JPS5831330A - Photographing method and device for video picture - Google Patents

Photographing method and device for video picture

Info

Publication number
JPS5831330A
JPS5831330A JP12940581A JP12940581A JPS5831330A JP S5831330 A JPS5831330 A JP S5831330A JP 12940581 A JP12940581 A JP 12940581A JP 12940581 A JP12940581 A JP 12940581A JP S5831330 A JPS5831330 A JP S5831330A
Authority
JP
Japan
Prior art keywords
color
film
image
resolution
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12940581A
Other languages
Japanese (ja)
Inventor
Hideji Fujita
藤田 秀治
Kennosuke Sugizaki
杉崎 堅之助
Keiichi Kiyota
清田 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Ikegami Tsushinki Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Ikegami Tsushinki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Ikegami Tsushinki Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP12940581A priority Critical patent/JPS5831330A/en
Priority to EP82303669A priority patent/EP0070677B1/en
Priority to DE8282303669T priority patent/DE3280288D1/en
Priority to US06/398,243 priority patent/US4468693A/en
Priority to CA000407234A priority patent/CA1185189A/en
Publication of JPS5831330A publication Critical patent/JPS5831330A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
    • G06F17/175Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method of multidimensional data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/02Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
    • G11B27/022Electronic editing of analogue information signals, e.g. audio or video signals
    • G11B27/024Electronic editing of analogue information signals, e.g. audio or video signals on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/02Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
    • G11B27/022Electronic editing of analogue information signals, e.g. audio or video signals
    • G11B27/028Electronic editing of analogue information signals, e.g. audio or video signals with computer assistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2508Magnetic discs
    • G11B2220/2512Floppy disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/90Tape-like record carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Projection-Type Copiers In General (AREA)
  • Color Television Systems (AREA)

Abstract

PURPOSE:To generate a color film of a high-quality picture from a television signal, by exposing the image, which is projected to a high-resolution FSS tube by three primary color signals of a color picture, onto the film through three primary color filters individually. CONSTITUTION:R, G, and B picture signals are subjected to A/D conversion and are stored in frame memories 2a-2c, and signals read out by a photographing switch are applied to the luminance modulation terminal of a flying spot scanner FSS tube, which uses a white phosphor and has a high resolution, of a photographing part 7 after the increment of the number of scanning lines in interpolation calculating parts 3a-3c and the adjustment of the hue and the gradation in gradation adjusting circuits 5a-5c, and three primary color filters are switched to expose colors of the image onto a film time-differentially. Thus, the hue and the gradation matched to photosensitive materials are obtained, and a color film of the high-quality picture which has hardly defocusing of the lens and is superior in resolution is obtained form the television signal.

Description

【発明の詳細な説明】 本発明は、JX色のR,G、Bのカラー画像信号よ)色
分解版を作成するためのオリジナルであ石印刷用のカラ
ーフィルムを作成する方法および装置Kllす石もので
あゐ。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method and apparatus for creating a color film for stone printing using an original image signal (R, G, B color image signals of JX colors) for creating a color separation plate. It's made of stone.

通常、カラー印刷は黄(1)、ffゼンダ(2)、シア
ンCO)、曇(BL)の一枚の印刷分解版を作す、この
印刷分解版を用いてカラー印刷を行なう工程になってい
る。カラー−像から印刷分解版を作るには、従来はカラ
ースキャナーによって直接印刷分解版を作る直接製版法
が用いられていた。直接製版法は一工程少<ehので製
版までに要する時間を短縮で亀経費も安く有利であるが
、R,G、Bの各色のカラーバランス、階調調整を十分
にすることはできないOK比ベフイルムからの製版法で
はこoJIL−bx容易になる。tた、フィルムにすれ
ば他の写真と0組合わせ等の編集もでき保存にも便利で
ある。これらの理由により、カラー画像から印刷用フィ
ルムを作成する装置が必要罠なって11走ものであゐ。
Normally, color printing is a process in which a single printing separation plate is created for yellow (1), FF Zenda (2), cyan CO), and cloudy (BL), and this printing separation plate is used to perform color printing. There is. Conventionally, a direct plate making method has been used to create printing separation plates from color images, in which the printing separation plates are directly created using a color scanner. The direct plate-making method is advantageous because it has fewer steps than one process, so it shortens the time required for plate-making and has low production costs, but it does not allow for sufficient color balance and gradation adjustment of each color of R, G, and B. This JIL-bx is easy to use in the plate making method from befilm. In addition, if you use film, you can edit it by combining it with other photos, and it is convenient for storage. For these reasons, an apparatus for producing printing film from color images has become necessary.

従来、ビデオ画像を写真撮影するKは簡単にはテレビ受
像機oweを普通の写真機で撮影する方法が用−られて
いる、このような方法は経費が安くつく屓面曹質が悪く
、写真機で直接撮影したものに比べ着しく見劣りOする
画像しか得られない。
Conventionally, the easiest way to take pictures of video images has been to take a picture of a television receiver with an ordinary camera.Such a method is cheap, has poor quality, and is difficult to photograph. The result is an inferior image compared to one taken directly with a machine.

その第1011[因はテレビジョン方式そのものにある
。すなわち、標準テレビジョン方式は−mmが!−!本
(有効本数41IIJ本)の走査線によって構成されて
いるので、圃面の大きさtAjWi程度とすれば走査線
密度は/■当りJ、2本mmとなるので走査線が見えて
しまう、走査線を見えなくするためフォープリングをか
け又焦点をぼかすことは既知であるが、このよ−うにす
れば解像力が低下し画質を劣化させる結果となる。これ
に対し、一般の印刷において走査線密度はl襲当り6本
から1本であるから、走査線社見えないし画質は良好で
ある。また、標準のテレビジョン信号は奇数フィールド
と偶数フィールドによって/1iiiiiilのlフレ
ームを廖威する飛越しきV〜裸走査方式であるので、奇
数フィールドと偶数フィールドの走査線が画面上におい
て等間111にならず縞模様になって見えるベアリング
を生じヤすい欠点がある。さらに、周波数帯域0III
!眼を受けているので画像の解像度が劣化するほか、撮
像、変復調、伝送、 VTRへの書込み貌出し、受像管
Oat色螢光体のマシリツクス構造等によりてもひずみ
を生じ画質が劣化する。
The 1011th cause lies in the television system itself. In other words, the standard television system is -mm! -! Since the field consists of 41 IIJ scanning lines (effective number of 41IIJ), if the size of the field is about tAjWi, the scanning line density is J per ■, 2 mm, so the scanning lines are visible. It is known to apply a fold ring or defocus to make the lines invisible, but this results in a reduction in resolution and a deterioration in image quality. On the other hand, in general printing, the scanning line density is from 6 to 1 per print, so the scanning lines are invisible and the image quality is good. In addition, the standard television signal is an interlaced V~bare scanning system in which /1iiiiiil frames are divided by odd and even fields, so the scanning lines of the odd and even fields are spaced evenly between 111 on the screen. However, it has the disadvantage of causing bearings that look like stripes and being easily damaged. Furthermore, frequency band 0III
! In addition to deteriorating the resolution of the image because the image is received by the eye, distortion occurs due to the imaging, modulation and demodulation, transmission, writing to the VTR, the mechanical structure of the Oat color phosphor in the picture tube, etc., and the image quality deteriorates.

また、テレビ璽健をカラー撮影するときは、画像とフィ
ルム感光材料との色彩的なミスマツチや濃度階調のミス
マツチも間層となる。従って、力2−テレビジ璽ン償号
から印刷に適するようなカラーフィルムを得るには、こ
れらの問題を適切に部層することが必要である。
Furthermore, when photographing a television set in color, color mismatches and density gradation mismatches between the image and the film photosensitive material also become interlayers. Therefore, in order to obtain a color film suitable for printing from a 2-television code, it is necessary to address these problems appropriately.

従来、印刷用フィルム作成以外の目的のためこれらO間
層の部分的なIJ!kIlを図った例がああが、いずれ
も印刷用としては不十分々ものである。tた。1g調を
目的とした直接製版装置は製作されて−るが、カラーフ
ィルム會作成する装置は作られて−i1 vh@印刷以
外の目的としては、テレビジ盲y−像をフィルムとして
保存するため通称キネス;−グレコーダーと呼ばれゐ装
置がある。これは、ひずみやシェーディング、総置を改
1した高級モニターと写真機を組会わせたものと、フラ
ットフェイスのブラウン管J本を使用しダイク四イック
電う−勢で光金成しシネカメラで撮影するものとがある
。前者社、通常の受信機用ブラウン管よ塾もラスターの
ひずみやシェーディングは少いがそれ以外の問題は何ら
解決されていない、後者は、フラット7エースであゐた
め螢光面が曲面である七めに生ずる幾何学的なりfみに
対しては有利であ砂色別の各種の調整はできるが、J管
式であるためレジずれが生じやすく同時露光であるため
各色のフィル五感度とOII整が容易でない欠点がある
ほか、142mまたはH■フィルム仕上げのため引伸ば
すと*mが荒れてしオう問題点があった。tた、連続写
真を得るにはよいが少数のスチール写真を得る目的には
不経済である。解像度の秀れてVhゐ特徴1有するもの
としては、カラーテレビシロン信号をR,G、B信号又
はIO信号(輝度。
Conventionally, partial IJ of these O interlayers has been used for purposes other than making printing films! There are examples in which the kIl is achieved, but all of them are insufficient for printing purposes. It was. Although direct plate making equipment for the purpose of 1g tone has been manufactured, equipment for creating color film has not been manufactured for purposes other than printing. Kinesu: There is a device called a recorder. This is a combination of a high-quality monitor with improved distortion, shading, and overall configuration, and a photographic camera, and a cine camera made with a dyke and four-stroke system that uses a flat-face cathode ray tube. There is something. The former company's regular CRT for receivers has little raster distortion and shading, but other problems have not been solved.The latter is a flat 7 ace, so the fluorescent surface is curved. It is advantageous for the geometric curves that occur due to sand color f, and various adjustments can be made for each sand color, but since it is a J-tube type, it is easy to cause misregistration, and since simultaneous exposure is required, the fill five sensitivity and OII of each color can be adjusted. In addition to the drawback that it is not easy to straighten, there was also the problem that *m would become rough when stretched because it was a 142m or H* film finish. Although it is good for obtaining continuous photographs, it is uneconomical for obtaining a small number of still photographs. Those with excellent resolution and VH feature 1 include color television signals, R, G, B signals or IO signals (brightness).

り田マ信−りK変換し、同時または時分割によって白黒
プツウン管Kli像を鉄山してこれを白黒写真によって
撮影するか、あるいはレーずビームによって直接白黒フ
ィルム上に露光せしめる4のがあA、Lかしながら、こ
れらの方法では直接カラーフィルムを得られないOで後
4611を必要とする欠点がある。tた、一般のフィル
ム0代わりに印画紙を用い乾式現像によって直接カラー
ハードコピーを作成する方法もあるが、フィルムを用い
た場合と比較するとカラーバランスが悪く解像度の点で
も及ばない、同種のものとしては、フラットフェースの
力2−受像管Kj!1時焼付砂のできる写真機を組合わ
せたものがあるが、螢光面の湾曲がな−ため周辺Kkけ
るひずみ、焦点ずれが少い利点はあるものの乾式現像に
よるハードコピーなので画質の点で間層がある。tた、
コンピュータの周辺装置としていわゆるハードコピーの
とれる装置もあるが、いずれも印刷用フィルムの作成K
・使用で暑るものではなく部層速度も遅い。
The four methods are A, which converts the Rita-ma signal and simultaneously or time-divisionally converts the black-and-white image into a black-and-white image, which is then photographed as a black-and-white photograph, or exposed directly onto a black-and-white film using a laser beam. However, these methods have the disadvantage that color films cannot be obtained directly and that they require post-processing. There is also a method of directly creating a color hard copy by dry development using photographic paper instead of regular film, but compared to using film, the color balance is poor and the resolution is not as good. As, flat face force 2 - picture tube Kj! There is a camera that is combined with a camera that produces sand when baked, but since the fluorescent surface is not curved, it has the advantage of less distortion and defocus at the edges, but since it is a hard copy using dry development, the image quality is poor. There is an interlayer. It was,
There are devices that can make so-called hard copies as computer peripherals, but all of them are capable of making printing films.
・It doesn't get hot when used, and the layer speed is slow.

本発明の目的は上述した不具金を解決し、ブラウン管と
してフラットフェースで高解像度の大形ISs管を大拳
カメラで撮影できるよりにし、また撮影時の露光■歇を
任意に設定できるようにして間質O良好なカッ−フィル
ムを作成するフィルム撮影方法を提供しようとするもの
である。
The purpose of the present invention is to solve the above-mentioned problems, to make it possible to photograph a large ISs tube with a flat face and high resolution as a cathode ray tube with a large-sized camera, and to make it possible to arbitrarily set the exposure interval during photography. It is an object of the present invention to provide a film photographing method for producing a film with good interstitial content.

本*引七 カラー面像信号よりその画像のカラーフィル
ムを作成するに当た抄、カラー画像のJ原色信号によ艶
白色螢光体を有する高解像度の7ライングスポツトスキ
ヤナー管上に履次鋏出せしめた画像を771色フィルタ
を介して各別にカッ−フィルム上に露光させることを特
徴とするものである。
Book *Binnai: In order to create a color film of the image from the color surface image signal, the J primary color signal of the color image is loaded onto a high-resolution 7 line spot scanner tube with a glossy white phosphor. This method is characterized in that the extracted images are individually exposed onto a film through 771 color filters.

また、本発W140目的はs R、G 、 Bを独立し
てガンマ、明度、コントラスト、明部、暗部の各補正を
行なうことかで惠、フィルムの感光材料に!ツチし九各
色の色調と階調を調整で龜る階調調整方法を提供しよう
とするものである。
In addition, the purpose of the W140 of this invention is to independently correct R, G, and B for gamma, brightness, contrast, bright areas, and dark areas, so it can be used as a photosensitive material for film! This invention attempts to provide a gradation adjustment method that speeds up the tone and gradation of each color by adjustment.

本発明は、白色螢光体を有する高解像度の7ラインクス
ポツトスキヤナー管上に映出せしめた!原色信号による
画像を3原色のフィルタを用いて各ylIKカラーフィ
ルム上に露光させ、その露光回数を7ツイyダスポツド
スキヤナー管およびフィルムの光波長特性によって任意
に設定できるフィルムO作成装置において、各色毎K1
1ll縛葺−踏t−設け、カラーフィルムの光感度特性
に合わせて各も独立して階調olII]lができること
を特徴とするものである。
The present invention was projected onto a high resolution 7 line spot scanner tube with white phosphor! In a film O production device in which an image based on a primary color signal is exposed onto each ylIK color film using filters of three primary colors, and the number of exposures can be arbitrarily set according to the light wavelength characteristics of the 7-d spot scanner tube and the film. , K1 for each color
It is characterized by the fact that it has 110 gradations and can independently produce gradations according to the photosensitivity characteristics of the color film.

本発明のさらに他の目的は、テレビジ冒ン方式の持つ問
題点に対しては、飛越し走査方式を順次走査方式に変換
してベアリングを防ぎ内挿によって走査線を増してR,
G、Bを独立してカラーバランス及び階調調整を行ない
、ブラウン管としてフラットフェースで高解像度の大形
ySs管を大形カメラで撮影できるようKして画質を良
好にし、撮影時O露光回数を任意に設定できるようにし
た勢、テレビジ冒ン信号から印刷用フィルムを作成する
上に必要な問題点をすべて解決したビデオ画像の写真撮
影装置を提供しようとするものである。
Still another object of the present invention is to solve the problems of the TV screen system by converting the interlaced scanning system into a progressive scanning system to prevent bearings and increase the number of scanning lines by interpolation.
Color balance and gradation adjustment are carried out independently for G and B, and K is used to improve the image quality so that the flat-faced, high-resolution large ySs cathode ray tube can be photographed with a large camera, and the number of O exposures during shooting is reduced. It is an object of the present invention to provide a photographing device for video images which can be set arbitrarily and which solves all the problems necessary for producing a printing film from a television broadcast signal.

本発明はカラー画像信号よりその画像のカッ−フィルム
を作成すb装置において、画像の解像度を陶土させ為内
挿計算部と、フィルムの光感度特性に会わせて◆色独立
して階調の調整がで舞る階間調整部と、白色螢光体を有
する高解像度の7ラインダスポツトスキヤナー管と73
1色のフィルターおよび白黒用のMD フィルターとカ
メラとで構成される写真撮影部とを異えることを特徴と
する一〇である。
The present invention uses an interpolation calculation section to improve the resolution of the image in a device that creates a color film of the image from the color image signal, and ◆color-independent gradation adjustment based on the light sensitivity characteristics of the film. A high-resolution 7-line dust spot scanner tube with a white phosphor and an inter-level adjustment section where adjustments can be made.
10 is characterized in that the photographing section is composed of a one-color filter, a black-and-white MD filter, and a camera.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明におけるビデオ画像の写真撮影装置の一
実施例の構成を示すプシツタ図である。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of a video image photographing apparatus according to the present invention.

本装置に加えられたR1σ、Bの各画像信号は、め変換
器/a 、 /b 、 10によってl走査線が爽施例
においては714 @素のデジタル信号に変換される。
The R1σ and B image signals applied to the apparatus are converted into digital signals of 714 pixels per scanning line in the present embodiment by converters /a, /b, 10.

このときのサンプリング周波数は色i+g*送波の参倍
である。デジタル化されたR、G、Bの各信号は、それ
ぞれ別の7レームメ’tリ−Jl、Jl)。
The sampling frequency at this time is the color i+g*multiply of the transmitted wave. The digitized R, G, and B signals are separated into seven separate frames (Jl, Jl).

2OK奇数フイールドと偶′tkフィールドが別のアド
レスとして記憶させられる。写真撮影0スイツチを拝す
ととKよシ上記の7レームメモリーに読出し命令が加え
られ、奇数フィールドと偶数フィールドの走査線が番号
の苦い順から交互に読出される。この結果#を参事の走
査線は順次に読出されるO″ee燭越査方式から順次走
査方式に切替えられ、ベアリングを有効に避けることが
できる。
The 2OK odd field and the even 'tk field are stored as separate addresses. When the photographing 0 switch is turned on, a read command is added to the above 7-frame memory, and the scanning lines of the odd and even fields are read out alternately in ascending numerical order. As a result, the scanning line # is switched from the O''ee candle scanning method in which it is read out sequentially to the progressive scanning method, and bearing can be effectively avoided.

上述Oよ5K”してフレームメモリーから読出吉れた画
像データは、内挿計算部Ja 、 Jb 、JOK送ら
れる、内挿計算郁においては各走査線間に新たな走査線
を形威す為もので、この新たな走査線の画素データすな
わち内挿点のデータは周辺の画素の内挿点に対する相関
性を考慮して決められ、最も簡単*toは相隣る走査線
の画素データをそのま壇採用するエアレストネイパー法
で、その他一本の*査線閏社璽素データが直線的に変化
するものとすみパイV−ア法、屑i/≦画素の影響を考
慮すゐ中具−ビツクコンポリ具−シ璽ン法等の方法があ
る6本発W140ビデオ画像O写真撮影装置においては
、画像に応じて上記JllO内挿法を切替え使用で自為
よう構成している。この断念な走査線は各走査線間を参
等分して3本形成すboで、補間完了後0*査纏は参1
/ Xダ” /lJ#本とな多元の走査−審IFOM参
倍と1にゐ。このため、この画像備考から作成し先フィ
ルムの走査線は見えにくくtkゐOみe t < s露
光Oと1謁接する走査線のl郁が重な砂金うので一層見
え危くなゐ、まえ、補間によ砂撤1m11に&ける一直
方向両像儒号の一部が復元される。上述の処理を完了し
た各R,G。
The image data read out from the frame memory after the above-mentioned process is sent to the interpolation calculation units Ja, Jb, and JOK. In the interpolation calculation, a new scanning line is formed between each scanning line. The pixel data of this new scanning line, that is, the data of the interpolation point, is determined by considering the correlation with the interpolation point of surrounding pixels. In the air rest naper method that is adopted, one other *scan line data changes linearly, the sumi pie V-a method, and a tool that takes into account the influence of waste i/≦pixel. - Bit Composite Tools - The 6-shot W140 video image O photographic device, which has methods such as the printing method, is configured so that the JllO interpolation method described above can be switched and used automatically depending on the image. Three scanning lines are formed by equally dividing the space between each scanning line, and after the interpolation is completed, 0
/ Since the scanning lines that intersect with 1 and 1 have overlapped gold dust, it is even more difficult to see. Previously, by interpolation, a part of the straight-direction double-image Confucian symbol at 1m11 of sand is restored.The above-mentioned processing Each R,G completed.

B信号は、Vム変換器参l 、 jb 、 $OKよっ
てアナログ信号に変換され階調調整回路ja 、 jb
 、 jo K加えられる。この階調調整回路はR,G
、11別に設けられてお染、それぞれ独立してガンマ、
明度。
The B signal is converted into an analog signal by Vmu converters ja, jb, $OK, and then sent to gradation adjustment circuits ja, jb.
, jo K added. This gradation adjustment circuit has R, G
, 11 separate dyes, each independently gamma,
brightness.

コントラスト、明部、暗部の各補正を行なうことができ
%フィルムの感光材料にマツチした各色の色調と階調を
調整することができる0階調WIi整回路で補正された
各R,G、J3g号は−R,G、B選択スイッチnの選
択によって順次!、G、B信号を写真撮影郁テヘ供給す
る。ζO写真撮影郁テにおいては供給された信号をIS
S管の輝度変調端子に加えるのであるが、このときR,
G、B各色の露光回数をそれぞれ適当な値に設定できる
ように構成してあゐので、上記の調整効果と併せてフィ
ルムの感光材料に−vラッチた色調と階調を得ることが
できる。さらに1本発11にお−ては可視光O範111
0光諌長成分をすべて食む白色光OII光体を用い先1
8s管にR,G、Bのフィルタを用い、このフィルタを
切替える仁とにより時m別置光を与えるようK11l成
しである。この写真撮影lI7で使用する18S管は、
輝点が小さくて解像ta極めて高く螢光面が平坦である
ため写真撮影のとき畿何学的なひずみを少くすることが
できるので有利である。tたs R、G 、 Bの各信
号をフィルタを用いて各別にフィルム上に露光するので
R,G、B各画像0シジスFレージ璽ン0ずれ−わゆる
レズずれ社ハとんと無い。レジずれは、本!iI明のよ
うに高走査線密度を要求されているとき拡致命的な欠陥
となるものであるが、本発明社上述のようにフインチの
大s yss管の使用とR,G、Bの時分割露光によっ
て避け、同時に焦点すれとシェーディングも最小にする
ことに成功したものである。さらに本装置に!#−て社
零真機として社解像度の良−大y#O写真機を用い、カ
メラシャッタ及びフィルム巻上り機構をリモートコント
ロールで動くようKL、確実KJ原原色先光できるよう
配慮しである。
Each R, G, J3g is corrected by the 0-gradation WIi adjustment circuit, which can perform each correction of contrast, bright areas, and dark areas, and can adjust the tone and gradation of each color to match the photosensitive material of the film. The numbers are selected sequentially by selecting -R, G, B selection switch n! , G, and B signals to the photographer. In ζO photography, the supplied signal is
It is applied to the brightness modulation terminal of the S tube, but at this time R,
Since the configuration is such that the number of exposures for each of the G and B colors can be set to appropriate values, it is possible to obtain -v latched color tones and gradations in the photosensitive material of the film, in addition to the above-mentioned adjustment effect. In addition, in one beam 11, visible light range 111
Destination 1 using a white light OII light body that consumes all the 0 light length components.
The 8s tube uses R, G, and B filters, and the K11l configuration is used to provide light at different times by switching the filters. The 18S tube used in this photo shoot lI7 is
The bright spots are small, the resolution ta is extremely high, and the fluorescent surface is flat, which is advantageous because geometrical distortion can be reduced when taking photographs. Since each of the R, G, and B signals is exposed onto the film separately using a filter, there is no significant difference in the R, G, and B images. Misregistration is a book! This is a fatal flaw when high scanning line density is required, such as in II light, but as mentioned above, the use of a large finch syss tube and the use of R, G, and B. This was avoided by dividing exposure, and at the same time succeeded in minimizing out-of-focus and shading. More on this device! A high-resolution, high-resolution camera was used as a camera, and the camera shutter and film winding mechanism were operated by remote control to ensure that the KL and KJ primary colors could be illuminated.

次に、本実施例で使用した内挿計算方法について説−す
る、第一図は、画面の左上隅における内挿計算の説@図
である0本奥施例で社、前述したようにキュービックコ
ンポリュータ1ン法、バイリニヤ法、ニアレストネイパ
ー法の3種の内挿法を選択できる構成となっているが、
他の例でも同様の方法をとって−るのでここではキュー
ビックコンボリューシ冒ン法を代表として説明する。キ
ュービックコンボリュータ1ン法は、内挿点の周辺/A
ll素の内挿点に対する相関性を考慮して決めるもので
あり、Pg (L = /−41、J = /−ゲ)を
走査線上の冬画素データ、α1.(1−l−参。
Next, we will explain the interpolation calculation method used in this example. Figure 1 shows the explanation of the interpolation calculation in the upper left corner of the screen. It has a configuration that allows you to select from three types of interpolation methods: compolator method, bilinear method, and nearest Naper method.
Since similar methods have been used in other examples, the cubic convolution method will be explained here as a representative method. The cubic convolution method uses the area around the interpolation point /A
It is determined by taking into account the correlation of the ll elements with the interpolation points, and Pg (L = /-41, J = /-ge) is the winter pixel data on the scanning line, α1. (See 1-l-.

j=/〜参)を21iの内挿点に対応して相関性を表わ
す画素係数(各内挿法によって相違する)とすると暑、
内挿点xKおける画素データは各画素P、に*Lい。本
実施例においては、すべての画素をデジタル値で受取る
出力装置にも対応で龜るようKjlEコ図中斜線部分の
l−画素の内挿計算を実施で暑る回路を実装してお艶、
任意の点に内挿する場合と画素列上に内挿する場合とを
画素係数を記憶するROMの交換によって行なうように
しであるが、ここで捻通常使用される画素列上に内挿す
る場合に′)−て説明する。第3図において内挿計算の
順序は、まず第コラインと第3ラインの間の!、 0位
置について、Xo 、 Xl 、 !! + X5の順
序で各走査線を内挿計算によって求める。各走査線は、
1w素に′)いて上記の14回の積とこれらの総和を求
める計算を01回繰返すことによって求められる。以下
、−素データのラインをずらして同様の計算を14H!
で繰返せば、画面全体の内挿を完了する。縞lEa内挿
計算回路を示すブロック図である。7レームメ篭り一か
ら読出された画素データはインプットバッファ/jtL
 N/16を経てRAM/71L Nna l’c書込
壕れ、アドレスバッフ7ノ4を経て加えられるアドレス
信号によって請出されて乗算器及び加算@n&−/9e
lに加えられる。一方、RO)[Ja N謳ei K蓄
えられていた画素係数は画素係数バッファ/Iを経て上
記の乗算器及び加算器に加えられる。このように%内挿
計算を参回路並列にして行なうの社、■ム菫の書込み及
び請出しに時間を要するので/回路では所要の処理時間
を超過してし喰うからである0乗算器及び加算器では乗
算を行なったデータが次々と加算され、それぞれ/@素
分の一個所の積が加算されるとこのデータを加算@Mへ
送ってその総和をとシバスパツファlを経て次段に送ら
れる。 RO電は参チャンネルの乗算器及び加算器、に
対応してl≦a −/46 (D 8個を使用し、RA
Mの画素データと掛は合せる参個の画素係数を同時に読
出すことができるようにしている。
If j = / ~ reference) is a pixel coefficient (different depending on each interpolation method) corresponding to the interpolation point of 21i that represents the correlation, then heat,
The pixel data at the interpolation point xK is *L for each pixel P. In this example, we implemented a circuit that performs interpolation calculations for the l-pixel shown in the shaded area in the diagram to make it compatible with output devices that receive all pixels as digital values.
Interpolation at an arbitrary point and interpolation on a pixel column are performed by exchanging the ROM that stores pixel coefficients, but here we have a twist when interpolating on a pixel column that is normally used. I'll explain. In Figure 3, the order of interpolation calculation is first between the 3rd line and the 3rd line! , For the 0 position, Xo, Xl, ! ! + Each scanning line is determined by interpolation calculation in the order of X5. Each scan line is
It is obtained by repeating the above-mentioned 14 products and their total sum 01 times. Below, the same calculation is performed by shifting the - raw data line for 14H!
Repeat this to complete the interpolation of the entire screen. FIG. 2 is a block diagram showing a fringe lEa interpolation calculation circuit. The pixel data read from the 7th frame memory is input to the input buffer/jtL.
RAM/71L Nna l'c write trench via N/16, multiplier and addition @n&-/9e by address signal applied via address buffer 7/4
added to l. On the other hand, the stored pixel coefficients are added to the above multiplier and adder via the pixel coefficient buffer/I. In this way, the % interpolation calculation is performed in parallel with the reference circuit, because it takes time to write and request the 0 multiplier and the circuit consumes more time than the required processing time. In the adder, the multiplied data is added one after another, and once the product of each /@element is added, this data is sent to the adder@M, and the sum is sent to the next stage via the Sibus Spuffer. It will be done. The RO voltage corresponds to the multiplier and adder of the reference channel, and l≦a −/46 (using 8 D and RA
The M pixel data and the multiplier are arranged so that a total of three pixel coefficients can be read out at the same time.

各ROMのアドレスは、キ瓢−ビツクプンダリ島−Vw
y法、パイリニヤ法、エアレストネイメー妹。
The address of each ROM is
Y method, Pairinya method, Airest name sister.

そして内挿計算を行なわな−で通すメルーに大区分され
それぞれに対して内挿ラインX、 、 !、 、x、。
Then, without performing interpolation calculations, the interpolation line X, , ! , ,x,.

xl及び内挿位置X、 、 X、 、 !、 、 Xρ
評区分になってお)、各区分には参個O11素係数が蓄
えられて−る。内挿法O選択は操作盤に設けられた選択
スイッチ8によって行なうことができ、内挿ライ/と内
挿位置O選択は制御回路によって自動的に行なわれゐ。
xl and interpolation position X, , X, , ! , , Xρ
(Evaluation divisions), and each division stores 3 O11 prime coefficients. Selection of the interpolation method O can be performed by a selection switch 8 provided on the operation panel, and selection of the interpolation line/interpolation position O is automatically performed by a control circuit.

第j@は階調調整部と写真撮影部の構成を示すブ四ツク
図である。内挿計算の完了したデータは、第jllK示
すようKR,G、B信号ごとK D/ム変換回路#1.
夢す、参OKよってアナログ信号に変換され、階調調整
回路jl 、 jb 、 IOにおいて階調を調整され
る0階調の調整は使用するフィルムの感光特性に対して
最も階調の良好な画像を得られるように調整するもので
、第ぶ図に示すように指数特性を調整するガンマ補正、
全体の明暗の調子を調整する明暗調整、直線的な変化の
割合を調整すh;ンFラスト調整、明るい部分のコント
ラストを調整する一部調整、暗い部分のコントラストを
調整する一部調整があるが、いずれも公知の技術をそo
tt使用することができる。なお、第を図はそれぞれ露
光量対フィル五濃度の関係を示しているもので、横軸に
入力光量 IN軸に出力光量をとってお抄、図中集線は
オリジナルの階調調整を行なわな一場合を、点線は各階
調調整後の状態をそれぞれ示している。
No. J@ is a block diagram showing the configuration of a gradation adjustment section and a photographing section. The data for which the interpolation calculation has been completed is transferred to the KD/mu conversion circuit #1.
It is converted into an analog signal and the gradation is adjusted in the gradation adjustment circuits jl, jb, and IO.The 0 gradation adjustment produces an image with the best gradation based on the photosensitive characteristics of the film used. Gamma correction, which adjusts the exponential characteristics, as shown in Figure 1.
There is a brightness adjustment that adjusts the overall tone of brightness, a contrast adjustment that adjusts the rate of linear change, a partial adjustment that adjusts the contrast of bright areas, and a partial adjustment that adjusts the contrast of dark areas. However, all of them are based on known techniques.
tt can be used. The following figures show the relationship between exposure amount and fill density.The horizontal axis shows the input light amount and the IN axis shows the output light amount. In one case, the dotted lines indicate the state after each gradation adjustment.

階調調整を終った信号は、R,G、B信号の選択スイッ
チ1を経てIS8管3/の輝度変調端子に加えられる。
The signal that has undergone gradation adjustment is applied to the brightness modulation terminal of the IS8 tube 3/ via the R, G, B signal selection switch 1.

このスイッチは、制御部ムの制御によ?IL、G、Bフ
ィルターJ2の切替と同期して切替先られ、R,G、B
C)−ずれかの露光時間中該当する回路を!Ss管に接
続するように設置している。
Is this switch controlled by the control unit? The switching destination is synchronized with the switching of IL, G, B filter J2, and R, G, B
C) - the corresponding circuit during any exposure time! It is installed to connect to the Ss pipe.

R,G、Bフィルターnは制御部ムの制御1によ抄切替
用モータBで切替える。tた、写真機Vは解像度の良−
大形のものを用いフィルム3ダとしては4 X 41.
1判からt×を判のものを用いるので、l≦鵡やH日報
のフィルムに比べ大幅に解像度を向上させることができ
る。さらに、写真機nにはシャッター1を設け、制御部
36の制御によ抄R,G。
The R, G, and B filters n are switched by a paper switching motor B according to control 1 of the control section M. Also, the camera V has good resolution.
Use a large one, and the film size is 4 x 41.
Since 1 to tx size film is used, the resolution can be significantly improved compared to l≦Parrot and H Nippou films. Further, the camera n is provided with a shutter 1, and under the control of the control section 36, the images R and G are taken.

Bフィルターj2の切替時等でシャッター1を15にす
る構成としている。第7図はR,G、B信号の露光とフ
ィルターの動作の一例を表わす図である。
The configuration is such that the shutter 1 is set to 15 when switching the B filter j2. FIG. 7 is a diagram showing an example of the exposure of R, G, and B signals and the operation of the filter.

図中(−社告R,G、B信号の露光を(ロ)社フィルタ
ー〇動作を示している。第7図の例において、R信号の
露光を1回、G信号の露光を1回、B信号の露光をJ@
行なって−る。第rw紘R,G、Bフィルターnの構成
を示す平面図である。図示Oように、R,G、Bの各フ
ィルターの他K 110 フィルターを設けているが、
このNDフィルターは白黒フィルムを得ると11に使用
する。すなわち、It、G、B信号の中で一番周波数帯
域が広くYに近vhG信号を選択し、このNDフィルタ
ーを介して白黒フィルムを撮影することも可能である。
In the figure, the exposure of the R, G, and B signals is shown in the operation of the (B) company filter.In the example in Figure 7, the R signal is exposed once, the G signal is exposed once, and the Exposure of signal J@
I'm doing it. It is a top view which shows the structure of rw-th R, G, B filter n. As shown in the diagram, a K 110 filter is provided in addition to the R, G, and B filters.
This ND filter is used in 11 when a black and white film is obtained. That is, it is also possible to select the vhG signal, which has the widest frequency band among the It, G, and B signals and is closest to Y, and shoot a black and white film through this ND filter.

以上詳細にWI4明したように1本発明のビデオ画像の
写真撮影装置によれば、テレビジョン信号が本来持って
いる走査線不足の岡鳳を内挿によって解消し、R,G、
B信号を独立に階調調整できるようにするとと−に露光
回数−選択できるようKして各色の色調と階調を調整可
能とし、R,G。
As explained above in detail, according to the video image photographing device of the present invention, the lack of scanning lines inherent in television signals can be solved by interpolation, and R, G,
If the gradation of the B signal can be adjusted independently, the tone and gradation of each color can be adjusted using K so that the number of exposures can be selected.

B信号の時葺別施光を行なってレズずれをなくし解像度
O優れた良質の一億讐得ることがでするため、テレビジ
ョン信号から印刷物を作成するためのフィルムとして社
最良の画質のものを得ることがで龜先、さらに、内挿計
算回路を高速処11に適する素子により構成したロジッ
ク回路で構成して演算適度を上げることにより写真撮影
時間を勉縮して、杜じめてテレビジョン信号から印刷用
のフィルムを作成する実用機を開発することができ、こ
の効果拡極めて大きいものがある。
The company uses the best image quality film for producing printed matter from television signals because it uses separate light for the B signal to eliminate misalignment and obtain superior resolution. In addition, the interpolation calculation circuit is configured with a logic circuit composed of elements suitable for high-speed processing, and by increasing the calculation speed, the time required for photographing can be reduced, and the television can be It has been possible to develop a practical machine that creates printing films from signals, and the effects of this have been greatly expanded.

本発明は、テレビジョン信号から印刷用の写真を撮影す
ると龜ばかりでなく印刷用以外の他の用途に対しても応
用できるものである。また、本発明は直接フィルムに撮
影することを目的としているが、直接ハードコピーをと
る場合にも応用できるのは−うまでもない。さらに1人
力信号はテレビジョン信号に限られることは無く他のい
かなる形の画像信号でもよい0本発明では走査線を1本
追加して一本とした場合について述べであるが、その本
数は任意に設定で亀る。ただし、例えば走査線数をn本
追加した場合は、走査一方向のに1変換器のナンプリン
グ周波数は色画搬送波のn+l慴の周波数とする必要が
あゐ。
The present invention can be applied not only to cameras but also to other uses other than printing when a photograph for printing is taken from a television signal. Further, although the present invention is intended for direct photographing onto film, it goes without saying that it can also be applied to direct hard copying. Furthermore, the human-powered signal is not limited to a television signal, and may be any other type of image signal.In the present invention, the case where one scanning line is added to form a single line is described, but the number of lines is arbitrary. Set it to . However, if, for example, n scanning lines are added, the numbering frequency of one converter in one direction of scanning needs to be the frequency of n+l of the color image carrier wave.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のビデオ画像の写真撮影装置の一実施例
O構成を示すブロック図、第2図及びjlEJIEIは
キエービツク;ンボリューシlン法ogm明図、第一図
は走査方式変換及び内挿計算回路を示すブロック図、第
3図はyss管の映像撮影方法の説fIm、第4B!1
は階間調整法の説明図、第7閣はR,G、B信号の露光
とフィルターの動作の一例を示す線図、第1図はR,G
、Bフィルターの構成を示す平面図である。 コa、コb、コ0・・・フレームメ毫す−、Ja、Jb
。 70−・・内挿計算部、sa、sb、zo−階調調整S
。 7・・・写真撮影部、J/−7MS管、32−・R、G
 、 Bフィルタ。 特許出願人 大日本印刷株式会社 同 出願人 池上通信機株式会社
FIG. 1 is a block diagram showing the configuration of an embodiment of the video image photographing device of the present invention; FIG. 2 and FIG. A block diagram showing the calculation circuit, Fig. 3 is an explanation of the video shooting method of the YSS tube, Fig. 4B! 1
Figure 1 is an explanatory diagram of the floor adjustment method, Figure 7 is a diagram showing an example of R, G, and B signal exposure and filter operation, and Figure 1 is a diagram showing an example of R, G, and B signal exposure.
, B is a plan view showing the configuration of the filter. Core a, Kob, Ko0...Frame image -, Ja, Jb
. 70--Interpolation calculation unit, sa, sb, zo-gradation adjustment S
. 7... Photography department, J/-7MS tube, 32-R, G
, B filter. Patent applicant: Dai Nippon Printing Co., Ltd. Applicant: Ikegami Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】 1  *1−画像信号よりその画像のカラーフィルムを
作成するに当たり、カラー画像の3原色信号によ〉白色
螢光体を有する高解像度の7ラインダスポツトスキヤナ
ー管上に順次映出せしめた画像をJ原色フィルタを介し
て各W4にカッ−フィルム上に露光させることを特徴と
するビデオ−像の写真撮影方法。 L 前記各画像の露光の回数を7ツイングスポツトス命
ヤナー管およびフィルムの光波長特性によって任意に設
定することを特徴とする特許請求0範■館1項記載のビ
デオ画像の写真操影方法。 & 白も螢光体を有する高解像度のフライングスポラト
ス中ヤを一菅上に映出せしめた3原色信号によ為画像を
!原色のフィルタを用いて番別にカラーフィルム上に露
光させ、その露光回数をフライングスポラトス午ヤナー
管およびフィルムの光波長特性によって任意に設電でき
るフィルムの作成装置において、各色111KII調調
整回路を設け、カラーフィルムの光感度特性に合わせて
各色独立して階調の調整がで自ることを特徴とする階調
調整方法。 本 カラー両像信号より七OII像のカラーフィルムを
作成する装置において、画像の解像度を向上させる内挿
計算部と、フィルムの光感度特性に合わせて各色独立し
て階調の調整がで詣る階調調整部と、白色螢光体を有す
為高解像度07ツイングスポツトスキヤナー管と3原色
のフィルターおよび白黒用ONDフィルターとカメラと
で構成される写真撮影部とを具えることを特徴とするビ
デオ画像の写真撮影装置。
[Claims] 1 *1 - In creating a color film of the image from the image signal, the three primary color signals of the color image are transferred to a high-resolution 7-line dust spot scanner tube with a white phosphor. A method for photographing a video image, characterized in that the sequentially projected images are exposed on each W4 film through a J primary color filter. L. The method of photographic manipulation of a video image according to claim 0, characterized in that the number of exposures of each image is arbitrarily set according to the light wavelength characteristics of the seven twin-spot Yarner tube and the film. . & The image is created using three primary color signals that display a high-resolution Flying Sporatus medium that also has white phosphors in one tube! In a film production device, a color film is exposed to light by number using primary color filters, and the number of exposures can be set arbitrarily depending on the light wavelength characteristics of the Flying Sporato Yarn tube and the film, and a 111KII adjustment circuit is provided for each color. , a gradation adjustment method characterized in that the gradation can be adjusted independently for each color according to the light sensitivity characteristics of the color film. This is a device that creates a color film of 7 OII images from color dual image signals, and includes an interpolation calculation section that improves the image resolution and the ability to adjust the gradation of each color independently according to the light sensitivity characteristics of the film. It is characterized by comprising a gradation adjustment section, and a photography section consisting of a high-resolution 07 twin spot scanner tube with a white phosphor, three primary color filters, a monochrome OND filter, and a camera. A photographic device for video images.
JP12940581A 1981-07-14 1981-08-20 Photographing method and device for video picture Pending JPS5831330A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12940581A JPS5831330A (en) 1981-08-20 1981-08-20 Photographing method and device for video picture
EP82303669A EP0070677B1 (en) 1981-07-14 1982-07-13 Video printing apparatus
DE8282303669T DE3280288D1 (en) 1981-07-14 1982-07-13 VIDEO RECORDING DEVICE.
US06/398,243 US4468693A (en) 1981-07-14 1982-07-14 Video printing apparatus
CA000407234A CA1185189A (en) 1981-07-14 1982-07-14 Video printing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12940581A JPS5831330A (en) 1981-08-20 1981-08-20 Photographing method and device for video picture

Publications (1)

Publication Number Publication Date
JPS5831330A true JPS5831330A (en) 1983-02-24

Family

ID=15008734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12940581A Pending JPS5831330A (en) 1981-07-14 1981-08-20 Photographing method and device for video picture

Country Status (1)

Country Link
JP (1) JPS5831330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138941A (en) * 1984-12-12 1986-06-26 Fuji Photo Film Co Ltd Inspection device for color film
JPS6373231A (en) * 1986-08-29 1988-04-02 アグファ−ゲ−ヴェルト・アクチエンゲゼルシャフト Method and apparatus for duplicating color image
JPS63316836A (en) * 1987-06-19 1988-12-26 Fuji Photo Film Co Ltd Printing method for color slide
US4924302A (en) * 1987-09-18 1990-05-08 Fuji Photo Film Co., Ltd. CRT color video printer which eliminates magnification changes due to chromatic aberrations

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138941A (en) * 1984-12-12 1986-06-26 Fuji Photo Film Co Ltd Inspection device for color film
JPH0473857B2 (en) * 1984-12-12 1992-11-24
JPS6373231A (en) * 1986-08-29 1988-04-02 アグファ−ゲ−ヴェルト・アクチエンゲゼルシャフト Method and apparatus for duplicating color image
JPS63316836A (en) * 1987-06-19 1988-12-26 Fuji Photo Film Co Ltd Printing method for color slide
US4924302A (en) * 1987-09-18 1990-05-08 Fuji Photo Film Co., Ltd. CRT color video printer which eliminates magnification changes due to chromatic aberrations

Similar Documents

Publication Publication Date Title
JP3256982B2 (en) Image processing device
US4956718A (en) Tonal conversion method for pictures
JPH0239913B2 (en)
JPS59822B2 (en) Color Monitor Sochi
JP2906791B2 (en) Image processing device
JP3067304B2 (en) Pattern generation method for color image processing device
JPH04138770A (en) Shading correction method
JPH1051641A (en) Image reproduction method and image reproduction device
JP2509624B2 (en) How to print color slides
JPS643393B2 (en)
US4660098A (en) Apparatus for producing copies of a video image utilizing line pattern rotation
JPH0134514B2 (en)
JPS5831330A (en) Photographing method and device for video picture
US5053879A (en) Method and device for determining shading correction data, and for effecting shading correction in video printer
JPH06286324A (en) Color video printing method
JPS5978352A (en) Plate making system for video picture
JP2000232618A (en) Photo-finishing method, system therefor and recording medium
JPH0151831B2 (en)
JPS5950048B2 (en) Color original image printing condition setting device
JPS5978349A (en) Plate making system for video picture
JPS6043718B2 (en) Plate-making equipment for printing television images
JPS5978351A (en) Plate making system for video picture
JP2951972B2 (en) Image processing device
JP2941852B2 (en) Image processing method
JP3928164B2 (en) Image processing method and image processing apparatus