JPS5832321Y2 - Stabilized dielectric resonant circuit - Google Patents

Stabilized dielectric resonant circuit

Info

Publication number
JPS5832321Y2
JPS5832321Y2 JP13036676U JP13036676U JPS5832321Y2 JP S5832321 Y2 JPS5832321 Y2 JP S5832321Y2 JP 13036676 U JP13036676 U JP 13036676U JP 13036676 U JP13036676 U JP 13036676U JP S5832321 Y2 JPS5832321 Y2 JP S5832321Y2
Authority
JP
Japan
Prior art keywords
resonant frequency
dielectric resonator
dielectric
adjusting body
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13036676U
Other languages
Japanese (ja)
Other versions
JPS5348543U (en
Inventor
浩之 阿部
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP13036676U priority Critical patent/JPS5832321Y2/en
Publication of JPS5348543U publication Critical patent/JPS5348543U/ja
Application granted granted Critical
Publication of JPS5832321Y2 publication Critical patent/JPS5832321Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【考案の詳細な説明】 この考案は、共振周波数温度変化の小さい誘電体共振回
路の構成に関するものである。
[Detailed Description of the Invention] This invention relates to the configuration of a dielectric resonant circuit in which the resonant frequency changes little with temperature.

最近、マイクロ波帯において、使用されるようになって
きた誘電体共振回路は、TiO2系のセラミックスのよ
うな低損失で、かつ温度特性のよい材料でつくられた誘
電体共振器を、絶縁体基板及びその上面に形成されたス
トリップ線路よりなるマイクロ波集積回路(以下MIC
と略す)と結合せしめてなるものである。
Dielectric resonant circuits, which have recently come to be used in the microwave band, use a dielectric resonator made of a material with low loss and good temperature characteristics, such as TiO2-based ceramics, as an insulator. Microwave integrated circuit (hereinafter referred to as MIC) consisting of a substrate and a strip line formed on its top surface
(abbreviated as )).

誘電体共振器の形状としては、円筒形又は直方体のもの
が加工の容易なこと、Q値が高いことから一般的に用い
られている。
As for the shape of the dielectric resonator, a cylindrical or rectangular parallelepiped shape is generally used because it is easy to process and has a high Q value.

一定の形状に成型された誘電体共振器とMICを結合さ
せた場合の共振周波数は、材料の特性のばらつき、加工
の際の誤差、ストリップ線路と誘電体共振器の位置関係
の異同、筐体壁と誘電体共振器の位置関係の異同、等に
よって必ずしも、設計値通りの値が得られるとは限らな
い。
The resonant frequency when a dielectric resonator molded into a certain shape and a MIC are coupled depends on variations in material properties, errors during processing, differences in the positional relationship between the strip line and the dielectric resonator, and the housing. The designed value may not always be obtained due to differences in the positional relationship between the wall and the dielectric resonator, etc.

従って既に成型済みの誘電体共振器の形状を変える事な
く、共振周波数を連続的に変化せしめうる何らかの機構
が必要とされる。
Therefore, there is a need for some mechanism that can continuously change the resonant frequency without changing the shape of the already molded dielectric resonator.

このためには、例えば、誘電体共振器の上部にこれと接
近させて設けられた共振周波数調整体(以下調整体と略
す)の先端導電面と、誘電体共振器上面の離間距離りを
変化せしめる事により共振周波数の調整を行う機構が採
用されてきた。
For this purpose, for example, the distance between the top conductive surface of the resonant frequency adjustment body (hereinafter referred to as adjustment body) provided close to the top of the dielectric resonator (hereinafter referred to as the adjustment body) and the top surface of the dielectric resonator may be changed. Mechanisms have been adopted that adjust the resonant frequency by tightening the resonant frequency.

ところで、このような共振回路の共振周波数の温度変化
は1.誘電体共振器の特性の温度変化即ち、誘電率の温
度変化及び熱膨張による形状の変化による周波数変化と
、2.筐体及び調整体の熱膨張により、調整体先端面と
、誘電体共振器上面の距離りが変化する事による周波数
変化の加算されたものとなる。
By the way, temperature changes in the resonant frequency of such a resonant circuit are as follows: 1. 2. Temperature changes in the characteristics of the dielectric resonator, that is, frequency changes due to temperature changes in dielectric constant and changes in shape due to thermal expansion; This is the sum of frequency changes caused by changes in the distance between the tip end surface of the adjusting body and the top surface of the dielectric resonator due to thermal expansion of the housing and adjusting body.

この現象を積極的に利用すれば、1,2の効果による周
波数変化が互に補償しあって、共振周波数温度変化の小
さい共振回路を得る事が可能である。
If this phenomenon is actively utilized, the frequency changes due to effects 1 and 2 will compensate for each other, making it possible to obtain a resonant circuit in which the resonant frequency changes little with temperature.

従来、この原理に基く、安定化誘電体共振器においては
、第1図に示すように、金属でつくられた調整体11を
支持体12にネジ穴を通じて取りつける構造とし、支持
体12を適当な熱膨張係数の材質で構成し、適当な離間
距離の温度変化を結果せしめる方法が用いられていた。
Conventionally, a stabilized dielectric resonator based on this principle has a structure in which an adjusting body 11 made of metal is attached to a support body 12 through a screw hole, as shown in FIG. A method has been used in which the material is made of a material with a coefficient of thermal expansion, resulting in temperature changes at appropriate distances.

このため、回路の構造が複雑となり誘電体共振回路のも
つ、構造が簡単であるという長所を著るしく、減殺する
という欠点を有していた。
Therefore, the structure of the circuit becomes complicated, which has the disadvantage of significantly reducing the advantage of the simple structure of the dielectric resonant circuit.

この考案は上記の欠点を克服するために、調整体そのも
のを熱膨張係数の異なる複数個の材質の層状構造により
構成し、これを、筐体蓋部に取り付けねし機構により上
下せしめて、所定の共振周波数を得た後に蓋部に固定し
た状態で、温度変化に対しては、適当な離間距離の変化
を結果するように、各層の熱膨張係数及び厚さを選択す
る事により、構造の簡単な安定化誘電体共振器を得る事
を目的とするものである。
In order to overcome the above-mentioned drawbacks, this device consists of a layered structure of a plurality of materials having different coefficients of thermal expansion, and is attached to the lid of the housing and moved up and down by a screw mechanism. After obtaining the resonant frequency, the structure can be adjusted by selecting the thermal expansion coefficient and thickness of each layer so that the separation distance changes appropriately with respect to temperature changes. The purpose is to obtain a simple stabilized dielectric resonator.

以下この考案を実施例について詳細に説明する。This invention will be described in detail below with reference to embodiments.

第2図はこの考案の実施例である安定化誘電体共振回路
を説明するための図である。
FIG. 2 is a diagram for explaining a stabilized dielectric resonant circuit which is an embodiment of this invention.

図において調整体21の筐体内部空間に突出している部
分は、熱膨張係数をε1.ε2.ε3とする材質よりな
り、厚さがそれぞれ、χ1.χ2.χ3で゛ある層26
,27.28より構成されている。
In the figure, the portion of the adjusting body 21 that protrudes into the internal space of the housing has a coefficient of thermal expansion of ε1. ε2. They are made of a material with ε3, and have a thickness of χ1. χ2. Layer 26 with χ3
, 27.28.

21の先端面としては、導電性のよい金属で被覆するか
、又は層26が導電性のよい金属で作られている場合は
、26の金属面をそのまま利用するか、いずれかの方法
により、導電面とされる。
The tip surface of 21 can be coated with a highly conductive metal, or if the layer 26 is made of a highly conductive metal, the metal surface of 26 can be used as is. It is considered a conductive surface.

調整体21は筐体蓋部20に設けられたねし穴を通して
これに取り付けられ、ねじ機構により、上下に移動でき
るようになっている。
The adjustment body 21 is attached to the housing cover 20 through a screw hole provided therein, and can be moved up and down by a screw mechanism.

いま筐体側部23の高さ、即ち、筐体内部空間の高さを
H1絶縁体基板24の厚さW絶縁体基板上のス) IJ
ツブ線路25にマイクロ波的に結合されるように配置さ
れた誘電体共振器の高さL、としたとき、筐体側部、絶
縁体基板、誘電体共振器を構成する材質の熱膨張係数を
ε□、εい、ε1とすれば、温度変化△Tに対する、調
整体先端導電面と誘電体共振器上面の距離りの変化△D
は次のようにあられされる。
Now, the height of the side part 23 of the casing, that is, the height of the internal space of the casing, is defined as H1, the thickness of the insulator substrate 24, and W on the insulator substrate.
When the height L of the dielectric resonator arranged to be microwave-coupled to the tube line 25 is, the coefficient of thermal expansion of the housing side, the insulator substrate, and the material constituting the dielectric resonator is If ε□, ε, and ε1, then the change in the distance between the conductive surface at the tip of the adjuster and the top surface of the dielectric resonator △D with respect to the temperature change △T
is manifested as follows.

ところでDの変化による周波数fの変化率をとすれば、
Dの微少変化による周波数の温度についての変化率m2
は次のようにかける。
By the way, if the rate of change in frequency f due to change in D is taken as
Rate of change m2 of frequency with respect to temperature due to minute changes in D
is calculated as follows.

他方、誘電体共振器自体の特]主の温度変化による周波
数温度変化率をmlとする。
On the other hand, let ml be the frequency temperature change rate due to the main temperature change of the dielectric resonator itself.

l m 1+ I2 +をできるだけ小さくすることに
より、共振周波数温度変化の小さい共振回路を得ること
ができる。
By making l m 1+ I2 + as small as possible, a resonant circuit whose resonant frequency changes little with temperature can be obtained.

具体的としてな一例として数値をもって示すならば23
,26.28をアルミニウム、25はアルミナセラミッ
クス、22をTlO2系セラミックス、で構成したとす
れば、εにε3−εH= 23 X 10−/’C、ε
ラフX10 ’/’C,EL=7X10 ’/’Cであ
る。
As a concrete example, it is 23 if shown numerically.
, 26.28 is made of aluminum, 25 is made of alumina ceramics, and 22 is made of TlO2 ceramics.
Rough X10'/'C, EL=7X10'/'C.

H−10mm、W=1mm、L=4mm、X 1千22
+73=4mm、I)=1mmとすればこれらの数値例
を、第5頁最下行の式に代入して、 を得る。
H-10mm, W=1mm, L=4mm, X 1,022
If +73=4mm and I)=1mm, then by substituting these numerical examples into the formula on the bottom line of page 5, we obtain the following.

ここに72=ε2×106である。Dの変化による共振
周波数の温度についての変化率m2は、上記の(1 1)式を第6頁第5行目の式に代入して、を得る。
Here, 72=ε2×106. The rate of change m2 of the resonant frequency with respect to temperature due to a change in D is obtained by substituting the above equation (11) into the equation on the fifth line of page 6.

誘電体共振器自体の特性の温度変化による共振周波数温
度変化率をmlとすれば、共振回路全体としての共振周
波数の温度変化率はm1+m2で与えられ、次式のよう
になる。
If the temperature change rate of the resonant frequency due to a temperature change in the characteristics of the dielectric resonator itself is ml, then the temperature change rate of the resonant frequency of the entire resonant circuit is given by m1+m2, as shown in the following equation.

共振周波数温度変化を極小ならしめるためには、1m、
+m21=Qとなるように、I2とX2ノ関係を定めれ
ばよい。
In order to minimize the resonance frequency temperature change, 1m,
The relationship between I2 and X2 may be determined so that +m21=Q.

即ち、と選べばよい。In other words, you can choose .

換言すれば、27の材質として膨張率がε2X10−6
であるものを選んだ場合は厚さX2として、(1−4)
式を満足するように定めればよい。
In other words, as the material of 27, the expansion coefficient is ε2X10-6
If you choose the thickness of
It may be determined to satisfy the formula.

k9m2は、共振周波数、共振回路を構成する各要素の
配置によって一定ではないが、測定可能な量であり、−
例として、1m11=3X10−、に= 2.5X1
0−2程度の値が得られる。
Although k9m2 is not constant depending on the resonance frequency and the arrangement of each element constituting the resonance circuit, it is a measurable quantity, and -
As an example, 1m11=3X10-, to=2.5X1
A value of about 0-2 is obtained.

従がってであり、(1)式は次のようになる。Therefore, equation (1) becomes as follows.

103+(23−ε、)・χ、=±120 f2)
これをχ2についてとけば次のいずれかとなる。
103+(23-ε,)・χ,=±120 f2)
If we solve this for χ2, we get one of the following.

χ+は負のmlに、χ−は正のmlに対応する。χ+ corresponds to negative ml, and χ− corresponds to positive ml.

27の材質としてテフロン(ε2 = 120 X 1
0′、こ= 120)を用いればχiが実現でき、χ;
=2.3mmである。
The material of 27 is Teflon (ε2 = 120 x 1
0', = 120), χi can be realized, and χ;
=2.3mm.

また、スーパーインバー(ε2= 0.01X10
’tz= 0.01)を利用すればぺが実現できべ0
.73となる。
Also, super invar (ε2 = 0.01X10
'tz = 0.01), it is possible to realize Pe.
.. It becomes 73.

以上のべたように、この考案によれば、調整体自体が熱
膨張係数の異なる材質の層状構成からなっているので、
きわめて簡単な構成の安定化誘電体共振器を得ることが
でき、その効果は大きい。
As mentioned above, according to this invention, since the adjusting body itself is composed of a layered structure of materials with different coefficients of thermal expansion,
A stabilized dielectric resonator with an extremely simple configuration can be obtained, and its effects are significant.

なお、上記の説明では、共振周波数調整体として、直径
一定の内棒上のものを用いたが、第3図にみられるよう
に、熱膨張係数が異なる材質(少なくとも−ケの材質の
熱膨張係数が他の材質のそれとは異なる)31,32.
33よりなる層状構造のもので、ねじ部の断面形状が、
先端導電面の形状と異なるものとし、ねじ部のピッチを
小さなものにした構造を採用することもできる。
In the above explanation, a resonant frequency adjusting body on an inner rod with a constant diameter was used, but as shown in Fig. coefficient is different from that of other materials) 31, 32.
It has a layered structure consisting of 33 parts, and the cross-sectional shape of the threaded part is
It is also possible to adopt a structure in which the shape of the tip is different from that of the conductive surface and the pitch of the threaded portion is small.

また上記の説明では23,26.28としてアルミニウ
ムを用いるとしたが、この他に加工の容易な銅、黄銅等
を用いる事もできる。
Further, in the above description, aluminum is used for the parts 23, 26, and 28, but it is also possible to use copper, brass, etc., which are easy to process.

熱膨張率の大きなものとしては、テフロンをあげたが、
ポリエチレン、アクリル系樹脂を用いることもできる。
Teflon was mentioned as a material with a large coefficient of thermal expansion, but
Polyethylene or acrylic resin can also be used.

又、膨張率の小さいものとしては、スーパーインバーの
他に、石英、アルミナ、コバー等用いる事も可能である
In addition to super invar, it is also possible to use quartz, alumina, covar, etc. as materials with low expansion coefficients.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の安定化誘電体共振回路を示す図、第2図
はこの考案の一実施例を示す図、第3図はこの考案の別
の実施例を示す図である。 図において、20は筐体蓋部、11.21は調整体、1
3.22は誘電体共振器、14.23は筐体、15.2
4は絶縁体基板、16.25はストリップ線路、26,
27,28,31.32.33は調整体の先端に設けら
れた熱膨張係数の異なる材料層を示す。
FIG. 1 is a diagram showing a conventional stabilizing dielectric resonant circuit, FIG. 2 is a diagram showing one embodiment of this invention, and FIG. 3 is a diagram showing another embodiment of this invention. In the figure, 20 is a housing lid part, 11.21 is an adjustment body, 1
3.22 is a dielectric resonator, 14.23 is a housing, 15.2
4 is an insulator substrate, 16.25 is a strip line, 26,
Reference numerals 27, 28, 31, 32, and 33 indicate material layers having different coefficients of thermal expansion provided at the tip of the adjustment body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 絶縁体基板とその上に形成されたストリップ線路よりな
るマイクロ波集積回路と、この上に配置された誘電体共
振器と、前二者を内包する筐体と、筐体蓋部に取り付け
られ、ねじ機構による上下運動が可能であって、先端部
が導電面となっている共振周波数調整体を有し、上記誘
電体共振器の上面と、上記共振周波数調整体の先端導電
面の離間距離を変化せしめる事により共振周波数可変と
なっている誘電体共振回路において、上記共振周波数調
整体が熱膨張係数の異なる複数種の材質の層状構造より
構成されており、温度変化によって、誘電体共振器と共
振周波数調整体先端導電面の離間距離が微少変化する事
により誘電体共振器の周波数温度変化を補償する事を特
徴とする誘電体共振回路。
A microwave integrated circuit consisting of an insulating substrate and a strip line formed on the insulating substrate, a dielectric resonator placed on the dielectric resonator, a casing containing the former two, and a casing attached to the casing lid, It has a resonant frequency adjusting body that can be moved up and down by a screw mechanism and has a conductive surface at its tip, and the distance between the top surface of the dielectric resonator and the conductive surface at the tip of the resonant frequency adjusting body is determined. In a dielectric resonant circuit in which the resonant frequency is variable by changing the resonant frequency, the resonant frequency adjusting body is composed of a layered structure of multiple types of materials with different coefficients of thermal expansion, and the dielectric resonator and the resonant frequency change depending on the temperature change. A dielectric resonant circuit that compensates for temperature changes in the frequency of a dielectric resonator by slightly changing the separation distance between conductive surfaces at the tips of a resonant frequency adjusting body.
JP13036676U 1976-09-28 1976-09-28 Stabilized dielectric resonant circuit Expired JPS5832321Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13036676U JPS5832321Y2 (en) 1976-09-28 1976-09-28 Stabilized dielectric resonant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13036676U JPS5832321Y2 (en) 1976-09-28 1976-09-28 Stabilized dielectric resonant circuit

Publications (2)

Publication Number Publication Date
JPS5348543U JPS5348543U (en) 1978-04-24
JPS5832321Y2 true JPS5832321Y2 (en) 1983-07-18

Family

ID=28739510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13036676U Expired JPS5832321Y2 (en) 1976-09-28 1976-09-28 Stabilized dielectric resonant circuit

Country Status (1)

Country Link
JP (1) JPS5832321Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128401Y2 (en) * 1979-01-29 1986-08-23

Also Published As

Publication number Publication date
JPS5348543U (en) 1978-04-24

Similar Documents

Publication Publication Date Title
US4019161A (en) Temperature compensated dielectric resonator device
US2583854A (en) Inductance coil with ceramic form for high frequency
US6734766B2 (en) Microwave filter having a temperature compensating element
JPS5832321Y2 (en) Stabilized dielectric resonant circuit
JPH0748607B2 (en) Microwave metal cavity
JP2916258B2 (en) Dielectric resonator
FI97090C (en) Dielectric resonator
US5309129A (en) Apparatus and method for providing temperature compensation in Te101 mode and Tm010 mode cavity resonators
US3202944A (en) Cavity resonator apparatus
JPS5986307A (en) Evanescent mode type resonator
JPS6145603Y2 (en)
JPH0671165B2 (en) Dielectric filter
JPS6034281B2 (en) dielectric mounted resonator
JPS60143004A (en) Dielectric resonance circuit
JPS6218969Y2 (en)
JPS5997201A (en) Resonance circuit device
JPS581842B2 (en) Kuudou Kiyo Shinki
JPS58107701A (en) High frequency circuit
JPS6150525B2 (en)
JPH04317203A (en) Dielectric resonator
JPH0430604A (en) Microwave circuit and microwave oscillator
JPS6345043Y2 (en)
JPS61218202A (en) Dielectric resonator
JPS6143881B2 (en)
JP2000091809A (en) Cavity-type filter for high frequency