JPS5831397B2 - Electrolytic refining method - Google Patents

Electrolytic refining method

Info

Publication number
JPS5831397B2
JPS5831397B2 JP51003203A JP320376A JPS5831397B2 JP S5831397 B2 JPS5831397 B2 JP S5831397B2 JP 51003203 A JP51003203 A JP 51003203A JP 320376 A JP320376 A JP 320376A JP S5831397 B2 JPS5831397 B2 JP S5831397B2
Authority
JP
Japan
Prior art keywords
anode
electrolytic
electrolytic refining
electrolysis
refining method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51003203A
Other languages
Japanese (ja)
Other versions
JPS5286905A (en
Inventor
義行 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onahama Smelting and Refining Co Ltd
Original Assignee
Onahama Smelting and Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onahama Smelting and Refining Co Ltd filed Critical Onahama Smelting and Refining Co Ltd
Priority to JP51003203A priority Critical patent/JPS5831397B2/en
Publication of JPS5286905A publication Critical patent/JPS5286905A/en
Publication of JPS5831397B2 publication Critical patent/JPS5831397B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、銅、鉛等の電解精製法の改良に係り、特に、
電解中における未溶解アノード断片の電解槽中への落ち
込みを防止しアノードの溶解率を向上する方法に関する
[Detailed Description of the Invention] The present invention relates to an improvement in an electrolytic refining method for copper, lead, etc.
The present invention relates to a method for preventing undissolved anode fragments from falling into an electrolytic cell during electrolysis and improving the dissolution rate of the anode.

例えば、銅電解精製においては、粗銅または精製粗銅を
アノードとし、純銅種板をカソードとして、硫酸酸性硫
酸銅溶液を電解液として電解し、電気銅を種板上に析出
させて精製する方法が一般に行なわれている。
For example, in copper electrolytic refining, the general method is to use blister copper or refined blister copper as an anode, a pure copper seed plate as a cathode, electrolyze an acidic copper sulfate solution as an electrolyte, and precipitate electrolytic copper on the seed plate. It is being done.

この電解製精において、未溶解アノードは再溶解して、
アノードに鋳直し、再度電解工程に繰返している。
In this electrolytic refining, the undissolved anode is redissolved and
The anode is recast and the electrolytic process is repeated again.

従ってアノードの未溶解率を可及的に減少させることに
関し、アノードの形状や電解工程について種々の試みが
あるが、本発明もその一方法を提供するものである。
Therefore, in order to reduce the undissolved rate of the anode as much as possible, various attempts have been made regarding the shape of the anode and the electrolysis process, and the present invention provides one of the methods.

所定期間電解を行った後、残留アノードを電解槽から引
き上げるが、この際理想的には、浸液部が均一に薄く溶
解していれは、未溶解率も少なく、作業も容易であるが
、現実には初めのアノードの厚さや電流分布の不均一に
より、アノードの溶解が不均一になる。
After electrolysis has been carried out for a predetermined period of time, the remaining anode is pulled up from the electrolytic cell. Ideally, the immersed part should be uniformly and thinly dissolved, so that the undissolved rate will be small and the work will be easy. In reality, the initial anode thickness and current distribution are non-uniform, resulting in non-uniform dissolution of the anode.

この際アノード上部が優先的に溶解すると、その溶解部
で切断された未溶解アノード断片は、電解槽中に落下し
、その際電解槽壁を損傷したり短絡の原因となる。
At this time, if the upper part of the anode is preferentially melted, undissolved anode fragments cut at the melted portion fall into the electrolytic cell, damaging the wall of the electrolytic cell or causing a short circuit.

またこの落下した未溶解アノードは、電路を断たれるた
めそれ以上の溶解が進行しなくなって電解槽底にたまり
、電流効率を低下させたり、引き上げのための作業を加
重せしめるなど種々のトラブルを生ずる。
In addition, since the electrical circuit is cut off, the undissolved anode that has fallen will no longer melt and accumulate at the bottom of the electrolytic cell, causing various problems such as lowering current efficiency and adding to the work required to pull it up. arise.

特に電解液界面での溶解速度は、浸液部より速いので、
アノードに対して液面の高さを一定にして電解すると、
この位置が優先的に溶解し第1図に示す如く液崩付近か
ら切断して、下部が電解槽中に落下することになる。
In particular, the dissolution rate at the electrolyte interface is faster than at the immersed part, so
When electrolysis is performed with a constant liquid level relative to the anode,
This position dissolves preferentially, and as shown in FIG. 1, it is cut off near the liquid collapse and the lower part falls into the electrolytic cell.

従ってこれをさけるため従来は電解期間中に液面を上下
移動させるなどの方法をとっていた。
Therefore, in order to avoid this, conventional methods have been used such as moving the liquid level up and down during the electrolysis period.

本発明は上記アノードの落ち込みを防止し、有効に溶解
せしめる方法である。
The present invention is a method for preventing the anode from falling and effectively dissolving it.

以下本発明方法を、1実施例として第2図に従って説明
する。
The method of the present invention will be described below as an example with reference to FIG.

アノード■を懸吊した場合の上部の位置■に耐酸ペイン
トや樹脂等をたて方向に1条ないしそれ以上塗布する。
Apply one or more lines of acid-resistant paint, resin, etc. in the vertical direction to the upper position (■) when the anode (■) is suspended.

この塗布位置はアノードを電解槽に浸漬した時に電解液
面■に相当する位置を中心に、上下適当の長さに定める
The coating position is determined at an appropriate length above and below, centered on a position corresponding to the electrolyte surface (1) when the anode is immersed in the electrolytic cell.

(本実施例では耐酸ペイントを内3cm長さ20cwr
に塗布した。
(In this example, the acid-resistant paint is 3 cm long and 20 cwr.
It was applied to.

)この様に耐酸ペイントや樹脂■等を塗布することによ
り、その部分は溶解が遅れて比較的に厚く残留し、最も
溶解速度の速い液面からの切断が防止できるので、従来
の如く落下による種々のトラブルがなくなり、液面レベ
ルを変動する必要もなく、構造上可能な限り最上部より
溶解でき特に電解槽の下層に浸漬された部分または、許
される限界まで溶解が可能であり、従って、より多くの
電流を流すことができるのでアノード全体として、未溶
解率が減少することとなり能率が向上する。
) By applying acid-resistant paint, resin, etc. in this way, dissolution is delayed in that area and it remains relatively thick, preventing it from being cut from the liquid surface where the dissolution rate is fastest, so it can be prevented from being cut off from the surface of the liquid where it dissolves the fastest. Various troubles are eliminated, there is no need to fluctuate the liquid level, and melting can be carried out from the top as much as possible due to the structure, and melting is possible especially in the parts immersed in the lower layer of the electrolytic cell or to the permissible limits. Since more current can be passed, the undissolved rate of the anode as a whole decreases, improving efficiency.

なお、電解を終了したアノード残基は従来同様例らの支
障なく再溶解してアノードに鋳直することができる。
Note that the anode residue after electrolysis can be remelted and remolded into an anode without any trouble as in the conventional case.

又、本発明の実施には、複雑な装置や多くの工程を必要
とせず、従来の装置にて実施可能であり、工業的に顕著
な効果が得られる。
Furthermore, the present invention does not require complicated equipment or many steps, and can be implemented using conventional equipment, resulting in significant industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電解液中で溶解するアノードの断面図であり
、同じく第2図は本発明の電解精製法を示す正面図であ
る。 ■は、アノード、■は、耐酸ペイント、■は、電解液面
である。
FIG. 1 is a sectional view of an anode dissolved in an electrolytic solution, and FIG. 2 is a front view showing the electrolytic refining method of the present invention. (2) is the anode, (2) is the acid-resistant paint, and (2) is the electrolyte surface.

Claims (1)

【特許請求の範囲】[Claims] 1 非鉄金属の電解製精において、予めアノード表面に
、耐酸ペイント、または樹脂類の塗布剤をたて方向に1
本または2本以上帯状に塗布し、電解終了まで前記帯状
部分を残留させ、電解中にアノード未溶解部分の電解槽
中への落下を防止せしめたことを特徴とする電解精製方
法。
1. In electrolytic refining of non-ferrous metals, acid-resistant paint or resin coating is applied vertically to the anode surface in advance.
1. An electrolytic refining method characterized in that one or more anodes are applied in a band shape, and the band portions are left until the end of electrolysis to prevent undissolved portions of the anode from falling into an electrolytic cell during electrolysis.
JP51003203A 1976-01-16 1976-01-16 Electrolytic refining method Expired JPS5831397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51003203A JPS5831397B2 (en) 1976-01-16 1976-01-16 Electrolytic refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51003203A JPS5831397B2 (en) 1976-01-16 1976-01-16 Electrolytic refining method

Publications (2)

Publication Number Publication Date
JPS5286905A JPS5286905A (en) 1977-07-20
JPS5831397B2 true JPS5831397B2 (en) 1983-07-05

Family

ID=11550865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51003203A Expired JPS5831397B2 (en) 1976-01-16 1976-01-16 Electrolytic refining method

Country Status (1)

Country Link
JP (1) JPS5831397B2 (en)

Also Published As

Publication number Publication date
JPS5286905A (en) 1977-07-20

Similar Documents

Publication Publication Date Title
SU1416060A3 (en) Method of producing metals
US3960681A (en) Method for producing electrolytic high purity lead using large-sized electrodes
GB1010418A (en) A method of purifying and casting light metals and apparatus for performing the same
JPS5831397B2 (en) Electrolytic refining method
US4230540A (en) Technique for automatic quenching of anode effects in aluminium reduction cells
US3530047A (en) Stripping of sheet metal electrodeposits from starting sheet blanks
JP3146706B2 (en) Gallium electrolysis method
US4264419A (en) Electrochemical detinning of copper base alloys
US4177117A (en) Bipolar refining of lead
JP3172316B2 (en) Molten salt electrorefining method
KR860005054A (en) Electrolytic method for producing rare earths or alloys thereof and apparatus for implementing the method
JP2875819B2 (en) Molten salt electrorefining equipment
CN110050089B (en) Electrolytic process for extracting tin and/or lead contained in an electrically conductive mixture
JPS60502258A (en) Electrodes for electrometallurgical methods
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
US1006330A (en) Obtaining zinc and/or copper from complex ores or the like.
US4104132A (en) Method for eliminating solution-level attack on cathodes during electrolysis
JPH11229171A (en) Operation of decoppering electrolysis
US1157830A (en) Electrolytic refining of tin.
RU2294984C2 (en) Lead electrolytic refining method
JPS5693887A (en) Pecovery of tallium from lead electrolyte
JPH1121681A (en) Method for regenerating removing solution for tin or solder
SU1735438A1 (en) Process of manufacture of anode bus
SU1498587A1 (en) Method of repairing die
JP2017002376A (en) Recycling method of lead electrolyte