JPS5831290A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS5831290A
JPS5831290A JP12879781A JP12879781A JPS5831290A JP S5831290 A JPS5831290 A JP S5831290A JP 12879781 A JP12879781 A JP 12879781A JP 12879781 A JP12879781 A JP 12879781A JP S5831290 A JPS5831290 A JP S5831290A
Authority
JP
Japan
Prior art keywords
cylindrical member
heat exchanger
temperature gas
heat
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12879781A
Other languages
Japanese (ja)
Inventor
Kenji Arisaki
有崎 「けん」治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12879781A priority Critical patent/JPS5831290A/en
Publication of JPS5831290A publication Critical patent/JPS5831290A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent a heat exchanger from receiving adverse effects of dusts, by a method wherein a passage for a high-pressure, high-temperature gas having a high dust content is broadened and is cleared of obstacles except heat pipe elements to prevent dusts from stagnating in the heat exchanger. CONSTITUTION:A high-pressure, high-temperature gas 15 having a high dust content is introduced through an inflow port 7, flows downwards in the passage 14 therefor while making contact with the outside surfaces of evaporating parts of the heat pipe elements 12, and is discharged through an outflow port 8. On the other hand, a low-temperature gas 16 is introduced through an inflow port 4, flows upwards in a passage 13 therefor while making contact with the outside surfaces of condensing parts of the elements 12, and is discharged through an outflow port 3. Although the high-temperature gas 15 contains a large amount of dusts, it flows straightly downwards in the passage 14 and there is no obstacles other than the elements 12 in the passage 14, so that the gas is cooled to be a gas 15' without any stagnation or accumulation of the dusts in an inside cylindrical member 5. Accordingly, adverse effects of the dusts are prevented.

Description

【発明の詳細な説明】 本発明は、圧力差を有するガス相互間の熱交換をイJ効
に行うヒートパイプ素子を用いた熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger using a heat pipe element that efficiently exchanges heat between gases having a pressure difference.

従来、ガス相互間の熱交換を行う熱交換器には種々の形
式のものがあり、また多数の提案がなされている。新た
なニーズとして、石炭ガス化発電プロセスなどにおいて
は大きな圧力差のあるガス相互間の熱交換を有効に行い
得る熱交換器が所望されている。
Conventionally, there are various types of heat exchangers for exchanging heat between gases, and many proposals have been made. As a new need, a heat exchanger that can effectively exchange heat between gases having a large pressure difference is desired in coal gasification power generation processes and the like.

第1図は、石炭ガス化発寛プロセスの概略ブロック図で
ある。石炭ガス化炉100で発生した石炭ガスは廃熱ボ
イラ101.1次集塵装M1o2を経て熱交換器103
に入り、さらに完全脱塵および脱硫を行うスクラバー1
04、前記の熱交換′ 器103を経て発電機105の
駆動用ガスタービン106に送られる。このような石炭
ガス化発電プロセスにおいては、1次集塵を行った石炭
ガスは、たとえば圧力Z Okg /(1)27、含塵
星10〜20/Nm’、温度800〜400℃の高ン昌
高圧高含塵ガス(以下m’lll+ガスという)であり
、このガスの顕熱を有効に利用するため熱交換器103
においてスクラバー104を経た低温のl!l#製ガス
(以下低温ガスという)との間で熱交換を行う。
FIG. 1 is a schematic block diagram of the coal gasification slowdown process. Coal gas generated in the coal gasification furnace 100 passes through a waste heat boiler 101 and a primary dust collector M1o2 to a heat exchanger 103.
scrubber 1, which further performs complete dust removal and desulfurization.
04, it is sent to the gas turbine 106 for driving the generator 105 via the heat exchanger 103 described above. In such a coal gasification power generation process, the coal gas that has undergone primary dust collection is heated to a high temperature of, for example, a pressure ZOkg/(1)27, a dust content of 10 to 20/Nm', and a temperature of 800 to 400°C. This is high-pressure, high-dust-containing gas (hereinafter referred to as m'llll+ gas), and in order to effectively utilize the sensible heat of this gas, a heat exchanger 103 is installed.
The low-temperature l! passed through the scrubber 104 at Heat exchange is performed with l# gas (hereinafter referred to as low temperature gas).

低温ガスは前記のようにスクラバー内で脱塵脱硫を行う
ため、その間の圧力損失相当分だけ圧力降下しており、
高温ガスとの圧力差が大きい。熱交換器103はこのよ
うな圧力差に十分耐え得るものであり、且つ高温ガスに
含まれるmHにより惹起される故障などが少ないことが
要求されるが、従来の熱交換器、たとえば、シェル・ア
ンド・チューブ形の熱交換器では耐圧性、塵埃の処理な
どに問題があった。
As the low-temperature gas is dedusted and desulfurized in the scrubber as mentioned above, the pressure drops by the amount of pressure loss during that time.
There is a large pressure difference with the high temperature gas. The heat exchanger 103 is required to be able to sufficiently withstand such a pressure difference and to be less prone to failures caused by mH contained in high-temperature gas. The and-tube heat exchanger had problems with pressure resistance and dust management.

本発明は、上記従来の欠点に鑑み、ガス相互間の大きな
圧力差に対して十分な耐圧性を有し、かつ塵埃による機
器への影響を最小にすることがTこの目的を達成するた
め、本発明は、ガス相互間の熱交換をヒートパイプ素子
子を用いて行うようにし、垂?M方向に延びる外側円筒
部材と、その内部において外側円筒部材と同心で且つ同
方向に延びる内側円筒部材とにより耐圧性の良い縦形二
重円筒容器を形成し、百円筒部材の上下部にそれぞれ熱
交換を行う各ガスの流入流出口を設け、内側円筒部材の
中心から外側円筒部材に亘って放射状に延び且つ内側円
筒部材と交叉するヒートパイプ素子を設けたことを特徴
とする。
In view of the above-mentioned conventional drawbacks, the present invention aims to have sufficient pressure resistance against large pressure differences between gases, and to minimize the influence of dust on equipment. According to the present invention, heat exchange between gases is performed using a heat pipe element. A vertical double cylindrical container with good pressure resistance is formed by an outer cylindrical member extending in the M direction and an inner cylindrical member extending concentrically and in the same direction as the outer cylindrical member. It is characterized by providing inflow and outflow ports for each gas to be exchanged, and providing a heat pipe element that extends radially from the center of the inner cylindrical member to the outer cylindrical member and intersects the inner cylindrical member.

以下本発明の一実施例を第2図により説明する。An embodiment of the present invention will be described below with reference to FIG.

第2図は熱交換器の縦断面図を示すものである。FIG. 2 shows a longitudinal sectional view of the heat exchanger.

外側円筒部材1は垂直方向に延びる円筒部2と、その上
部および下部に設けられた低温ガス流出口3および流入
口4を有している。内側円筒部材5は前記円筒部2の内
部において円筒部2と同心で且つ垂直方向に延びる円筒
部6と、その上部および下部に設けられた高温ガス流入
ロアおよび流出rl 8を有しており、外側円筒部材1
と内側円筒部材5とによって縦形二重円筒容器が形成さ
れる。
The outer cylindrical member 1 has a vertically extending cylindrical part 2, and a cold gas outlet 3 and an inlet 4 provided at the upper and lower parts thereof. The inner cylindrical member 5 has a cylindrical part 6 that is concentric with the cylindrical part 2 and extends in the vertical direction inside the cylindrical part 2, and a high temperature gas inflow lower and an outflow RL 8 provided at the upper and lower parts of the cylindrical part 6, Outer cylindrical member 1
and the inner cylindrical member 5 form a vertical double cylindrical container.

さらに詳述すると、円筒部2の」二部側にはに、部カバ
ー2αが7ラング部2bにおいてボルトφナツトなどの
連結手段2Cにより着脱可能に取り付けられており、円
筒部2の下部側には下部カバー2dが一体に設けられて
いる。上部カバー2σニLt前記低温ガスの流出口3お
よび^温ガスの流入ロアが一体に設けられ、下部カバー
2dにはl!+l記低温ガスの流入口4および高温ガス
の流出口8が一体に設けられている。またi、 fη−
カバー2aには高温ガスの流入ロアに円筒部6を連通す
る連絡筒5αが設けられ、また円筒部6の下部にはエキ
スパンション9および短筒部10を介して高温ガス流出
口8に連通する連絡管51)が取付けられている。
More specifically, a part cover 2α is removably attached to the second part side of the cylindrical part 2 at the seventh rung part 2b by a connecting means 2C such as a bolt φ nut. A lower cover 2d is integrally provided. The upper cover 2d is integrally provided with the low-temperature gas outlet 3 and the warm gas inflow lower, and the lower cover 2d has l! +l An inlet 4 for low-temperature gas and an outlet 8 for high-temperature gas are integrally provided. Also i, fη−
The cover 2a is provided with a communication tube 5α that communicates the cylindrical portion 6 with the lower inflow of high-temperature gas, and a communication tube 5α that communicates with the high-temperature gas outlet 8 through an expansion 9 and a short cylindrical portion 10 at the lower part of the cylindrical portion 6. A pipe 51) is attached.

短筒部10(才流出口8の側壁に溶接部11で固着され
ている。
A short cylindrical portion 10 (fixed to the side wall of the spout 8 with a welded portion 11).

内側円筒部材5内の中心部より外側円筒部材1に亘って
放射状に延び且つ内側円v?J部材5と交叉するように
多数のヒートパイプ素子12が設けられている。なお図
中の13は低温ガスMi路、14は高温ガス囲路、15
.15はそれぞれ流入流出高温ガス、16.16はそれ
ぞれ流入流出低温ガスを示す。
The inner circle v? extends radially from the center of the inner cylindrical member 5 to the outer cylindrical member 1. A large number of heat pipe elements 12 are provided so as to intersect with the J member 5. In addition, 13 in the figure is a low temperature gas Mi path, 14 is a high temperature gas enclosure, and 15
.. 15 indicates inflow and outflow high temperature gas, and 16 and 16 indicate inflow and outflow low temperature gas, respectively.

高圧高含塵の高温ガス15は流入ロアより流入し、高温
ガス通路14においてヒートパイプ素子12の蒸発部外
周面と接触しながら下方に流れ流出口8より排出される
。一方低温ガス16は流入口4より入り、低温ガス通路
13においてヒートパイプ素子12の凝集部外開面と接
触しながら上方に流れ流出口3より排出される。したが
ってヒートパイプ素子12内に封入されている作動媒体
の働きにより、高温ガス15と低温ガス16との間で熱
交換が行われる。高温ガス15は多くの塵埃を含むが、
高温ガス通路14を真っすぐ下方に流れ、しかもヒート
パイプ素子12以外の干渉物がないので塵埃が内側円筒
部材5内に滞ったり、堆積することなく冷却されてガス
15となる0高渇ガス15と低温ガス16の通過によっ
て生じる外側円筒部材1と内側円筒部材5の熱膨張差は
エキスパンション9によって吸収される。また高温ガス
の高圧力は円筒部6内で保持されるため耐圧性がよく経
済的構造である。高圧ガス156:1ヒートパイプ素子
12に対してはヌ直交に近い状)岸で接するため熱伝達
効率も良好である。さらに、内側円筒部材5の円筒部6
およびヒートパイプ素子12が連絡筒5αを介して上部
カバー2aにぶら下る形で荷重を支えており、短筒1o
と高温ガス流出口8の側壁との溶接部11はエキスパン
ション9の反力のみを受ける構造であり、万一熱交換器
内部の点検、補修を必要とする際には溶接部11を切断
し、7ランジ部2bの連結手段を外して上部カバー2α
を吊り上げれは内側円筒部′!A5とヒートパイプ素子
12を取出すことができる。
High-pressure, highly dust-containing high-temperature gas 15 flows in from the inflow lower, flows downward while contacting the outer peripheral surface of the evaporation part of heat pipe element 12 in high-temperature gas passage 14, and is discharged from outlet 8. On the other hand, the low-temperature gas 16 enters through the inlet 4 , flows upward while contacting the outer open surface of the aggregation portion of the heat pipe element 12 in the low-temperature gas passage 13 , and is discharged through the outlet 3 . Therefore, heat exchange is performed between the high temperature gas 15 and the low temperature gas 16 due to the action of the working medium sealed within the heat pipe element 12. The high temperature gas 15 contains a lot of dust,
Since the high-temperature gas flows straight downward through the high-temperature gas passage 14 and there is no interference other than the heat pipe element 12, dust does not stay in the inner cylindrical member 5 and is cooled to become the gas 15 without accumulating or accumulating. The difference in thermal expansion between the outer cylindrical member 1 and the inner cylindrical member 5 caused by the passage of the low temperature gas 16 is absorbed by the expansion 9. Further, since the high pressure of the high temperature gas is maintained within the cylindrical portion 6, the structure has good pressure resistance and is economical. Since the high-pressure gas 156:1 is in contact with the heat pipe element 12 at the edge (nearly perpendicular), the heat transfer efficiency is also good. Furthermore, the cylindrical portion 6 of the inner cylindrical member 5
The heat pipe element 12 supports the load by hanging from the upper cover 2a via the connecting tube 5α, and the short tube 1o
The welded part 11 between the side wall of the high temperature gas outlet 8 and the side wall of the high temperature gas outlet 8 has a structure that receives only the reaction force of the expansion 9, and in the event that the inside of the heat exchanger needs to be inspected or repaired, the welded part 11 should be cut. 7. Remove the connecting means of the flange portion 2b and remove the upper cover 2α.
Lift up the inner cylindrical part'! A5 and heat pipe element 12 can be taken out.

以上説明した本発明の実施例は次の効果を奏する0 (1)  圧力差の大きいガス相互間の熱交換器をヒー
トパイプ素子を用いるとともに縦形二重円論容□器を構
成することによって、耐圧性に優れ且つ経済的構造とす
ることができる。
The embodiment of the present invention described above has the following effects. (1) By using a heat pipe element as a heat exchanger between gases having a large pressure difference and configuring a vertical double circular theory container, It has excellent pressure resistance and can have an economical structure.

(2)  ヒートパイプ素子が内側円筒部材内の中心内
側円筒部材と交叉するように取付けたので、高含塵の高
温ガスの通路が広く、シかもヒートパイプ素子以外に干
渉物がないので、塵埃が熱交換器内に滞ったり、推檀す
ることがなく、塵埃による恕影響を避けることができる
(2) Since the heat pipe element is installed so as to intersect with the center inner cylindrical member within the inner cylindrical member, the path for the high temperature gas containing high dust is wide, and there is no interference other than the heat pipe element, so dust The heat exchanger does not accumulate or accumulate in the heat exchanger, and the adverse effects of dust can be avoided.

(8)  ガス流れがヒートパイプ素子と交叉する構造
なので熱伝達効率が良好である。
(8) The structure has a structure in which the gas flow intersects with the heat pipe element, so the heat transfer efficiency is good.

(4)熱交換器の点検、修理のための分解が容易である
(4) The heat exchanger can be easily disassembled for inspection and repair.

第8図は、ヒートパイプ素子12と内側円筒部材5の交
叉角度を示す図である。
FIG. 8 is a diagram showing the intersection angle between the heat pipe element 12 and the inner cylindrical member 5.

ヒートパイプ素子12は内側円筒部材5と直角に交叉す
るように内側円筒部材5に固着するのが最も取り付けや
すいが、第8図に示すように、外側円筒部材1側を持上
げて内側円筒部材5とθ(θ〈90度)の角度で交叉す
るようにすると、ヒートパイプ素子12の伝熱有効面積
を大きくとれるので熱交換機能の向上を計ることができ
る。
It is easiest to attach the heat pipe element 12 to the inner cylindrical member 5 so as to cross the inner cylindrical member 5 at right angles, but as shown in FIG. By intersecting at an angle of θ (θ<90 degrees), the effective heat transfer area of the heat pipe element 12 can be increased, so that the heat exchange function can be improved.

第4図はこの熱交換器の横断面図で、図においてヒート
パイプ素子12は大部分を中心線のみで表示している。
FIG. 4 is a cross-sectional view of this heat exchanger, in which most of the heat pipe elements 12 are shown only by the center line.

ヒートパイプ素子12を内側円筒部材5内の中心部より
放射状に延びるよう取量けると、外側円筒部材1佃のヒ
ートパイプ素子12間の空間が大きくなることは避けら
れない。なるべくヒートパイプ素子12を密に配列する
ため第4図番才長短2本のヒートパイプ素子12を交互
に配列し、むだな空間を少くし熱交換機能を向上させた
If the heat pipe elements 12 are arranged to extend radially from the center of the inner cylindrical member 5, it is inevitable that the space between the heat pipe elements 12 in the outer cylindrical member 1 will become larger. In order to arrange the heat pipe elements 12 as densely as possible, the two heat pipe elements 12 shown in Figure 4, long and short, are arranged alternately to reduce wasted space and improve the heat exchange function.

また、第5図は別の解決策として、内側円筒部材5と外
側円筒部材1の間の空間にヒートパイプ素子の延びる方
向に直角にフィン17を取付けることによって空間を埋
め熱交換機能を向上させたものである。
Fig. 5 shows another solution in which fins 17 are installed in the space between the inner cylindrical member 5 and the outer cylindrical member 1 at right angles to the extending direction of the heat pipe element to fill the space and improve the heat exchange function. It is something that

次に第6図乃至第8図によりさらに他の実施例を説明す
る。図において第3図乃至第6図と同符号のものは同一
のものもしくは相当するものを示す。
Next, still another embodiment will be described with reference to FIGS. 6 to 8. In the drawings, the same reference numerals as in FIGS. 3 to 6 indicate the same or equivalent parts.

内側円筒部材5の内部に同心的にスペーサパイプ18を
設けられ、スペーサパイプ1Bは垂直力向に延び支持部
材19および20によって円筒部6および連絡筒5cL
に固定される。この板状の支持部材19.20は第7図
に示すように高温ガス15の流れに支障を生じないよう
に周方向に間隔をおいて複数枚設けられている。ヒート
パイプ素子12は内側円筒部材5内中心部のスペーサパ
イプ18の外側から外側円筒部材1に亘って放射状に延
びる。このようにすれば、第8図の横断面図で示される
ようにヒートパイプ素子12間の空間を少くすることが
でき、ヒートパイプ素子12を比較的密に配列すること
ができる。
A spacer pipe 18 is provided concentrically inside the inner cylindrical member 5, and the spacer pipe 1B extends in the vertical force direction and is connected to the cylindrical portion 6 and the connecting pipe 5cL by supporting members 19 and 20.
Fixed. As shown in FIG. 7, a plurality of plate-shaped support members 19, 20 are provided at intervals in the circumferential direction so as not to impede the flow of the high-temperature gas 15. The heat pipe elements 12 extend radially from the outside of the spacer pipe 18 at the center of the inner cylindrical member 5 to the outer cylindrical member 1 . In this way, as shown in the cross-sectional view of FIG. 8, the space between the heat pipe elements 12 can be reduced, and the heat pipe elements 12 can be arranged relatively densely.

さらに、第9図乃至第11図は本発明の他の実施例を示
すものである。図において第2図乃至第8図と同符号の
ものは同一のものもしくは相当するものを示す。
Furthermore, FIGS. 9 to 11 show other embodiments of the present invention. In the drawings, the same reference numerals as in FIGS. 2 to 8 indicate the same or equivalent parts.

第9図は第8図に示す実施例に加えてヒートパイプ素子
12の洗浄を熱交換器を分解することなく行えるように
したものである。高含塵の高温ガ□ スは流入口より真
っすぐ下方に流れ広い通路14を通って流出口8より排
出されるため、塵埃が内細円1¥?! nls材5内に
滞ったり推梢したりすることは少いため、相当の期間熱
交換器内部の清掃を必1川としl「いが、長期聞となる
と内側円筒部材5内において塵仲が少しづつヒートパイ
プ素子12の上面に滞るため、何袷から清掃手段を設け
る必要がある。
In addition to the embodiment shown in FIG. 8, FIG. 9 shows an embodiment in which the heat pipe element 12 can be cleaned without disassembling the heat exchanger. High-temperature gas with high dust content flows straight downward from the inlet, passes through the wide passage 14, and is discharged from the outlet 8, so that the dust is absorbed into the inner thin circle 1 yen? ! Since it is rare that dust stays or spreads inside the NLS material 5, it is necessary to clean the inside of the heat exchanger for a considerable period of time. Since the heat pipe element 12 accumulates on the upper surface of the heat pipe element 12, it is necessary to provide cleaning means from several sides.

第9図においてスペーサバイブ18を主へラダーとして
これに洗浄用バイブ21を連結し、この洗浄用バイブ2
1に熱交換器の外部より給水可能にし、速中に止弁22
を設ける。スペーサノ(イブ18には垂直方向に数段の
水スプレーヘッダー23をスペーサバイブ1Bより放射
状(第1θ園参照)に且つスペーサパイプ18に直角(
水平力向)に取付け、水スプレーヘッダー23に多数の
水噴射穴24を設ける(袷11図参照)。
In FIG. 9, the spacer vibe 18 is mainly used as a ladder, and the cleaning vibe 21 is connected to it.
Water can be supplied from the outside of the heat exchanger to 1, and a stop valve 22 is installed during operation.
will be established. The spacer pipe 18 is equipped with water spray headers 23 in several stages in the vertical direction radially from the spacer vibe 1B (see 1st θ) and perpendicular to the spacer pipe 18 (
A large number of water injection holes 24 are provided in the water spray header 23 (see Figure 11).

熱交換器の洗浄を行うには、止弁22を開いて洗浄用バ
イブ22よりスペーサパイプ18内に水を供給する。水
は水スプレーヘッダー23をtrOって水噴射穴24よ
り下方に噴射され、下刃位置のヒートパイプ素子12の
表面を清掃しつつ内佃円出する。流出口8に連なる外部
配管の31〜当な個所に水ドレーンロを設は洗浄後の水
を排出すれば良い。
To clean the heat exchanger, the stop valve 22 is opened and water is supplied from the cleaning vibe 22 into the spacer pipe 18 . The water passes through the water spray header 23 and is sprayed downward from the water injection hole 24, cleaning the surface of the heat pipe element 12 at the lower blade position and ejecting the inner surface. A water drain hole may be provided at a suitable location from 31 on the external piping connected to the outlet 8 to discharge the water after washing.

この実施例によれは、熱交換器を分解すること7:c<
熱交換器の内部、特に高含塵の高温ガス通路にあるヒー
トパイプ素子12の表面を宙期的に清掃することが可能
である。
According to this example, disassembling the heat exchanger 7:c<
It is possible to periodically clean the interior of the heat exchanger, in particular the surfaces of the heat pipe elements 12 located in the hot gas paths with high dust content.

また、洗浄用噴射物として水の代りに、空気またに清浄
ガスを用いて同様の方法により熱交換器内でスートブロ
ワ−を行なうこともできる。特に石炭ガスを再加工し左
精製ガスまたは蒸気を用いれは、清掃のためにプラント
を止めることなく熱交換器の内部を清掃することが可能
である。
It is also possible to carry out the soot blowing in the heat exchanger in a similar manner using air or a clean gas instead of water as the cleaning propellant. Especially if coal gas is reprocessed and left purified gas or steam is used, it is possible to clean the inside of the heat exchanger without shutting down the plant for cleaning.

以」二説明したように本発明によれば、圧力差の大きい
ガス相互間の熱交換器と耐圧性に優れ且つ経済性のある
構造にできるとともに塵埃が熱交換器内に滞ることを極
力少なくでき、また熱伝達の良い熱交換器を提供するこ
とができる。
As explained below, according to the present invention, a heat exchanger between gases having a large pressure difference can be constructed with excellent pressure resistance and economical structure, and the accumulation of dust in the heat exchanger can be minimized. It is also possible to provide a heat exchanger with good heat transfer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石炭ガス化発電プロセスの概略ブロック図、第
2図は本発明の一実施例に係る熱交換器の縦断面図、第
8図は内側円筒部材とヒートパイプ素子の取付は角を示
す図、第4図は本発明の他の実施例としてヒートパイプ
素子の配列を示す熱交換器の横断面図、第5図は本発明
のさらに他の実施例としてヒートパイプ素子の他の配列
を示す熱交換器の横断面図、第6図41本発明の他の実
施例を示す熱交換器の縦断面図、第7図け21)6図の
スペーサバイブ取付部を示す横断面図、fAB図は第6
図の実施例によるヒートパイプ素子の配列を示す横断面
図、第9図は本発明のさらに他の実施例を示す熱交換器
の縦断面図、第10図に第9図の実施例によるスプレー
ヘッダーの配列を示す横断面図、第11図はスペーサバ
イブとスプレーヘッダーの取付部を示す詳細図である。 1・・・・・・外側円筒部材、3・・・・・・低温ガス
流出口、4・・・・・・低温ガス流入口、5・・・・・
・内側円筒部材、7・・・・・・高温ガス流入口、8・
・・・・・高温ガス流出[1,12・・・・・・ヒート
パイプ素子、18・・・・・・スペーサパイプ、23・
・・・・・洗浄用噴射物スプレーヘッダー〇代理人 弁
理士武 顕次部 76 図 7q目
Fig. 1 is a schematic block diagram of the coal gasification power generation process, Fig. 2 is a longitudinal cross-sectional view of a heat exchanger according to an embodiment of the present invention, and Fig. 8 shows that the inner cylindrical member and the heat pipe element are attached at a corner. FIG. 4 is a cross-sectional view of a heat exchanger showing an arrangement of heat pipe elements as another embodiment of the present invention, and FIG. 5 shows another arrangement of heat pipe elements as still another embodiment of the present invention. Fig. 6 is a longitudinal sectional view of a heat exchanger showing another embodiment of the present invention, Fig. 7 is a transverse sectional view showing the spacer vibe attachment part of Fig. fAB diagram is 6th
FIG. 9 is a longitudinal cross-sectional view of a heat exchanger showing still another embodiment of the present invention, and FIG. 10 is a sprayer according to the embodiment of FIG. 9. FIG. 11 is a cross-sectional view showing the arrangement of the headers, and a detailed view showing the mounting portions of the spacer vibe and the spray header. 1... Outer cylindrical member, 3... Low temperature gas outlet, 4... Low temperature gas inlet, 5...
・Inner cylindrical member, 7... High temperature gas inlet, 8.
...High temperature gas outflow [1, 12 ... Heat pipe element, 18 ... Spacer pipe, 23.
...Cleaning propellant spray header 〇 Agent Patent attorney Takeshi Kenji Department 76 Figure 7q

Claims (2)

【特許請求の範囲】[Claims] (1)  ガス相互間の熱交換をヒートパイプ素子を用
いて行う熱交換器において、垂直力向に砥びる外側円筒
部材と、その内部において外側円筒部材と同心で且つ同
方向に延びる内側円筒部4Aとにより耐圧性の縦形二重
円筒容器を形成し、前記内円筒部材の上下部にそれぞれ
熱交換を行う各ガスの流入流出口を設け、前記内側円筒
部社内中心部から外側円筒部Hに亘って放射状に延び且
つ内側円筒部材と交叉するヒートパイプを設けたことを
特徴とする熱交換器〇
(1) In a heat exchanger that uses a heat pipe element to exchange heat between gases, there is an outer cylindrical member that sharpens in the vertical force direction, and an inner cylindrical part that is concentric with and extends in the same direction as the outer cylindrical member. 4A to form a pressure-resistant vertical double cylindrical container, and inflow and outflow ports for each gas for heat exchange are provided at the upper and lower parts of the inner cylindrical member, respectively, and from the center of the inner cylindrical part to the outer cylindrical part H. A heat exchanger characterized in that a heat pipe is provided that extends radially throughout and intersects with the inner cylindrical member.
(2)含塵性の高温ガスを前記内側円局部材の上方から
下方に向って流し、非含塵性の低温ガスを前記外側円筒
部材の下方から上方に向って流すように各円筒部材の流
入流出口を配列したことを特徴とする特許請求の範囲第
(1)項紀赦の熱交換器。 (s)  前記内側円筒部材の中心部に、内側円筒部と
同方向に延びるスペーサパイプを設け、スペーサパイプ
の外方向にヒートパイプ素子を設けたことを特徴とする
特許請求の範囲第(11、(2)項記載の熱交換器。
(2) Each cylindrical member is arranged so that dust-containing high-temperature gas flows downward from above the inner circular member, and non-dust-containing low-temperature gas flows upward from below the outer cylindrical member. A heat exchanger according to claim (1), characterized in that the inflow and outflow ports are arranged. (s) A spacer pipe extending in the same direction as the inner cylindrical portion is provided in the center of the inner cylindrical member, and a heat pipe element is provided in the outer direction of the spacer pipe. The heat exchanger described in (2).
JP12879781A 1981-08-19 1981-08-19 Heat exchanger Pending JPS5831290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12879781A JPS5831290A (en) 1981-08-19 1981-08-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12879781A JPS5831290A (en) 1981-08-19 1981-08-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS5831290A true JPS5831290A (en) 1983-02-23

Family

ID=14993668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12879781A Pending JPS5831290A (en) 1981-08-19 1981-08-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS5831290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688399A (en) * 1984-11-05 1987-08-25 Carrier Corporation Heat pipe array heat exchanger
US5085270A (en) * 1990-12-21 1992-02-04 Abb Air Preheater, Inc. Dual angle heat pipe air preheater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688399A (en) * 1984-11-05 1987-08-25 Carrier Corporation Heat pipe array heat exchanger
US5085270A (en) * 1990-12-21 1992-02-04 Abb Air Preheater, Inc. Dual angle heat pipe air preheater

Similar Documents

Publication Publication Date Title
CN107543434A (en) Removable modularization abrasionproof ash disposal three-dimensional ribbed pipe heat exchanger
CN105737182A (en) Smoke in-depth cooler
JPS5831290A (en) Heat exchanger
CN209147780U (en) A kind of double tubesheet U-shaped shell high-temperature heat-exchanging
CN215063797U (en) Vanadium nitrogen alloy kiln waste heat utilization equipment
JP4318679B2 (en) Regenerative condenser
KR20110035201A (en) Module type heat exchangers
CN111692904A (en) Flue gas heat collector
JP4218157B2 (en) Soot blowing method for heat exchanger for exhaust gas
JP3089144B2 (en) Gas-liquid contact plate heat exchanger
CN219530913U (en) Combined air preheater
CN107894175A (en) The condensing tower and its cooling means of a kind of cooling water circulation
CN220061727U (en) Boiler system
CN110822949B (en) Column-plate heat exchanger and using method and cleaning and maintaining method thereof
CN205049016U (en) Fin -type heat exchanger
CN108507379A (en) A kind of gas heat exchanger convenient for extraction heat exchanger tube
CN215864767U (en) Low-temperature waste heat power generation and heat exchange device
CN108518702B (en) Needle-shaped tubular flue gas heating device
CN216869283U (en) Flue gas waste heat recovery device
KR102488344B1 (en) Oxide Dust Collector of Waste Heat Recovery Boiler
CN216159685U (en) Plate type evaporative condenser
CN219714107U (en) Plate heat exchanger suitable for high temperature working condition
CN219941822U (en) Wet process system sour condensing equipment
CN220061799U (en) Dust accumulation preventing flue system
CN216694587U (en) High-efficient environmental protection chemical industry heat exchanger