JPS583190Y2 - alarm receiver - Google Patents

alarm receiver

Info

Publication number
JPS583190Y2
JPS583190Y2 JP3223376U JP3223376U JPS583190Y2 JP S583190 Y2 JPS583190 Y2 JP S583190Y2 JP 3223376 U JP3223376 U JP 3223376U JP 3223376 U JP3223376 U JP 3223376U JP S583190 Y2 JPS583190 Y2 JP S583190Y2
Authority
JP
Japan
Prior art keywords
voltage
transistor
power supply
line
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3223376U
Other languages
Japanese (ja)
Other versions
JPS52124678U (en
Inventor
安達弥三郎
桑原勝利
Original Assignee
ホーチキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーチキ株式会社 filed Critical ホーチキ株式会社
Priority to JP3223376U priority Critical patent/JPS583190Y2/en
Publication of JPS52124678U publication Critical patent/JPS52124678U/ja
Application granted granted Critical
Publication of JPS583190Y2 publication Critical patent/JPS583190Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Description

【考案の詳細な説明】 この考案は煙感知器等の容量性の負荷インピーダンスを
有する端末装置を複数備えた火災等警報装置において、
電源投入時に発生し易い非火災報を防止する手段を備え
た警報受信機に関するものである。
[Detailed description of the invention] This invention is a fire alarm system equipped with a plurality of terminal devices having capacitive load impedance such as a smoke detector.
This invention relates to an alarm receiver equipped with means for preventing non-fire alarms that are likely to occur when the power is turned on.

電源を有する受信機から引き出される給電・信号線路に
、容量要素を負荷インピーダンス中に含む端末装置が複
数個並列に接続され、この端末装置、例えば煙感知器や
熱感知器の作動による上記給電、信号線路の電流変化を
上記受信機内の電流検出器、例えばリレー等によって検
出し、それにより警報を発するようにした警報装置にお
いて、上記電流検出器の作動は定常時の監視電流に対し
て所定の大きさ以上の電流が流れた場合になされること
は周知の通りである。
A plurality of terminal devices including a capacitive element in the load impedance are connected in parallel to a power feeding/signal line led out from a receiver having a power source, and the above-mentioned power feeding due to the operation of this terminal device, such as a smoke detector or a heat sensor, In an alarm device that detects a change in current in the signal line by a current detector, such as a relay, in the receiver and issues an alarm, the operation of the current detector is performed at a predetermined rate with respect to the monitored current in a steady state. It is well known that what happens when a current exceeding this magnitude flows.

しかしながら上記のように負荷インピーダンスとして例
えば内部電圧安定回路のコンデンサのように大容量の容
量成分を含む感知器等の端末装置が、上記線路間に多数
並列接続された場合には、等価的に上記線路端が大容量
のキャパシタンスで終端されたことになり、電源投入時
に過渡現象としてステップ電圧の立上り部が上記キャパ
シタンスに掛ることによって送電端からの過渡電流が定
常時より極めて大きく流れることになる。
However, as described above, when a large number of terminal devices such as sensors containing large capacitance components such as capacitors of internal voltage stabilizing circuits are connected in parallel between the lines as load impedance, the equivalent This means that the line end is terminated with a large capacitance, and when the power is turned on, the rising part of the step voltage is applied to the capacitance as a transient phenomenon, causing a transient current from the power transmission end to flow much larger than in a steady state.

これは上記キャパシタンスが太きければ大きいほど上記
立上り部に対して短絡に近い状態となることによるもの
で、この過渡電流の大きさ釦よび減衰時間は線路抵抗と
上記キャパシタンスとで定マル時定数に支配され、従っ
て容量が大きいほど減衰に時間を要することになり、結
果的に受信機の電流検出器の作動を招いて非火災報の発
生という事態に至る。
This is because the thicker the capacitance, the closer it is to a short circuit with respect to the rising edge, and the magnitude and decay time of this transient current are determined by the line resistance and the capacitance, making it a constant time constant. Therefore, the larger the capacity, the longer it will take to decay, which will eventually cause the receiver's current detector to operate, resulting in a non-fire alarm.

さらにまた例えば上記端末装置がイオン化式煙感知器の
場合では、上記電源投入時のステップ電圧立上り部によ
る過渡電流が内外イオンチャンバーを構成する電極間に
流れ、これがために該電極によって構成される微少キャ
パシタンス直列回路の電圧分割配分が上記キャパシタン
ス値による分圧比に支配されるところとなり、上記直列
回路の中間接続点が出力増巾素子としてのFETのゲー
トに接続されていることから、このFETが上記過渡電
流の所定値以下までの減衰前に動作可能状態になってし
まっていると上記分圧レベルのゲート電圧によって一時
的にFETがONになり、その出力によって該感知器が
非火災報を発する結果を招く。
Furthermore, for example, in the case where the terminal device is an ionization type smoke detector, a transient current due to the step voltage rising portion when the power is turned on flows between the electrodes forming the inner and outer ion chambers. The voltage division distribution of the capacitance series circuit is controlled by the voltage division ratio based on the capacitance value, and since the intermediate connection point of the series circuit is connected to the gate of the FET as an output amplifying element, this FET is If the operating state is reached before the transient current decays to a predetermined value or less, the FET will be temporarily turned on by the gate voltage at the above-mentioned partial voltage level, and the sensor will issue a non-fire alarm based on its output. Incur consequences.

上述のような電源投入時に多く体験される非火災報の発
生を防止する策として、従来では端末装置の容量成分よ
り電源側にて直列高抵抗を挿入して過渡電流を制限する
手段や、上記端末装置がイオン化式煙感知器の場合では
電極容量部への電圧供給と増中部への電圧供給との時間
関係に時定数を与え、前記電極容量部の過渡状態が飽和
した後に前記増中部が動作可能になるようにする手段が
講じられているが、このため該端末装置の内部構造を複
雑化し1、且つ構成部品点数を増加してコスト高を招く
ばかりでなく、該端末装置の定常運転に(ri何等の寄
与なき手段を端末装置内に内蔵させて徒らにその構成を
複雑化せしめるなどの問題点を残していた。
As a measure to prevent the occurrence of non-fire alarms that are often experienced when the power is turned on, conventional methods include inserting a high resistance in series on the power supply side from the capacitance component of the terminal device to limit the transient current, and the method described above. When the terminal device is an ionization type smoke detector, a time constant is given to the time relationship between the voltage supply to the electrode capacitor section and the voltage supply to the intensifier section, and after the transient state of the electrode capacitor section is saturated, the intensifier section is Although measures have been taken to make the terminal device operable, this not only complicates the internal structure of the terminal device1 and increases the number of component parts, leading to higher costs, but also makes it difficult to operate the terminal device normally. However, there still remain problems such as having to incorporate means that do not contribute anything to the terminal device, unnecessarily complicating its configuration.

この考案はこれらの欠点を抜本的に改善するためになさ
れたものであって、火災感知器等端末装置の内部構造は
その本来の所命を達成するために必要なる最小限度に保
持し、電源投入時さらには電源遮断時にも発生する可能
性のある非火災報等の誤報を防止する手段を、電源部を
包蔵する警報装置受信機内部に釦いて講するものであり
、これによって個々の感知器等端末装置の内部構造を簡
素化し、電源投入遮断時に関する問題点を集中的に上記
警報受信機内にて解決し、警報装置のシステム全体を合
理化しようとするものである。
This idea was made to fundamentally improve these shortcomings, and the internal structure of terminal equipment such as fire detectors is kept to the minimum necessary to achieve its original purpose, and the power supply is This method is designed to prevent false alarms such as non-fire alarms that may occur when the power is turned on or even when the power is turned off, by installing a button inside the alarm device receiver that contains the power supply. The purpose is to simplify the internal structure of terminal devices such as appliances, solve problems related to turning on and off power centrally within the alarm receiver, and rationalize the entire alarm system.

以下本考案をイオン化式煙感知器を備えた火災警報装置
に適用した一実施例について説明する。
An embodiment in which the present invention is applied to a fire alarm system equipped with an ionization smoke detector will be described below.

第1図aは一般的な火災警報装置システム全体を簡素化
してブロック図で示したものである。
FIG. 1a shows a simplified block diagram of the entire general fire alarm system.

図中1は直流電源部T、Tj、電源投入スイッチS。In the figure, 1 is a DC power supply section T, Tj, and a power supply switch S.

火災表示器I、I ・・・・・・I、等を含む火災警
報装置受信機である。
This is a fire alarm system receiver including fire indicators I, I...I, etc.

tl、t2・・・・・・1oは各警報地区に至る給電・
信号線路でt。
tl, t2...1o is the power supply/power supply leading to each warning area.
t on the signal line.

は共通線であって、tl線路には数個の煙或いは熱等の
火災感知器D1.Dz・・JDnが共通線t。
is a common line, and the TL line has several smoke or heat detectors D1. Dz...JDn is the common line t.

どの間に接続され、t2・・・・・・tnの各線路も同
様に数個の感知器が接続されている。
Similarly, several sensors are connected to each line of t2...tn.

第1図すは上記のような火災警報装置から、1個の感知
器りの信号回路を抽出して、さらに詳しく示したもので
、受信機1には直流電源Edと、電源投入スイッチSと
、火災表示器■とを含み、感知器りは一例としてのイオ
ン化式煙感知器で、内部イオンゼーション・チャンバー
Ch1と外部イオンゼーション、チャンバーCh2との
集電極はそれぞれ静電容量C1とC2を形成して電気的
に直列に接続されて直流電圧の印加を受ける。
Figure 1 shows in more detail the signal circuit of one sensor extracted from the above-mentioned fire alarm system. , a fire indicator ■, the detector is an ionization type smoke detector as an example, and the collecting electrodes of the internal ionization chamber Ch1 and the external ionization chamber Ch2 form capacitances C1 and C2, respectively. They are electrically connected in series and receive a DC voltage.

前記内外両チャンバーの電極の接続点Jはドレーン接地
のMO8形電界効果トランジスタFET 1のゲート電
極Gに結続されると共に該トランジスタFETのソース
電極はソース抵抗R8を介して、またドレーン抵抗RD
を介してそれぞれ電源回路に接続されてバイアス電圧の
供給を受ける。
The connection point J of the electrodes of both the inner and outer chambers is connected to the gate electrode G of an MO8 type field effect transistor FET 1 whose drain is grounded, and the source electrode of the transistor FET is connected via a source resistor R8 and a drain resistor RD.
are respectively connected to the power supply circuits through which they receive bias voltage.

該FETの出力電圧はトランジスタTrに供給されサイ
リスタSCRをゲートして、火災信号を発し給電等信号
線路、ll、Loを介して火災表示器■を動作せしめる
機能を備えるものである。
The output voltage of the FET is supplied to the transistor Tr, gates the thyristor SCR, and has the function of issuing a fire signal and operating the fire indicator (2) via the power supply signal lines, 11, and Lo.

上記の感知器の集電極への印カロ電圧の安定化と上記F
ET釦よびトランジスタTrの動作安定化のため、図示
の例では電圧安定化回路VRCが一ヒ記11hよびto
線路間に接続されて釦り、この電圧安定化回路VRCに
は上記z ] i−よびt。
Stabilization of the voltage applied to the collector electrode of the above sensor and the above F
In order to stabilize the operation of the ET button and the transistor Tr, in the illustrated example, the voltage stabilizing circuit VRC is
This voltage stabilizing circuit VRC has the above-mentioned z] i- and t.

線路間に挿入される平滑コンデンサcRが含まれている
A smoothing capacitor cR inserted between the lines is included.

このようなコンデンサを含む電圧安定化回路もしくは単
に交流成分のバイパス用のコンデンサなどの容量成分は
、上記したイオン化式煙感知器の場合のみでなく、例え
ば差動式の熱感知器や光電式の煙感知器など、検出素子
とその検出信号増中部との動作の安定化を望まれる端末
装置には殆んど保有されて卦り、従ってこれら容量成分
を有する多数の端末装置が第1図aの如く電源に対して
並列接続された際には、受信機1の負荷インピーダンス
中の容量成分としてこれら各端末装置の容量成分のキャ
パシタンスの合計値に相当する大容量のコンデンサが線
路間に等何曲に接続されることになる。
Capacitive components such as voltage stabilizing circuits containing such capacitors or simply capacitors for bypassing AC components are used not only in the case of the above-mentioned ionization type smoke detectors, but also in differential heat detectors and photoelectric type smoke detectors, for example. Most terminal devices, such as smoke detectors, in which it is desired to stabilize the operation of the detection element and its detection signal amplification part, have this capacitive component, and therefore, a large number of terminal devices having these capacitive components are shown in Figure 1a. When connected in parallel to the power supply as shown in the figure, a large capacitor equivalent to the sum of the capacitances of the capacitive components of each terminal device is connected between the lines as a capacitive component in the load impedance of the receiver 1. It will be connected to the song.

従ってこの場合、電源スィッチSを閉成した瞬間に上記
大容量コンデンサを通じて線路に過渡電流が流れ、これ
を充電しつくすまでの間に上記火災表示器■などの電流
検出器を充分作動させてしまい、これがために非火災報
の発生という好しくない結果を招く。
Therefore, in this case, the moment the power switch S is closed, a transient current flows through the line through the large-capacity capacitor, and until it is fully charged, the current detector such as the fire indicator ■ will be sufficiently activated. , which leads to the unfavorable result of non-fire alarms.

この考案では上記受信機1内に、上記電源投入時にあ゛
いては線路間にステップ電圧が掛らないようにして緩慢
な電圧上昇を可能とする手段を設けるものであり、第2
図は七〇一実施例である。
In this invention, a means is provided in the receiver 1 to enable a slow voltage rise by preventing a step voltage from being applied between the lines when the power is turned on.
The figure shows the 701st embodiment.

すなわち第2図に釦いて受信機1内には電源スィッチS
と火災表示器11〜Inとの間に電圧制御用増巾器を構
成するトランジスタ2(MO8POWERFET)が挿
入され、そのゲート電極には抵抗3とコンデンサ4とか
らなるRC直列回路の上記コンデンサの端子電圧が制御
電圧として印加するようになされて釦り、電源投入時に
釦げるRC直列回路のコンデンサ4の端子電圧のゆるや
かな上昇がトランジスタ2のソース電極側にそのまま現
れるようにして、tlあ−よびto線路間の電源投入時
の電圧変化を緩慢なものにしている。
In other words, as shown in Figure 2, there is a power switch S inside the receiver 1.
A transistor 2 (MO8POWERFET) constituting a voltage control amplifier is inserted between and the fire indicator 11-In, and its gate electrode is connected to the terminal of the capacitor of the RC series circuit consisting of a resistor 3 and a capacitor 4. The voltage is applied as a control voltage and the button is pressed so that the gradual rise in the terminal voltage of the capacitor 4 of the RC series circuit, which is pressed when the power is turned on, appears directly on the source electrode side of the transistor 2. The voltage change between the line and the TO line when the power is turned on is made slow.

すなわちこの回路では、直流電源電圧をEd、RC直列
回路に流れる電流を11コンデンサ4の容量をC4とし
たとき、電源スィッチSを投入した際のコンデンサ4の
端子電圧ecはe。
That is, in this circuit, when the DC power supply voltage is Ed, the current flowing through the RC series circuit is 11, and the capacitance of the capacitor 4 is C4, the terminal voltage ec of the capacitor 4 when the power switch S is turned on is e.

−−!−f idtであり、RC時定数で定まる時間の
後に電源電圧Edに達し、始めは零である。
--! -f idt, reaches the power supply voltage Ed after a time determined by the RC time constant, and is initially zero.

この徐々に上昇する電圧e。This gradually increasing voltage e.

は上記トランジスタ2のゲート電圧として用いられ、従
ってトランジスタ2の出力電圧V oidV □ =e
(HVG S(th) (但し■Gs(th)はトラ
ンジスタのゲート・ソース間電圧=O,S〜2、Ov)
であるから、はぼecの変化と同じ緩慢に上昇する電圧
となり、その上昇速度も上記RC直列回路の時定数如何
で定められる。
is used as the gate voltage of the transistor 2, and therefore the output voltage of the transistor 2 V oidV □ = e
(HVG S(th) (However, ■Gs(th) is the gate-source voltage of the transistor = O, S ~ 2, Ov)
Therefore, the voltage rises slowly in the same way as the change in ec, and its rising speed is also determined by the time constant of the RC series circuit.

上記コンデンサ4の充電完了後は、上記トランジスタ2
の出力電圧VOば、コンデンサ4の端子電圧がほぼ電源
電圧にまで達しているので(実際にはトランジスタに)
のソースより先方の各端末装置を含む監視回路を通して
かかるゲート・ソース間のスレッショールド電圧だけ低
いが)該トランジスタ2が飽和領域内に入って導通し、
電源電圧と等しくなる。
After the capacitor 4 is charged, the transistor 2
Since the output voltage VO of , the terminal voltage of capacitor 4 has almost reached the power supply voltage (actually, it is connected to the transistor)
(through a monitoring circuit including each terminal device beyond the source of the transistor 2), the transistor 2 enters the saturation region and becomes conductive (although it is lower by the threshold voltage between the gate and source),
It becomes equal to the power supply voltage.

従って第2図に示した受信機を備えた警報装置では、例
えば第1図のように容量成分を含む多数の端末装置を接
続しても、電源投入時に釦ける過渡電流の流入を上記時
定数を適当に定めることによって防止でき、これにより
電源投入時の誤報を完全に防止し得るものである。
Therefore, in the alarm device equipped with the receiver shown in FIG. 2, even if a large number of terminal devices including capacitance components are connected as shown in FIG. This can be prevented by appropriately determining the error message, thereby completely preventing false alarms when the power is turned on.

一方、例えば端末装置としての感知器が出力素子として
サイリスタを含む場合、発報後の装置の復旧に際して電
源を遮断するが、この遮断の後の電源の再投入に際して
も全く同様に非火災報の発生を招く恐れがあり、特にこ
の場合、感知器が依然として作動を継続している状態す
なわち依然として発報している状態との識別が必須であ
るので、かかる非火災報の発生は一層防止されなげれば
ならない。
On the other hand, for example, when a sensor as a terminal device includes a thyristor as an output element, the power is cut off when the device is restored after an alarm is issued, but when the power is turned on again after this cutoff, the same applies to non-fire alarms. Especially in this case, it is essential to distinguish the state in which the detector is still operating, that is, the state in which the alarm is still being issued, so the occurrence of such non-fire alarms must be further prevented. Must be.

このためには、この考案に釦いては、第3図に示すよう
に、手動復旧の場合には、手動復旧スイッチ5aに対称
的な開閉を行なう連動接点5bを設け、この接点5bに
よって復旧スイッチ5aが開かれて電源が遮断された際
にコンデンサ4の電荷を放電させるための放電路を比較
的小さい値の抵抗3′を介して構成するようにしたり、
或いは自動復旧の場合には、切換えられた自動復旧接点
6と地区リレー(火災表示器)■の一つの接点7aとの
閉成により線路間が短絡されて自動復旧動作がされたと
きに、同様に上記リレー■の他の接点7bにより作動さ
せられる他のリレー8の接点9によって同様にトランジ
スタ20ベースを直接負電源側に落すことなく比較的小
さい値の抵抗3′を介して上記コンデンサ4の放電路を
形成するようにして、これらの問題点に対処可能である
For this purpose, as shown in FIG. 3, in the case of manual recovery, the manual recovery switch 5a is provided with an interlocking contact 5b that opens and closes symmetrically, and this contact 5b is used to switch the recovery switch. 5a is opened and the power supply is cut off, a discharge path for discharging the charge in the capacitor 4 is formed via a resistor 3' having a relatively small value,
Alternatively, in the case of automatic recovery, when the switched automatic recovery contact 6 and one contact 7a of the district relay (fire indicator) are closed, the lines are short-circuited and the automatic recovery operation is performed. Similarly, the capacitor 4 is connected to the capacitor 4 through a resistor 3' having a relatively small value, without directly dropping the base of the transistor 20 to the negative power supply side, by the contact 9 of another relay 8, which is activated by the other contact 7b of the relay (2). These problems can be addressed by forming a discharge path.

また第4図は第3図の電圧制御用増巾器を構成するトラ
ンジスタ2を第1の電界効果トランジスタ2aと第2の
トランジスタ2bとによって構成し、第1のトランジス
タ2aのソースへの印加電圧を適当なバイアス電圧値に
設定して第2のトランジスタ2bの導通開始時点をコン
デンサ4と抵抗3とによる時定数に対して適宜選択し得
るようにしたものであり、第4図にかいて電源投入時の
トランジスタ2aのゲート電圧の変化はコンデンサ4へ
の充電電流の変化によって電源電圧から零へ徐々に減少
し、トランジスタ2aのソースバイアスによって定まる
成る電位にまでゲート電位が下ると、トランジスタ2a
が導通してそのドレイン電流により第2のトランジスタ
2bのベース電流が徐々に増加し、出力電圧V。
Further, in FIG. 4, the transistor 2 constituting the voltage control amplifier of FIG. 3 is composed of a first field effect transistor 2a and a second transistor 2b, and the voltage applied to the source of the first transistor 2a is is set to an appropriate bias voltage value so that the point at which conduction of the second transistor 2b starts can be appropriately selected with respect to the time constant formed by the capacitor 4 and the resistor 3, and as shown in FIG. The change in the gate voltage of the transistor 2a when the transistor 2a is turned on gradually decreases from the power supply voltage to zero due to the change in the charging current to the capacitor 4, and when the gate potential drops to a potential determined by the source bias of the transistor 2a, the voltage of the transistor 2a decreases.
becomes conductive, and the base current of the second transistor 2b gradually increases due to its drain current, and the output voltage V.

も徐々に増加する。will also gradually increase.

復旧に際してはリレー8の接点9又はスイッチ5aの開
成と5bの閉成とにより、コンデンサ4の電荷が抵抗3
′との時定数に応じて徐々に放電され、前述第3図と同
様に初期状態に戻ることになる。
Upon recovery, the electric charge in the capacitor 4 is transferred to the resistor 3 by opening the contact 9 of the relay 8 or the switch 5a and closing the switch 5b.
It is gradually discharged in accordance with the time constant of ', and returns to the initial state as in FIG. 3 described above.

従ってこの第4図に釦いても第3図と同様に電源再投入
時の問題点に対処することができ、さらに大電流負荷へ
の適用も可能である。
Therefore, even if the button shown in FIG. 4 is pressed, it is possible to deal with the problem when the power is turned on again in the same way as in FIG. 3, and it is also possible to apply the button to a large current load.

以上に述べたようにこの考案によれば、電源の投入時或
いは端末装置の復旧時の再投入時にかいて、線路間に印
加される直流電圧が常に所定の時定数で徐々に上昇し、
ステップ状の電圧が印加することがないので、例え容量
成分を含む端末装置が上記線路間に多数並列接続されて
いても、線路間への電圧印加時にこれら容量成分による
過渡電流が多く流れることがなく、電流検出器の作動を
招くことがないので誤報を有効に防止でき、またイオン
化式煙感知器を端末装置として線路間に接続しても、そ
の内外両イオンヤンバーの電圧分布のステップ電圧立上
り部による初期アンバランスを、該両チャンバーの充電
時定数よりはるかに大きな時定数で徐々に上昇する電圧
の印加によって無効化でき、さらに従来は上記過渡電流
の許される大きさの上限によって制限されていた端末装
置の接続個数を上記電圧制御用のCR時定数に対応して
増加することができるなど、数多くの実用的効果を奏す
ることができる。
As described above, according to this invention, when the power is turned on or when the terminal device is turned on again after recovery, the DC voltage applied between the lines always increases gradually with a predetermined time constant.
Since a step voltage is not applied, even if a large number of terminal devices including capacitive components are connected in parallel between the lines, a large amount of transient current due to these capacitive components will flow when voltage is applied between the lines. This effectively prevents false alarms as it does not cause the current detector to operate.Also, even if an ionization type smoke detector is connected between lines as a terminal device, the step voltage of the voltage distribution of both the inner and outer ion beams is The initial unbalance caused by the rising edge can be negated by applying a voltage that gradually increases with a time constant much larger than the charging time constant of both chambers, and is further limited by the upper limit of the allowable magnitude of the transient current. Many practical effects can be achieved, such as the number of connected terminal devices that have previously been connected can be increased in accordance with the CR time constant for voltage control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは一般的な警報装置の構成例を示すブロック図
、第1図すは第1図aのうちの一回線分を詳述した回路
図、第2図はこの考案の一実施例を示す受信機の回路構
成図、第3図は同じく別の実施例を示す受信機の回路構
成図、第4図はさらに別の実施例を示す受信機の回路構
成図である。 1・・・受信機、2.2a、2b・・・トランジスタ、
3・・・抵抗、4・・・コンデンサ。
Figure 1a is a block diagram showing a configuration example of a general alarm device, Figure 1 is a circuit diagram detailing one line segment in Figure 1a, and Figure 2 is an embodiment of this invention. FIG. 3 is a circuit diagram of a receiver showing another embodiment, and FIG. 4 is a circuit diagram of a receiver showing still another embodiment. 1...Receiver, 2.2a, 2b...Transistor,
3...Resistor, 4...Capacitor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 直流電源と電流検出器とを含む受信機に、複数の端末装
置が給電・信号線路を介して接続され、該端末装置の作
動による上記線路に流れる電流の変化を上記電流検出器
で検出して警報を発するようになされ、且つ上記線路の
うち上記電流検出器を経由する線路と、この線路と共に
電源に関して対をなす線路との間に、上記端末装置に含
まれる容量成分が結果的に並列接続されることになる警
報装置に釦げる上記受信機に釦いて、上記電流検出器を
含む電源供給回路中に電圧制御用増巾器を構成するトラ
ンジスタを接続し、該トランジスタの制御電極を時定数
回路に接続して、電源投入時或いは遮断時の上記線路間
電圧の変化を上記トランジスタによって上記時定数回路
の時定数に基づき緩慢にするよ゛うにしたことを特徴と
する警報受信機。
A plurality of terminal devices are connected to a receiver including a DC power source and a current detector via power supply/signal lines, and the current detector detects changes in the current flowing through the lines due to the operation of the terminal devices. A capacitive component included in the terminal device is connected in parallel between a line that is configured to issue an alarm and that passes through the current detector among the lines, and a line that forms a pair with this line regarding the power supply. Press the button on the receiver to connect the alarm device that will be used, connect the transistor constituting the voltage control amplifier into the power supply circuit including the current detector, and connect the control electrode of the transistor to the power supply circuit that includes the current detector. An alarm receiver characterized in that the transistor is connected to a constant circuit so that the change in the line-to-line voltage when the power is turned on or off is slowed down based on the time constant of the time constant circuit.
JP3223376U 1976-03-19 1976-03-19 alarm receiver Expired JPS583190Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223376U JPS583190Y2 (en) 1976-03-19 1976-03-19 alarm receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223376U JPS583190Y2 (en) 1976-03-19 1976-03-19 alarm receiver

Publications (2)

Publication Number Publication Date
JPS52124678U JPS52124678U (en) 1977-09-21
JPS583190Y2 true JPS583190Y2 (en) 1983-01-20

Family

ID=28491693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223376U Expired JPS583190Y2 (en) 1976-03-19 1976-03-19 alarm receiver

Country Status (1)

Country Link
JP (1) JPS583190Y2 (en)

Also Published As

Publication number Publication date
JPS52124678U (en) 1977-09-21

Similar Documents

Publication Publication Date Title
US4139846A (en) Method and apparatus for supervising battery energy level
US3421067A (en) Battery charge controller utilizing coulometer
US4097851A (en) Sensitivity compensated fire detector
JPS583190Y2 (en) alarm receiver
US4205306A (en) Battery operated smoke detector electronics
US4041479A (en) Output circuit of an ionization smoke sensor
US3678511A (en) Alarm circuit
US4456907A (en) Ionization type smoke detector with test circuit
US4023152A (en) Ionization type smoke sensing device
US3676681A (en) Ionization smoke detector
KR940007922B1 (en) Insulation resistance detecting apparatus
US3029383A (en) Apparatus for testing the isolation of an electrical conductor from a supply source
US4109240A (en) Ionization-type fire sensing system
JPS551507A (en) Humidity detector
US4142219A (en) Two-wire system including signal receiving section and detection section with protected relay
US3961224A (en) Transient-free isolation monitor
JPH0329758Y2 (en)
JPS5831272Y2 (en) Ionic smoke detector
JPS5914762Y2 (en) Smoke detectors
JPS589349Y2 (en) Kantiki
GB1504181A (en) Detection of earth faults
CN2270251Y (en) Ionic smoke concentration meter
JPS604139Y2 (en) Detection device
US3826929A (en) Gain stabilized signal processing circuitry for ground resistance sensor
SU1679297A1 (en) Hygrometer