shortcomings, an automatic oscillation circuit is used to extract a feedback signal from the piezoelectric vibrator itself and automatically drive the piezoelectric vibrator at the piezoelectric vibrator's resonant frequency fr, and a coil is also used. An example of increasing the sound pressure generated by
No. 62 (hereinafter referred to as the earlier application).

この先願のものに於いては圧電素子の表面に帰還信号を
取り出すべく帰還電極を設は該信号により圧電振動子の
共振周波数で発振すると同時に、2端子のコイルを使用
し、圧電振動子に加わる電圧を増大しようとしたもので
ある。
In this earlier application, a feedback electrode is provided on the surface of the piezoelectric element to extract a feedback signal, and the signal oscillates at the resonant frequency of the piezoelectric vibrator, and at the same time, a two-terminal coil is used to apply the feedback signal to the piezoelectric vibrator. This was an attempt to increase the voltage.

この場合、他励発振回路を利用する場合に較べ、発生音
圧のばらつきや変動は少な(発生音圧も大きいが、直径
35間、厚み0.5 mmの圧電素子を直径50間、厚
み0.5 mmの金属振動板に貼り合せた振動子を使用
し、最適の音響構造を有するケースに該振動子を支持し
た場合、電源電圧1.5VDCに対し、圧電振動子に加
わる電圧は約4倍の6v程度であり発生音圧は1mで8
0dB程度であった。
In this case, compared to the case of using a separately excited oscillation circuit, there are fewer variations and fluctuations in the generated sound pressure (the generated sound pressure is also large, but the piezoelectric element with a diameter of 35 mm and a thickness of 0.5 mm is When using a vibrator bonded to a .5 mm metal diaphragm and supporting the vibrator in a case with an optimal acoustic structure, the voltage applied to the piezoelectric vibrator is approximately 4 VDC for a power supply voltage of 1.5 VDC. It is about 6v, which is twice as much, and the sound pressure generated is 8 at 1m.
It was about 0 dB.

先願のものに於ける帰還電極の大きさはこの発振回路を
動作させるのに十分な信号が得られる面積さえあれば、
出来るだけ小さくし駆動電極の面積を出来るだけ大きく
した方が発生音圧は大きくなる。
The size of the return electrode in the previous application is as long as it has an area that can obtain a sufficient signal to operate this oscillation circuit.
The sound pressure generated will increase if the area of the drive electrode is made as small as possible and the area of the drive electrode is made as large as possible.

この場合、駆動電極と帰還電極の面積の比Rは8≦R≦
15程度が最適であることを同発明者等は確認している
In this case, the ratio R of the areas of the drive electrode and the return electrode is 8≦R≦
The inventors have confirmed that about 15 is optimal.

又従来見られる圧電ブザー用3端子振動子に於いてもこ
れ以上の面積を持つ帰還電極を有した物は見当らない。
Furthermore, among conventional three-terminal vibrators for piezoelectric buzzers, no one has been found that has a return electrode with a larger area.

この場合振動子の支持の方法は第1図のように自由基本
共振の節の近傍で支持した場合であり、破線4,4′に
示したような振動状態となり、共振時に圧電振動子3の
重心が移動しないため振動子3は振動し易く、従って入
力インピーダンスが低くなる。
In this case, the method of supporting the vibrator is to support it near the node of free fundamental resonance as shown in Fig. 1, and the vibration state shown by broken lines 4 and 4' occurs, and the piezoelectric vibrator 3 at resonance. Since the center of gravity does not move, the vibrator 3 easily vibrates, and therefore the input impedance becomes low.

これに対して第2図のように第1図と同一の圧電振動子
の外縁で支持した場合は破線5゜5′に示したような振
動状態となり、共振周波数を低(出来支持が容易で量産
性に優れているが、共振時に圧電振動子30重心が移動
するため、振動子3は上述の節の近傍での支持より振動
し難く、従って入力インピーダンスが比較的高くなる。
On the other hand, if the piezoelectric vibrator is supported by the outer edge of the same piezoelectric vibrator as in Figure 1 as shown in Figure 2, the vibration state will be as shown by the broken line 5°5', and the resonant frequency will be lower (easier to support). Although it is excellent in mass production, since the center of gravity of the piezoelectric vibrator 30 moves during resonance, the vibrator 3 is less likely to vibrate than when supported near the nodes described above, and therefore has a relatively high input impedance.

このため自励発振回路を動作させ難(、先願のものによ
る自励発振回路も、このように圧電振動子をその外縁で
支持した場合発振せず、圧電音響装置として使用出来な
いものであった。
For this reason, it is difficult to operate a self-excited oscillation circuit (and the self-excited oscillation circuit of the earlier application does not oscillate when the piezoelectric vibrator is supported by its outer edge in this way, and cannot be used as a piezoelectric acoustic device. Ta.

本発明の目的は、比較的低電圧の電源入力であっても発
生音圧が大きくばらつきが少なく、しかも簡単な回路構
成による圧電式音響装置を提供することと、圧電振動子
をその外縁で支持した場合でも、該圧電振動子の共振周
波数で、発振駆動することが出来る圧電式音響装置を提
供することにある。
An object of the present invention is to provide a piezoelectric acoustic device with a simple circuit configuration in which the sound pressure generated is large and has little variation even with a relatively low voltage power input, and to support a piezoelectric vibrator at its outer edge. The object of the present invention is to provide a piezoelectric acoustic device that can be driven to oscillate at the resonance frequency of the piezoelectric vibrator even in such a case.

以下本発明の実施例を添付図面にもとづいて説明する。Embodiments of the present invention will be described below based on the accompanying drawings.

第4図、第5図に示すように、−面にはほぼ全面電極1
6が、他面には電気的に相互に絶縁された分割電極14
,15が設けられた円板状の圧電素子11は全面電極1
6の面で振動板12に接着等の手段で貼り合わされ圧電
振動子13を形成している。
As shown in FIG. 4 and FIG.
6 has divided electrodes 14 electrically insulated from each other on the other side.
, 15, a disk-shaped piezoelectric element 11 is provided with an electrode 1 on the entire surface.
A piezoelectric vibrator 13 is formed by bonding the piezoelectric vibrator 13 to the diaphragm 12 by means of adhesive or the like.

ここで分割電極14,15は圧電素子に対し、はぼ同心
円で分割されており、電極15は内側の円形電極で、電
極14は外側のリング状電極であり、該電極14,15
0面積はほぼ等しい6本発明による前記圧電振動子13
の駆動回路の一実施例を第6図に示す。
Here, the divided electrodes 14 and 15 are divided into concentric circles with respect to the piezoelectric element, and the electrode 15 is an inner circular electrode, and the electrode 14 is an outer ring-shaped electrode.
0 area is approximately equal 6 The piezoelectric vibrator 13 according to the present invention
An embodiment of the drive circuit is shown in FIG.

コイル22はセンタータップ25を有しており、−次側
コイル23と二次側コイル24に分割されている。
The coil 22 has a center tap 25 and is divided into a secondary coil 23 and a secondary coil 24.

コイル23の一端26は直流電源Bの陽極に接続され、
コイル22のセンタータップ25はトランジスタ20の
コレクタに接続されている。
One end 26 of the coil 23 is connected to the anode of the DC power supply B,
A center tap 25 of the coil 22 is connected to the collector of the transistor 20.

トランジスタ200ベースは直流電源Bの陽極にバイア
ス抵抗28で接続され、トランジスタ20のエミッタは
直流電源Bの陰極に接続され、トランジスタ20のエミ
ッタベース間にはダイオード21が接続されている。
The base of the transistor 200 is connected to the anode of the DC power supply B through a bias resistor 28, the emitter of the transistor 20 is connected to the cathode of the DC power supply B, and a diode 21 is connected between the emitter and base of the transistor 20.

圧電振動子13の振動板電極12はトランジスタ20の
エミッタに、駆動電極14はコイル24の一端27に帰
還電極15はトランジスタ20のベースにそれぞれ接続
されている。
The diaphragm electrode 12 of the piezoelectric vibrator 13 is connected to the emitter of the transistor 20, the drive electrode 14 is connected to one end 27 of the coil 24, and the feedback electrode 15 is connected to the base of the transistor 20.

次に、この回路の動作を説明する。Next, the operation of this circuit will be explained.

まず直流電源投入直後はトランジスタ20は抵抗28で
自己バイアスされているため、直ちにON状態になる。
First, immediately after the DC power is turned on, the transistor 20 is self-biased by the resistor 28, so it immediately turns on.

それ故コイル23の両端には電圧が生じコイル240両
端にも電圧が誘起される。
Therefore, a voltage is generated across the coil 23 and a voltage is induced across the coil 240 as well.

この時コイル240巻数をコイル230巻数より多くす
ればコイル24の両端の電圧はコイル23の両側の電圧
より昇圧された電圧となる。
At this time, if the number of turns of the coil 240 is greater than the number of turns of the coil 230, the voltage across the coil 24 will be a voltage that is higher than the voltage across the coil 23.

圧電振動子13の駆動電極14と振動板電極12との間
に電圧が加わるため圧電振動子13は圧電素子11の電
歪効果により励振される。
Since a voltage is applied between the drive electrode 14 and the diaphragm electrode 12 of the piezoelectric vibrator 13, the piezoelectric vibrator 13 is excited by the electrostrictive effect of the piezoelectric element 11.

このようにしてなされた振動子13の屈曲に伴う圧電効
果により帰還電極15にはマイナス電位の帰還信号が生
じトランジスタ200ベース電位を引きさげるため、ト
ランジスタ20はOFF状態となる。
Due to the piezoelectric effect caused by the bending of the vibrator 13, a negative potential feedback signal is generated at the feedback electrode 15, lowering the base potential of the transistor 200, so that the transistor 20 is turned off.

この変化によりコイル230両端には逆起電圧が生じ、
コイル240両端にも昇圧された逆起電圧が生じ、圧電
振動子13の駆動電極14と振動板電極12間には前回
と逆方向の電圧が加わるため圧電振動子13は前回と逆
方向に励振される。
This change generates a back electromotive force across the coil 230,
A boosted back electromotive voltage is also generated at both ends of the coil 240, and a voltage in the opposite direction to the previous one is applied between the drive electrode 14 and the diaphragm electrode 12 of the piezoelectric vibrator 13, so the piezoelectric vibrator 13 is excited in the opposite direction to the previous one. be done.

この振動子13の逆方向の屈曲により帰還電極15には
今度はプラス電位の帰還信号が生じトランジスタ200
ベース電位を引き上げるため、トランジスタ20は再び
ON状態となり初めの状態にもどる。
Due to this bending of the vibrator 13 in the opposite direction, a feedback signal with a positive potential is generated at the feedback electrode 15, and the transistor 200
In order to raise the base potential, the transistor 20 is turned on again and returns to its initial state.

板層、前記の動作を振動子13の共振周波数と同じ周波
数で安定して繰り返し行う。
The plate layer stably and repeatedly performs the above operation at the same frequency as the resonant frequency of the vibrator 13.

ここでダイオード21はトランジスタ200ベース・エ
ミッタ間に逆電圧が加わったときトランジスタ20を保
護するだけでなく、発生音圧を上げるのに役立っている
Here, the diode 21 not only protects the transistor 20 when a reverse voltage is applied between the base and emitter of the transistor 200, but also serves to increase the generated sound pressure.

このようにして、本発明によれば圧電振動子13に加わ
る電圧はコイル23とコイル24の巻数比により直流電
源電圧10倍以上が可能であり又、その周波数は振動子
13の固有共振周波数であるため、直流電源電圧が低く
ても振動子13の振巾は大きくなり、振動子130発生
音圧を高めることが出来る。
In this way, according to the present invention, the voltage applied to the piezoelectric vibrator 13 can be 10 times or more the DC power supply voltage depending on the turns ratio of the coil 23 and the coil 24, and its frequency is the natural resonance frequency of the vibrator 13. Therefore, even if the DC power supply voltage is low, the amplitude of the vibrator 13 becomes large, and the sound pressure generated by the vibrator 130 can be increased.

前述と同様の直径35關、厚み0.5關の圧電素子を直
径501nm、厚み0.5闘の金属振動板に貼り合わせ
た振動子を、前記と同一の最適の音響構造を有するケー
スに支持した場合、前記の実施例によれば電源電圧1.
5VDCに対し、圧電振動子に加わる電圧は約12倍の
18Vであり、発生音圧は1rrLで92 dBであっ
た。
A vibrator in which a piezoelectric element with a diameter of 35 mm and a thickness of 0.5 mm as described above is bonded to a metal diaphragm with a diameter of 501 nm and a thickness of 0.5 mm is supported in a case having the same optimal acoustic structure as above. In this case, according to the above embodiment, the power supply voltage 1.
The voltage applied to the piezoelectric vibrator was 18V, which is about 12 times higher than 5VDC, and the generated sound pressure was 92 dB at 1rrL.

次に、駆動電極14と帰還電極150面積の比Rに対す
る前記駆動回路による発生音圧の関係を第7図に示す。
Next, FIG. 7 shows the relationship between the sound pressure generated by the drive circuit and the ratio R of the area of the drive electrode 14 and the return electrode 150.

第7図より、帰還電極150面積が小さ過ぎるとき、つ
まり駆動電極14と帰還電極150面積の比Rが4以上
のとき帰還電極15から得られる帰還信号量が少な過ぎ
て発生音圧は急激に低下し、発振が停止するまでに至る
From FIG. 7, when the area of the feedback electrode 150 is too small, that is, when the ratio R of the drive electrode 14 and the area of the return electrode 150 is 4 or more, the amount of feedback signal obtained from the feedback electrode 15 is too small, and the generated sound pressure suddenly increases. It reaches the point where the oscillation stops.

又この比Rがh以下のとき帰還信号量は十分得られるが
、今度は駆動電極140面積が小さ過ぎて、発生音圧が
小さくなり、コイルで駆動電圧を昇圧しても、発生音圧
は同条件の1.5VDC入力で1mで80 dB以下と
なってしまう。
Also, when this ratio R is less than h, a sufficient amount of feedback signal can be obtained, but the area of the drive electrode 140 is too small, and the generated sound pressure is small, and even if the drive voltage is boosted by the coil, the generated sound pressure is Under the same conditions, with a 1.5VDC input, it would be less than 80 dB at 1m.

最も発生音圧の大きくなるのは駆動電極14と帰還電極
の面積の比Rが%≦R≦2の範囲である。
The sound pressure generated is largest when the area ratio R of the drive electrode 14 and the return electrode is in the range of %≦R≦2.

又、第4図、第5図に示された圧電振動子13の外線を
支持し、第6図に示された回路で振動子13を駆動した
場合も、上記と同様の動作を行い、圧電振動子13を外
線支持した場合の共振周波数で、電源電圧の10倍以上
の電圧で振動子13を1駆動するため、従来のものに較
べ発生音圧は太きくしかもばらつきが少なくなる。
Also, when the outer wire of the piezoelectric vibrator 13 shown in FIGS. 4 and 5 is supported and the vibrator 13 is driven by the circuit shown in FIG. 6, the same operation as above is performed and the piezoelectric Since the vibrator 13 is driven once with a voltage that is 10 times or more the power supply voltage at the resonance frequency when the vibrator 13 is supported by an external line, the generated sound pressure is thicker and has less variation than the conventional one.

第8図、第9図、第10図は本発明による回路の他の実
施例で、第6図の回路図とそれぞれコイル22及び圧電
振動子の接続個所を変更した場合の回路例であるが、い
ずれも第6図と同様の動作を行い、従って同様の効果を
得るものである。
8, 9, and 10 show other embodiments of the circuit according to the present invention, and are examples of circuits in which the connection points of the coil 22 and the piezoelectric vibrator are changed from the circuit diagram of FIG. 6, respectively. , both perform the same operation as in FIG. 6, and therefore obtain similar effects.

上記説明はほぼ同心円で分割された2つの電極の内側の
円形電極が帰還電極で、外側のリング状電極が駆動電極
である場合について説明したが、この逆の内側の円形電
極が駆動電極で、外側のリング状電極が帰還電極である
場合もほぼ同じ結果が得られる。
In the above explanation, the inner circular electrode of two electrodes divided by almost concentric circles is the return electrode and the outer ring-shaped electrode is the drive electrode. Almost the same result is obtained when the outer ring-shaped electrode is a return electrode.

又上記説明は帰還電極と駆動電極がほぼ同心円で分割さ
れた場合について説明したが、この種の圧電振動子は圧
電素子の半径方向の伸縮による屈曲振動を利用している
ため、1駆動電極は圧電振動子つまり、圧電素子に対し
、中心対象に近い形つまり、同心円に近い形で、分割さ
れる方が望ましい。
Furthermore, the above explanation has been made for the case where the return electrode and the drive electrode are divided into almost concentric circles, but since this type of piezoelectric vibrator uses bending vibration caused by expansion and contraction in the radial direction of the piezoelectric element, one drive electrode is It is preferable that the piezoelectric vibrator, that is, the piezoelectric element, be divided in a shape that is close to center symmetry, that is, a shape that is close to concentric circles.

又、以上の説明では円板状の圧電素子と振動板とからな
る圧電振動子について説明したが、それぞれ角板状ある
いはそれらに近い形であっても同様の効果が得られる。
Further, in the above description, a piezoelectric vibrator consisting of a disc-shaped piezoelectric element and a diaphragm was explained, but the same effect can be obtained even if the piezoelectric vibrator is formed into a rectangular plate shape or a shape similar to the rectangular plate shape.

以上のように、本発明によれば電源電圧の昇圧回路を用
いることな(、圧電振動子に印加する電圧を簡単な回路
で電源電圧に対し10倍以上に高めて、しかし圧電振動
子の共振周波数で1駆動するため、低電圧電源でも従来
のものに比べ発生音圧の極めて大きい、しかもばらつき
、変動の少ない圧電ブザーが得られる。
As described above, according to the present invention, the voltage applied to the piezoelectric vibrator is increased by a simple circuit to more than 10 times the power supply voltage without using a booster circuit for the power supply voltage, but the resonance of the piezoelectric vibrator is Since the piezoelectric buzzer is driven at a frequency of 1, it is possible to obtain a piezoelectric buzzer that generates an extremely large sound pressure compared to conventional ones even with a low voltage power supply, and has less variation and variation.

同時に圧電振動子の外縁支持による圧電式音響装置でも
常にその共振周波数で駆動出来るため発生音圧が大きく
ばらつきがなくなる利点がある。
At the same time, even a piezoelectric acoustic device that supports the outer edge of a piezoelectric vibrator can always be driven at its resonant frequency, which has the advantage of eliminating large variations in generated sound pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の圧電振動子の構造、動作及び−支持法を
示す断面図、第2図は同圧電振動子の構造、動作及び他
の支持法を示す断面図、第3図は圧電振動子の発生音圧
の周波数特性を示す図、第4図は本発明による圧電振動
子の一実施例を示す平面図、第5図は同上の断面図、第
6図、第8図、第9図、第10図は本発明の各々の実施
例を示す圧電式音響装置の1駆動回路図、第7図は本発
明による圧電振動子の駆動電極と帰還電極の面積の比に
対する発生音圧の関係を示す図である。
Figure 1 is a cross-sectional view showing the structure, operation, and support method of a general piezoelectric vibrator, Figure 2 is a cross-sectional view showing the structure, operation, and other support methods of the same piezoelectric vibrator, and Figure 3 is a piezoelectric vibration FIG. 4 is a plan view showing an embodiment of the piezoelectric vibrator according to the present invention, FIG. 5 is a cross-sectional view of the same, and FIGS. 10 is a drive circuit diagram of a piezoelectric acoustic device showing each embodiment of the present invention, and FIG. 7 is a diagram showing the generated sound pressure with respect to the area ratio of the drive electrode and the return electrode of the piezoelectric vibrator according to the present invention. It is a figure showing a relationship.

Claims (1)

【特許請求の範囲】 1 駆動電極と帰還電極の面積の比Rが%≦R≦2であ
る圧電素子を振動板に貼り合わせて成る圧電振動子と、
トランジスタと、前記トランジスタのベースバイアス抵
抗と、前記トランジスタのエミッタ・ベース間に接続さ
れたダイオードと、センタータップで一次及び2次巻線
に分割されたコイルとを具備し、前記コイルの一次巻線
は前記トランジスタのコレクタとエミッタに直列に接続
し、前記帰還電極は前記トランジスタのベースに接続し
たことを特徴とする圧電式音響装置。 2 前記駆動電極が前記2次巻線の前記センタータップ
でない方の端子に接続され、前記圧電動子の振動板電極
は直流電源の一方の極に接続され、前記1次巻線のセン
タータップは前記トランジスタのコレクタに接続され他
端子は直流電源の他方の極に接続されることを特徴とす
る特許請求の範囲第1項に記載の圧電式音響装置。 3 前記駆動電極が前記2次巻線のセンタータップでな
い方の端子に接続され、前記圧電振動子の振動板電極は
直流電源の一方の極に接続され、前記1次巻線のセンタ
ータップは直流電源の他方の極に接続され他端子は前記
トランジスタのエミッタに接続されることを特徴とする
特許請求の範囲第1項に記載の圧電式音響装置。 4 前記、駆動電極と前記帰還電極を前記圧電素子に対
しほぼ同心円で分割したことを特徴とする特許請求の範
囲第1項に記載の圧電式音響装置。
[Claims] 1. A piezoelectric vibrator formed by bonding a piezoelectric element to a diaphragm, in which the area ratio R of the drive electrode and the return electrode satisfies %≦R≦2;
A transistor, a base bias resistor of the transistor, a diode connected between the emitter and the base of the transistor, and a coil divided into a primary winding and a secondary winding by a center tap, the primary winding of the coil are connected in series to the collector and emitter of the transistor, and the feedback electrode is connected to the base of the transistor. 2. The drive electrode is connected to the terminal of the secondary winding other than the center tap, the diaphragm electrode of the piezoelectric element is connected to one pole of a DC power supply, and the center tap of the primary winding is 2. The piezoelectric acoustic device according to claim 1, wherein the piezoelectric acoustic device is connected to the collector of the transistor, and the other terminal is connected to the other pole of a DC power source. 3. The drive electrode is connected to the terminal of the secondary winding other than the center tap, the diaphragm electrode of the piezoelectric vibrator is connected to one pole of a DC power supply, and the center tap of the primary winding is connected to the terminal of the secondary winding that is not the center tap. 2. The piezoelectric acoustic device according to claim 1, wherein the piezoelectric acoustic device is connected to the other pole of a power source, and the other terminal is connected to the emitter of the transistor. 4. The piezoelectric acoustic device according to claim 1, wherein the drive electrode and the return electrode are divided approximately concentrically with respect to the piezoelectric element.
JP53067372A 1978-06-05 1978-06-05 piezoelectric acoustic device Expired JPS5832392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53067372A JPS5832392B2 (en) 1978-06-05 1978-06-05 piezoelectric acoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53067372A JPS5832392B2 (en) 1978-06-05 1978-06-05 piezoelectric acoustic device

Publications (2)

Publication Number Publication Date
JPS54158196A JPS54158196A (en) 1979-12-13
JPS5832392B2 true JPS5832392B2 (en) 1983-07-12

Family

ID=13343108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53067372A Expired JPS5832392B2 (en) 1978-06-05 1978-06-05 piezoelectric acoustic device

Country Status (1)

Country Link
JP (1) JPS5832392B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160026U (en) * 1980-04-25 1981-11-28
JPS5885887U (en) * 1981-12-07 1983-06-10 ソニー株式会社 piezoelectric vibrator

Also Published As

Publication number Publication date
JPS54158196A (en) 1979-12-13

Similar Documents

Publication Publication Date Title
JPH0685343A (en) Piezoelectric transconverter for power
US3904896A (en) Piezoelectric oscillator system
US4139842A (en) Audible alarm unit
JP2952815B2 (en) Ultrasonic motor device
JPS5832392B2 (en) piezoelectric acoustic device
JP3194234B2 (en) Piezoelectric ceramic rectangular plate, method of manufacturing the same, piezoelectric transformer using the piezoelectric ceramic, and oscillation circuit using the piezoelectric transformer
JPS6225039Y2 (en)
JPH0241986Y2 (en)
JPS58207975A (en) Vibrator excitation circuit
US3085167A (en) High efficiency sonic generator
JPH05284764A (en) Ultrasonic actuator using piezoelectric transformer
JPS6025195Y2 (en) piezoelectric sounding body
JPS622812Y2 (en)
JPS5930278B2 (en) piezoelectric sound oscillator
JP2592110Y2 (en) Transducer for ultrasonic cleaner
JPH0116153Y2 (en)
JPS602717Y2 (en) electroacoustic transducer
JP3769735B2 (en) Ultrasonic exciter
JPS6025103Y2 (en) piezoelectric vibrator
JPS605679Y2 (en) electroacoustic transducer
JPS63240200A (en) Piezoelectric element
JPS6113800A (en) Piezoelectric buzzer
JP2993229B2 (en) Ultrasonic motor
JPS6216231Y2 (en)
JPS5829677Y2 (en) Piezoelectric ceramic electroacoustic transducer