JPS5832144A - Decision apparatus of particle agglutination - Google Patents

Decision apparatus of particle agglutination

Info

Publication number
JPS5832144A
JPS5832144A JP12879481A JP12879481A JPS5832144A JP S5832144 A JPS5832144 A JP S5832144A JP 12879481 A JP12879481 A JP 12879481A JP 12879481 A JP12879481 A JP 12879481A JP S5832144 A JPS5832144 A JP S5832144A
Authority
JP
Japan
Prior art keywords
synthetic resin
vessel
reaction
reagent
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12879481A
Other languages
Japanese (ja)
Inventor
Shiro Ishiwatari
石渡 四郎
Tadao Yamamoto
忠男 山本
Tokio Kano
時男 嘉納
Takeaki Nakamura
剛明 中村
Kazu Sakuma
佐久間 壱
Hidehiko Yamamoto
秀彦 山本
Koichi Shizuma
四十万 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP12879481A priority Critical patent/JPS5832144A/en
Priority to DE19823230901 priority patent/DE3230901A1/en
Publication of JPS5832144A publication Critical patent/JPS5832144A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00009Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with a sample supporting tape, e.g. with absorbent zones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/021Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a flexible chain, e.g. "cartridge belt", conveyor for reaction cells or cuvettes
    • G01N2035/023Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a flexible chain, e.g. "cartridge belt", conveyor for reaction cells or cuvettes forming cuvettes in situ, e.g. from plastic strip

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To decide the existence of agglutination effectively, by dispensing a reagent and a sample in a reaction vessel formed by a transparent belt-shaped synthetic resin material successively and sealing its opening part closely and hereafter, detecting agglutination patterns. CONSTITUTION:A synthetic resin material winding around a rooling body 2 is transported by plural pairs of feed rollers 4, 5, 6 and a reaction vessel 8 is formed successively by a reaction vessel forming apparatus 7 provided with cancave and convex molds 7a, 7b. The first reagent, a sample and the second reagent, are dispensed quantitatively from reagent dispensing nozzles 9, 11 and a sample dispensing nozzle 10 to the vessel 8 and the agglutination reaction is begun. Next, a transparent synthetic resin sheet to which a bonding agent is applied is sent to the surface of the material 1 and the vessel 8 is sealed closely by coating by the roller 5. Further, after the elapse of a prescribed time, agglutination patterns formed on the bottom face of the vessel 8 are detected photometrically by a photometrically detecting apparatus 13. Hereby, washing of the vessel 8 is made unnecessary and troubles such as flaw of the vessel 4, infection or contamination due to washing are eliminated.

Description

【発明の詳細な説明】 の型、血小板、リンパ球の形やsuit等の血球成分や
、各種抗体、抗原、特異たん白、ビールス等の血清中の
成分および異物を血球粒子、ラテックス粒子や炭素粒子
等を用いる凝集反応によって分析する粒子凝集判定装置
に関するものであるO最近、血球粒子、ラテックス粒子
および炭素粒子の凝集パターンを判別して、血液中の種
々ρ成分(血液型、各種抗体、各種たん.白等)やビー
ルス等の異物を自動的に検出する粒子凝集判定装置が開
発されている。例えは、底面の少なく共一部を傾斜面と
した多数の反応容器を基板にマトリックス状に配列形成
したマイクロプレートを用い、この反応容器に収容した
粒子を古む検液をほば静置状態として、自然沈降により
沈降する粒子が、抗原抗体結合反応の結果、反応容器の
底面に形成する凝集パターンに基いて血液型、各種抗原
、抗体等の免疫学的分析を行うものが提案されている。
[Detailed Description of the Invention] Blood cell components such as type, platelet, lymphocyte shape and suit, various antibodies, antigens, specific proteins, components in serum such as viruses, and foreign substances are removed from blood cell particles, latex particles and carbon. This device relates to a particle agglutination determination device that analyzes agglutination reactions using particles, etc.Recently, it has been developed to determine the agglutination patterns of blood cell particles, latex particles, and carbon particles, and to analyze various ρ components in blood (blood type, various antibodies, various A particle aggregation determination device has been developed that automatically detects foreign substances such as phlegm (white phlegm, etc.) and viruses. For example, a microplate is used, in which a large number of reaction vessels with a small bottom surface and a common part with an inclined surface are arranged in a matrix on a substrate. A method has been proposed that performs immunological analysis of blood type, various antigens, antibodies, etc. based on the agglutination pattern formed on the bottom of a reaction container as a result of an antigen-antibody binding reaction of particles that settle due to natural sedimentation. .

このようなマイクロプレートを用いる粒子凝集判定装置
においては、マイクロプレートが極めて高価であるため
、一般にはマイクロプレートを分析終了後洗浄して繰返
し使用している。しかし、このようにマイクロプレート
を繰返し使用すると次、のような不具合がある。
In particle aggregation determination apparatuses using such microplates, the microplates are extremely expensive, so generally the microplates are washed after analysis and used repeatedly. However, when microplates are used repeatedly in this way, the following problems occur.

/、 分析終了後マイクロプレートを洗浄する必要があ
るため、マイクロプレートに傷が付き易い。
/ Because the microplate needs to be washed after analysis, the microplate is easily damaged.

2 マイクロプレートの洗浄に伴なう感染、汚染の危険
がある。
2. There is a risk of infection and contamination associated with cleaning the microplate.

3 マイクロプレート洗浄水の排水処理に問題が残され
ている。
3. Problems remain in the wastewater treatment of microplate washing water.

仏 マイクロプレートの再度使用の可否の判定がむずか
しい。
France It is difficult to determine whether a microplate can be used again.

本発明の目的は上述した種々の不具合を解決し、免疫学
的凝集反応に基く分析を効率的に行ない得るよう適切に
構成した粒子凝集判定装置を提供しようとするものであ
る@ 本発明の粒子凝集判定装置は、透明な帯状の合゛   
成樹脂素材を所定の方向に移送する手段と、この移送手
段によって移送される前記合成樹脂素材に順次反応容器
を成形する手段と′、この反応容器に試薬および試料を
分注する手段と、試薬および試料が分注された反応容器
をその開口部に合成樹脂、シートを被着して密封する手
段と、前記反応容器。
The purpose of the present invention is to solve the various problems mentioned above and to provide a particle agglutination determination device appropriately configured to efficiently conduct analysis based on immunological agglutination reaction. The agglomeration determination device uses a transparent band-shaped aggregate.
a means for transporting a synthetic resin material in a predetermined direction; a means for sequentially forming a reaction container on the synthetic resin material transferred by the transport means; a means for dispensing a reagent and a sample into the reaction container; and means for sealing the reaction container into which the sample has been dispensed by covering the opening thereof with a synthetic resin or sheet; and the reaction container.

の底面に形成される凝集パターンを光電的に検出する測
光検出手段とを具え、この測光検出手段により測光検出
されかつ密封された前記反応容器を前記合成樹脂素材か
ら分離するかまたは分離しないで廃棄し得るよう構成し
たことを特徴とするものである。
a photometric detection means for photoelectrically detecting an agglomeration pattern formed on the bottom surface of the reaction vessel, and the reaction vessel photometrically detected by the photometry detection means and sealed is separated from the synthetic resin material or discarded without being separated. It is characterized by being configured so that it can be used.

以下図面を参照して本発明の詳細な説明する0第1図は
本発明の粒子凝集判定装置の一例の構成を示すS図であ
る。本例では使い捨ての反応容器を作るための透明な帯
状の合成樹脂素材lを巻回したロール体−を用い、この
ロール体コから素材lを繰出して所定の方向に移送して
巻取ローラ3で巻取りながら、その過程において反応容
器成形、試薬分注、試料分注、凝集パターンの検出を行
なう。ロール体λは所定の位置に回動自在に装置し、そ
の合成樹脂素材/を、ロール体−の装着部と巻取ローラ
3との間に設けた複数組の送りローラ(第1図では送り
ローラダ、!および乙のみを示す)により所定の方向に
移送しながら巻取口、−ラ3で巻取る。ロール体λの装
着部近傍に位置する送りローラダの下流側には反応容器
成形装置7を配置し、この成形装置7により合成樹脂素
材lに反応容儀lを順次成形する。反応容器成形装置7
は所定の方向に移送される合成樹脂素材lを介して昇降
自在に対向配置した凸状および四状の型7aおよび7b
を具え、これら凸状および凹状の型7aおよび7bを合
成樹脂素材lを介して係合させることにより、素材γに
底面に傾斜面を有する反応容器tを成形するよう構成す
る。合成樹脂素材lに順次成形され、所定の方向に移送
される反応容器tには、第1試薬分注装置を構成する試
薬分注ノズル9から第1試薬を選択的に定量分注した後
、試料分注装置を構成する試料分注ノズル10から試料
を定量分注し、その後第2試薬分注装、置。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is an S diagram showing the configuration of an example of a particle aggregation determination device of the present invention. In this example, a roll body in which a transparent belt-shaped synthetic resin material l is wound to make a disposable reaction container is used. While winding it up, the process involves forming reaction vessels, dispensing reagents, dispensing samples, and detecting aggregation patterns. The roll body λ is rotatably mounted at a predetermined position, and the synthetic resin material is transferred to a plurality of sets of feed rollers (in FIG. The film is transported in a predetermined direction by rollers (only ! and B are shown) and wound up at the winding opening, -ra 3. A reaction container molding device 7 is disposed downstream of the feed roller roller located near the mounting portion of the roll body λ, and this molding device 7 sequentially molds the reaction containers 1 into the synthetic resin material 1. Reaction container forming device 7
are convex and four-shaped molds 7a and 7b arranged facing each other so that they can be raised and lowered via a synthetic resin material l that is transferred in a predetermined direction.
By engaging these convex and concave molds 7a and 7b via the synthetic resin material 1, a reaction vessel t having an inclined bottom surface is formed in the material γ. After selectively dispensing a first reagent in a fixed amount from a reagent dispensing nozzle 9 constituting a first reagent dispensing device, a first reagent is selectively dispensed into a reaction container t which is sequentially molded into a synthetic resin material 1 and transferred in a predetermined direction. The sample is quantitatively dispensed from the sample dispensing nozzle 10 constituting the sample dispensing device, and then the second reagent dispensing device.

を構成する試薬分注ノズルl/から第コ試薬を選択的に
定量分注して凝集反応を開始させる。本例ではこの第2
試薬分注位置を通過した反応容器lを有する合成樹脂素
材lの表面に、ロール状に巻回され接着剤のついた透明
合成樹脂シート/2を送シローラ5により被着し、これ
によシ反応容器lを密封する。この透明合成樹脂シー)
/Jは素材lと同様に帯状のものを用いる。
The third reagent is selectively and quantitatively dispensed from the reagent dispensing nozzle l/ constituting the reagent to start the agglutination reaction. In this example, this second
A transparent synthetic resin sheet 2 wound in a roll and coated with adhesive is applied to the surface of the synthetic resin material 1 having the reaction container 1 which has passed through the reagent dispensing position by means of a feed roller 5, and then Seal reaction vessel l. This transparent synthetic resin sheet)
/J is a band-shaped material similar to material 1.

反応容器lが第2試薬分注位置から所定時間経過して移
送される位置には、測光検出装置13を設け、この測光
検出装置13により反応容器底面に形成される凝集パタ
ーンを測光検出する。測光検出装置13は、光fIAl
Jaからの光をコリメートレンズ13bにより平行光束
にして容器底面を照明し、その底面の像を結像レンズ/
30により受光素子/jd上に結像させるよう構成する
。ここで、受光素子/Jdは例えば反応容器tの傾斜底
面の最深部の像を受光する部分と、その周囲の像を受光
する部分とに分割して構成する。このようにすれば、両
受光部分の出力の差に基いて凝集パターンを検出するこ
・とができ、これにより凝集の有無を判定して免疫学的
分析を行なうことができる◇ 測光検出装置13を通過した反応容器tは送りロー26
を経て合成樹脂素材lと共に巻取ローラ3で巻取る。
A photometric detection device 13 is provided at a position where the reaction container l is transferred after a predetermined time has elapsed from the second reagent dispensing position, and the photometric detection device 13 photometrically detects the aggregation pattern formed on the bottom surface of the reaction container. The photometric detection device 13
The light from Ja is converted into a parallel beam by the collimating lens 13b and illuminates the bottom of the container, and the image of the bottom is sent to the imaging lens/
30 to form an image on the light receiving element/jd. Here, the light receiving element /Jd is configured by being divided into, for example, a part that receives the image of the deepest part of the inclined bottom surface of the reaction vessel t, and a part that receives the images around it. In this way, it is possible to detect the agglutination pattern based on the difference in output between the two light-receiving parts, and thereby the presence or absence of agglutination can be determined and immunological analysis can be performed.◇ Photometric detection device 13 The reaction vessel t that has passed through is transferred to the feed row 26
Then, it is wound up together with the synthetic resin material l by a winding roller 3.

第−図は本発明の粒子凝集判定装置の他の例の構成を示
すfs図である。この装置は測光検出装置13により測
光検出された反応容@1をカッターl#により合成樹脂
素材lから分離して収納箱/jに廃棄するようにした点
のみが第1図に示すものと異なるものであり、第1図に
示す符号と同一符号は同一の作用を成すものを表わす。
FIG. 3 is an fs diagram showing the configuration of another example of the particle aggregation determination device of the present invention. This device differs from the one shown in Fig. 1 only in that the reaction volume @1 photometrically detected by the photometric detection device 13 is separated from the synthetic resin material l by a cutter l# and disposed of in a storage box /j. The same reference numerals as those shown in FIG. 1 represent the same functions.

第1図および第2図において、合成樹脂素材lを移送す
るための送りローラ弘、jおよび4は同一の周速度で同
期して駆動すると共に、反応容器成形装置7よりも下流
側に配置される送りローラjおよび≦はその下側のロー
ラに反応容@1との接触をさけるための溝を形成してお
く。
In FIGS. 1 and 2, feed rollers Hiroshi, J, and 4 for transporting the synthetic resin material 1 are driven synchronously at the same circumferential speed, and are arranged downstream of the reaction container forming device 7. A groove is formed in the lower roller of the feed roller j and ≦ to avoid contact with the reaction chamber @1.

また、第1図および第一図において帯状の合成樹脂素材
lに成形する反応容IItは、その移送刃・向と直交す
る方向すなわち素材lの輻方向に1個でもよいが、好適
には幅方向に複!数個成形して多1 項目検査を行なうようにした方がよい。この場合には、
第3図に示すように反応容器成形装置7を構成する凸状
型りaおよび凹状1[7bを素材lの輻方向に複数個配
置すると共に、試薬分注ノズル9、試料分注ノズルIO
および試薬分注ノズル/lを素材lの幅方向に移動可能
に構成する。また、測光検出装置/3は素材lの幅方向
に成形する反応容器数にあわせて複数個設けるが、ある
いは第3図に示すように1つの測光検出装置13を素材
lの幅方向に移動させて複数個の反応容器tを走査する
ようにすればよい。
In addition, in FIGS. 1 and 1, the reaction volume IIt to be formed into the belt-shaped synthetic resin material 1 may be one in the direction perpendicular to the transfer blade/direction, that is, in the radial direction of the material 1, but it is preferable to Multiple directions! It is better to mold several pieces and perform multi-item inspection. In this case,
As shown in FIG. 3, a plurality of convex molds a and concave molds 1[7b constituting the reaction container molding device 7 are arranged in the radial direction of the material l, and a reagent dispensing nozzle 9, a sample dispensing nozzle IO
and the reagent dispensing nozzle/l is configured to be movable in the width direction of the material l. In addition, a plurality of photometric detection devices/3 may be provided in the width direction of the material 1 according to the number of reaction vessels to be molded, or one photometric detection device 13 may be moved in the width direction of the material 1 as shown in FIG. A plurality of reaction vessels t may be scanned by using a plurality of reaction vessels t.

第4図は、本発明の粒子凝集判定装置の更に他の例の構
成を示す線図である。この装置は第1図〜第3図に示し
たような粒子凝集判定装置を、反応容器成形装置7を共
用して複数段、第4図では一段設け、反応容器形成後2
枚の合成樹脂素材lおよびl′を1!I数組の分離ロー
ラ1.nおよび分岐ローラ23 、 Jにより所定の方
向に導くようにしたものであり、第1図〜第3図に示し
た符号と同一符号および同一符号にダッシュを付けた符
号は同一作用を成すものを表わ□す。分離ローラIおよ
びnは、反応容器成形装置7によって重ねて成形された
反応容器tおよびl′を分離するためのものであり、分
離ローラ〃を構成する2個のローラは僅かに離間して対
向配置し、また分離ローラnを構成する一個のローラは
分離ローラIのそれよりも更に離間して対向配置する。
FIG. 4 is a diagram showing the configuration of still another example of the particle aggregation determining device of the present invention. This device is equipped with a particle aggregation determination device as shown in FIGS. 1 to 3 in multiple stages using the reaction container forming device 7, and one stage in FIG.
1 piece of synthetic resin material l and l'! I several sets of separation rollers1. n and branching rollers 23 and J, and the same reference numerals as those shown in FIGS. Display □. Separation rollers I and n are for separating reaction containers t and l' formed one on top of the other by the reaction container forming device 7, and the two rollers constituting the separation roller are opposed to each other with a slight distance from each other. One roller constituting the separation roller n is further spaced apart from the separation roller I and is opposed to the separation roller I.

また、分妓p−ラn。Also, Bunkei p-lan n.

2yは反応容器lおよびl′の移送方向に応じて適宜配
設する。なお、測光検出装置13およびIJ’を通過し
た反応容器tおよびt′は第1図または第一図と同様に
巻取ローラにより素材lおよびl′と共に看取るか、カ
ッターにより素材lおよびl′から分離して廃棄するよ
うにする。またロール体λlは第ダ5図に実線で示すよ
うに装着する他、仮想線で示すように装着してもよい。
2y is appropriately arranged depending on the direction of transfer of the reaction vessels 1 and 1'. The reaction vessels t and t' that have passed through the photometric detection device 13 and IJ' are either inspected with the materials l and l' by a take-up roller in the same manner as in FIG. Please separate and dispose of it. In addition to being mounted as shown by the solid line in FIG. 5, the roll body λl may be mounted as shown by the imaginary line.

このように、1つの反応容器成形装置7を共用して複数
段の粒子凝集判定装置を構成すれば、処理能力を複数倍
にすることができると共にこれら複数段の粒子凝集判定
装置の各種のローラや分注ノズルを同一の駆動源で駆動
することができる。
In this way, by configuring a multi-stage particle aggregation determination device by sharing one reaction vessel forming device 7, the processing capacity can be multiplied and the various rollers of the multi-stage particle aggregation determination device can be multiplied. and the dispensing nozzle can be driven by the same drive source.

第j図ムおよびBは本発明の粒子凝集判定装置の更に他
の例の要部の構成を示す断面図および斜視図である。本
例では上述した反応容器成形装置と測光検出装置よりも
下流側に配設される送りローラとの間に、反応容器lを
有する合成樹脂素材lと協動するエンドレスの搬送ベル
ト31tt設け、これにより素材lの移送中の振動を軽
減すると共に、素材lの保持および走行を安定に行ない
得るようにしたものである。搬送ベルト3/はゴム等の
弾性材質に適当な芯材、例えば金属線や布繊維を織り込
んだものや硬質ゴムより形成したものを用い、この搬送
ベル) 3/に合成樹脂素材lに成形された反応容器l
に対応して該容器の外形より若干大きい開孔32を形成
する。この搬送ベル) J/は駆動ローラ33 、30
 、33および36により一定方向に回動移送すると共
に、合成樹脂素材lと搬送ベルト3ノとの接触部分でそ
の側縁部には、これら素材lおよび搬送ベル) J/を
挾持しながらこれらを所定の方向に移送するための複数
組の駆動ローラj74を設けて、これら素材lと搬送ベ
ル) 3/とを同期して移送する。なお、駆動ローラ3
3および3≦の位置において、合成樹脂素材lの下面と
搬送ベル) 3/との間には、反応容器lと開孔32と
が容品に装着および逸脱できるように所定の間隔を設け
る。こ゛の間隔は、上記ローラJ、? 、 34の設置
位置、反応容器lの外径および開孔32の内径によって
任意に選定する。
Figures J and B are a cross-sectional view and a perspective view showing the configuration of a main part of still another example of the particle aggregation determining device of the present invention. In this example, an endless conveyor belt 31tt that cooperates with the synthetic resin material 1 having the reaction container 1 is provided between the reaction container forming device described above and the feed roller disposed downstream of the photometric detection device. This reduces vibrations during the transfer of the material 1, and allows the material 1 to be held and moved stably. The conveyor belt 3/ is made of an elastic material such as rubber with a suitable core material, such as one woven with metal wire or cloth fibers, or one made of hard rubber. reaction vessel l
An opening 32 that is slightly larger than the outer shape of the container is formed correspondingly. This conveyor belt) J/ is the drive roller 33, 30
, 33 and 36 in a fixed direction, and at the side edges of the contact area between the synthetic resin material 1 and the conveyor belt 3, these materials 1 and the conveyor belt 3 are held while being held. A plurality of sets of drive rollers j74 are provided to transport the material in a predetermined direction, and the material l and the conveyor belt 3/ are transported in synchronization. Note that the drive roller 3
At the positions 3 and 3≦, a predetermined interval is provided between the lower surface of the synthetic resin material 1 and the conveyor bell 3/ so that the reaction container 1 and the opening 32 can be attached to and removed from the container. This interval is between the rollers J and ? , 34, the outer diameter of the reaction vessel 1, and the inner diameter of the opening 32.

本実施例によれば、合成樹脂素材lの移送中の振動を搬
送ベルト31により軽減することができる、   から
、反応容Hr内に分注された液体の振動による飛散や液
こぼれを有効に防止することができる。
According to this embodiment, the vibrations during the transfer of the synthetic resin material 1 can be reduced by the conveyor belt 31, which effectively prevents the liquid dispensed into the reaction volume Hr from scattering or spilling due to vibrations. can do.

また、素材lと搬送ベル) 3/とを複数組の駆動ロー
ラnにより挾持して移送するようにしたから、。
In addition, since the material l and the conveyor belt 3/ are held and transported by a plurality of sets of drive rollers n.

素材/に生じる容器成形時の曲りや移送中の彎曲による
蛇行を有効に防止して素材lを安定かつ確実に保持移送
することができる。
The material 1 can be held and transferred stably and reliably by effectively preventing bending caused in the material 1 during container molding and meandering due to curvature during transportation.

第6図は本発明の粒子凝集判定装置の更に他の例の要部
の構成を示すものである。本例では亀!3図に示した搬
送ベル) 3/の開孔32に反応容器lを覆うように筒
状部材31を設ける。この筒状部材Uは搬送ベル) 3
/と一体に形成すると共に、その肉厚は搬送ベル) J
/のそれよりも若干薄めにして反応容器lが装着された
とき容器外壁に筒状部材1、が吸着する如く当接するよ
うに形成する。
FIG. 6 shows the configuration of a main part of still another example of the particle aggregation determination device of the present invention. In this example, it's a turtle! A cylindrical member 31 is provided in the opening 32 of the transport bell shown in FIG. 3 so as to cover the reaction vessel l. This cylindrical member U is a conveyor belt) 3
/ and its thickness is that of the conveyor belt)
It is formed to be slightly thinner than that of / so that when the reaction vessel 1 is attached, the cylindrical member 1 adsorbs to the outer wall of the vessel.

このように、搬送ベルト31の開孔32に反応容器lを
覆うように筒状部材3jを設ければ、容器側面での乱反
射光が隣接する反応容器に入射するのを有効に防止する
ことができるから、凝集ノくターンをより高精度で測光
検出することができる。
In this way, by providing the cylindrical member 3j in the opening 32 of the conveyor belt 31 so as to cover the reaction vessel l, it is possible to effectively prevent diffusely reflected light from the side surface of the vessel from entering an adjacent reaction vessel. As a result, agglomerated turns can be photometrically detected with higher accuracy.

なお、本発明は上述した例にのみ限定されるものではな
く幾多の変形または変更が可能であるO例えば上述した
例では凝集ノぜターンの測光検出前に反応容器lを′透
明合成樹脂シー)/λにより密封、。
It should be noted that the present invention is not limited to the above-mentioned example, and can be modified in many ways. For example, in the above-mentioned example, the reaction vessel l is sealed with a transparent synthetic resin sheet before photometric detection of the agglomeration nozzle. /λ sealed.

するようにしたが、これは測光検出後に行なってもよい
。この場合、シー)/Jは必ずしも透明とする必要はな
い。
However, this may be performed after photometric detection. In this case, C)/J does not necessarily have to be transparent.

以上述べたように本発明においては、凝集ノぐターンの
測光検出に先立ちあるいは測光検出後に反。
As described above, in the present invention, the reaction is performed before or after the photometric detection of the agglutination turn.

比容器を密封すると共に、これを使い捨てとしたから、
反応容器の洗浄が不安と雇り、したがって洗浄による反
応容器の傷や感染、汚染等の心配がない。また、反応容
器を密封して廃棄できるので、焼却、殺菌を容易に行な
うことが、できる。更に、所定の分注終了後測光検出に
先立って反応客器を密封する場合には、反応容器内に収
容された検液の蒸発や検液内へのほこり等の侵入も有効
に防止することができる。また、反応容器を成形する合
成樹脂素材は安価であるから、経済的に有利である。
By sealing the container and making it disposable,
There is no need to worry about cleaning the reaction vessel, so there is no need to worry about scratches, infection, or contamination of the reaction vessel due to cleaning. Furthermore, since the reaction container can be sealed and disposed of, it can be easily incinerated and sterilized. Furthermore, when sealing the reaction vessel after the completion of the prescribed dispensing and prior to photometric detection, it is necessary to effectively prevent the evaporation of the test liquid contained in the reaction vessel and the intrusion of dust, etc. into the test liquid. I can do it. Furthermore, since the synthetic resin material used to mold the reaction vessel is inexpensive, it is economically advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の粒子凝集判定装置の一例の構成を示す
線図、第2図は同じく他の例の構成を示す線図、第3図
は同、しく更に他の例の要部の構、。 成を示す斜視図、第参図は同じく更に他の例の要部の構
成を示す線図、第S図ムおよびBは同じく更に他の例の
要部の構成を示す断面図および斜視図、第6図は同じく
更に他の例の要部の構成を示す断面図である。 / 、 /’・・・合成樹脂素材、λ9.2′・・・ロ
ール体、j ・@取ローラ、4(、4c’ 、 !; 
、 j’ 、 4 、4’ ・・・送りローラ、7・・
・反応容器成形装置、r 、 r’・・・反応容器、?
 、 ?’ 、 l/ 、 //’・・・試薬分注ノズ
ル、10 。 10’・・・試料分注ノズル、/2 、 /2’・・・
透明合成樹脂シー) 、/3 、 /3’・・・測光検
出装置、l#・・・カッター、/3・・・収納箱、2/
 t 22・・・分離ローラ、2? 、 2#・・・分
岐ローラ、31・・・搬送ベルト、32・・・開孔、n
 、 341 、 B 、 34 。 n・・・駆動ローラ、31・・・筒状部材0特許出願人
  オリンパス光学工業株式会社第5図 (A) (B) ! 222− 第6図
FIG. 1 is a diagram showing the configuration of one example of the particle aggregation determination device of the present invention, FIG. 2 is a diagram showing the configuration of another example, and FIG. 3 is a diagram showing the main parts of the same and still another example. Structure. Figure 1 is a diagram showing the configuration of the main part of another example; Figures S and B are sectional views and perspective views showing the configuration of the main part of another example; FIG. 6 is a sectional view showing the configuration of the main parts of still another example. / , /'...Synthetic resin material, λ9.2'...Roll body, j ・@Take roller, 4(, 4c', !;
, j', 4, 4'...Feed roller, 7...
・Reaction container forming device, r, r'...reaction container, ?
, ? ', l/, //'... Reagent dispensing nozzle, 10. 10'...Sample dispensing nozzle, /2, /2'...
Transparent synthetic resin sheet), /3, /3'...photometric detection device, l#...cutter, /3...storage box, 2/
t22...Separation roller, 2? , 2#... Branch roller, 31... Conveyor belt, 32... Hole, n
, 341, B, 34. n... Drive roller, 31... Cylindrical member 0 Patent applicant Olympus Optical Industry Co., Ltd. Figure 5 (A) (B)! 222- Figure 6

Claims (1)

【特許請求の範囲】 L 透明な帯状の合成樹脂素材を所定のザ向に移送する
手段と、この移送手段によって移送される前記合成樹脂
素材に順次反応容器を成形する手段と、この反応容器に
試薬および試料を分注する手段と、試薬および試料が分
注された反応容器をその開口部に合成樹脂シートを被着
して密封する手段と、前記反応容器。 の底面に形成される凝集パターンを光電的に検出する測
光検出手段とを具え、この測光検出手段により測光検出
されかつ密封された前記反応容器を前記合成樹脂素材か
ら分離するかまたは分離しないで廃棄し得るよう構成し
。 たことを特徴とする粒子凝集判定装置。
[Scope of Claims] L A means for transporting a transparent band-shaped synthetic resin material in a predetermined direction, a means for successively forming a reaction container on the synthetic resin material transferred by the transport means, and a means for sequentially forming a reaction container on the synthetic resin material transferred by the transport means. A means for dispensing a reagent and a sample, a means for sealing a reaction vessel into which the reagent and sample have been dispensed by covering an opening thereof with a synthetic resin sheet, and the reaction vessel. a photometric detection means for photoelectrically detecting an agglomeration pattern formed on the bottom surface of the reaction vessel, and the reaction vessel photometrically detected by the photometry detection means and sealed is separated from the synthetic resin material or discarded without being separated. Configure it so that it can be done. A particle aggregation determination device characterized by:
JP12879481A 1981-08-19 1981-08-19 Decision apparatus of particle agglutination Pending JPS5832144A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12879481A JPS5832144A (en) 1981-08-19 1981-08-19 Decision apparatus of particle agglutination
DE19823230901 DE3230901A1 (en) 1981-08-19 1982-08-19 Analyser for chemical analyses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12879481A JPS5832144A (en) 1981-08-19 1981-08-19 Decision apparatus of particle agglutination

Publications (1)

Publication Number Publication Date
JPS5832144A true JPS5832144A (en) 1983-02-25

Family

ID=14993602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12879481A Pending JPS5832144A (en) 1981-08-19 1981-08-19 Decision apparatus of particle agglutination

Country Status (2)

Country Link
JP (1) JPS5832144A (en)
DE (1) DE3230901A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198491A (en) * 1984-10-17 1986-05-16 ル・マテリエル・ビオメデイカル Automatic apparatus having several members to be displaced in mutual relation and driving thereof
JPS62184358A (en) * 1986-02-10 1987-08-12 Nitsuteku:Kk Vessel transfer device for automatic analyzing instrument
WO2012159275A1 (en) * 2011-05-26 2012-11-29 Siemens Aktiengesellschaft Blood typing system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2565350B1 (en) * 1984-06-05 1986-10-10 Paris Nord Universite PROPER MEANS FOR ALLOWING AUTOMATIC CONTINUOUS SUPPORT, PROCESSING, STORAGE AND ANALYSIS OF BIOLOGICAL SAMPLES
IT1174039B (en) * 1984-06-19 1987-06-24 Finbiomedica Srl METHOD AND EQUIPMENT FOR HIGH SPEED AUTOMATIC CHEMICAL-CLINICAL ANALYSIS
US4863693A (en) * 1984-08-21 1989-09-05 E. I. Du Pont De Nemours And Company Analysis instrument having a blow molded reaction chamber
DE3786087T2 (en) * 1986-02-07 1993-09-16 Fuji Photo Film Co Ltd DEVICE FOR CHEMICAL ANALYSIS.
DE19649811B4 (en) * 1996-12-02 2007-02-22 Abb Research Ltd. Device for analyzing liquids
WO2003093832A1 (en) * 2002-05-06 2003-11-13 Peter Ivan Sygall Processing samples of liquid material
WO2003102548A1 (en) * 2002-05-31 2003-12-11 Abb Patent Gmbh Analysis device for monitoring the quality of a gaseous substance or substance mixture, particularly air
DE10232850A1 (en) * 2002-07-19 2004-02-12 Abb Patent Gmbh Mobile analysis facility
AT503410B1 (en) * 2006-03-21 2008-03-15 Helmut Dr Pfuetzner DEVICE FOR MONITORING MICROBIOLOGICAL WATER QUALITY
FR2977675A1 (en) * 2011-07-08 2013-01-11 Stago Diagnostica DEVICE FOR STORING REACTION CUVETTES
AT513085B1 (en) * 2012-07-04 2016-01-15 Vwm Gmbh Method for examining a sample

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE702970A (en) * 1966-09-08 1968-02-23

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198491A (en) * 1984-10-17 1986-05-16 ル・マテリエル・ビオメデイカル Automatic apparatus having several members to be displaced in mutual relation and driving thereof
JPH0531001B2 (en) * 1984-10-17 1993-05-11 Ru Materieru Biomedeikaru
JPS62184358A (en) * 1986-02-10 1987-08-12 Nitsuteku:Kk Vessel transfer device for automatic analyzing instrument
WO2012159275A1 (en) * 2011-05-26 2012-11-29 Siemens Aktiengesellschaft Blood typing system

Also Published As

Publication number Publication date
DE3230901A1 (en) 1983-03-10

Similar Documents

Publication Publication Date Title
JPS5832144A (en) Decision apparatus of particle agglutination
US4727033A (en) Analyzing apparatus and method for immunological agglutination reactions
US5192505A (en) Automatic analyzing apparatus
JP3164403B2 (en) Automatic analyzer
EP0424633A2 (en) Automated method and device for performing solid-phase diagnostic assay
JPH02116735A (en) Immunological agglutination reaction detector
EP0521421A2 (en) Method for analysis of liquid samples and substrate for analysis of liquid sample employed in the method
US5607861A (en) Method for spotting liquid samples onto frameless dry-type chemical analysis film pieces
FR2918460A1 (en) NEW DEVICE FOR OBTAINING THE RESULTS OF ABO SYSTEMS, RHESUS AND OTHER PHEROTYPES AND RARE SYSTEMS, RAI.
US20140348704A1 (en) Analyzing apparatus for laboratory test
UA59428C2 (en) Device and method for dosing a particular constituent in a product sample
JPH0688828A (en) Automatic immune analyzing instrument
JP2017110961A (en) Container supply unit and automatic analyzing device
JPH0116387B2 (en)
JP3332969B2 (en) Chemiluminescence analyzer
US20240091771A1 (en) Assay device and assay method
JP2533843B2 (en) Carrier storage container used for immunological analysis
JP3295551B2 (en) Inspection element and cartridge for accommodating the element
JPS61193073A (en) Method and instrument for immunological analysis
JPS6139321Y2 (en)
JPH02208541A (en) Immunological agglutination reaction detector
JPH0619358B2 (en) Immunological automatic analysis method
JPS5822956A (en) Analysis and apparatus based on immunological agglutinating reaction
JPH03110468A (en) Centrifugal type automatic deciding device for immune agglutination
JPS5832168A (en) Analytical equipment