JPS5831087A - Electrolytical corrosion proof method for underground buried transformer - Google Patents

Electrolytical corrosion proof method for underground buried transformer

Info

Publication number
JPS5831087A
JPS5831087A JP56128816A JP12881681A JPS5831087A JP S5831087 A JPS5831087 A JP S5831087A JP 56128816 A JP56128816 A JP 56128816A JP 12881681 A JP12881681 A JP 12881681A JP S5831087 A JPS5831087 A JP S5831087A
Authority
JP
Japan
Prior art keywords
underground
transformer
tank
hole
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56128816A
Other languages
Japanese (ja)
Other versions
JPS6261671B2 (en
Inventor
Yutaka Shimizu
志水 裕
Takashi Osawa
大沢 峻
Shoji Motohashi
本橋 昌治
Takashi Funahashi
舟橋 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Takaoka Toko Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Takaoka Electric Mfg Co Ltd
Takaoka Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Takaoka Electric Mfg Co Ltd, Takaoka Industrial Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP56128816A priority Critical patent/JPS5831087A/en
Publication of JPS5831087A publication Critical patent/JPS5831087A/en
Publication of JPS6261671B2 publication Critical patent/JPS6261671B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To realize an electrolytical corrosion-proof transformer tank with simple installation by burying said tank in an underground hole made of reinforced concrete and disposing a sacrificial anode via an insulated wire in said hole. CONSTITUTION:In a galvanic anode method, a transformer tank 2a is buried in an underground hole 1 made of reinforced concrete and is connected to a grounding bar 7, reinforcing bars 6 and a sheathed earth 12 via insulated cables 12. A sacrificial anode 11 is installed via the cable 12 in the hole 1. When the tank 2 is submerged in the water in the hole 1 and corrosion is to initiate, the sacrificial electrode 11 submerges in the water 16 as well and provides an electrolytic protection effect. Thus, the transformer is protected electrolytically with the simple installation.

Description

【発明の詳細な説明】 本発BAは地下埋設変圧器の電気防食方法に関する。[Detailed description of the invention] This BA relates to a method for cathodic protection of underground transformers.

都市美化のため、また都市中心部の電力需要の増大及び
用地確保の困難化などKより、地中配電が広く行われる
ようになり、変圧器も地下に埋設される場合が多くなっ
た。こ、の地下埋設変圧器は車道や歩道に埋設されてi
?り、その設置方法t−第1図に示す。
In order to beautify the city, as well as due to the increasing demand for electricity in the city center and the difficulty in securing land, underground power distribution has become widespread, and transformers are often buried underground. This underground transformer is buried in the roadway or sidewalk.
? The installation method is shown in Figure 1.

第1図において、1は鉄筋コンクリート製の地下孔、2
IIiこの地下孔l内に設置された地下埋設変圧器であ
る。地下埋設変圧器2#′iシース付高圧絶縁ケーブル
3で電源側に、低圧絶縁ケーブル4で負荷側に接続され
ている。高圧絶縁ケーブル3のシースと低圧絶縁ケーブ
ル4の中性線絶縁ケーブルの各一端は変圧器タンク2a
に接続し、他191illFiそnぞれ電源側や負荷側
で接地されている。そして、この地下埋設変圧器λはそ
のタンク上部が第1g/(c)の如き固定装置6により
、地下孔1のコンクリート内部に埋つている鉄筋6に電
気的に!l続されて固定されている。フは鋼材からなる
接地棒であシ、絶縁ケーブル8により変圧器タジク2t
sK@続されている。9ijグレーチング即ち格子状の
蓋であシ。
In Figure 1, 1 is an underground hole made of reinforced concrete, 2
IIi is an underground transformer installed in this underground hole l. Underground transformer 2#'i is connected to the power supply side by a sheathed high voltage insulated cable 3 and to the load side by a low voltage insulated cable 4. One end of each of the sheath of the high voltage insulated cable 3 and the neutral wire insulated cable of the low voltage insulated cable 4 is connected to the transformer tank 2a.
The other 191illFi are grounded on the power supply side and load side, respectively. The underground transformer λ is electrically connected to the reinforcing bar 6 buried inside the concrete of the underground hole 1 by means of a fixing device 6 such as No. 1g/(c) at the top of the tank. It is connected and fixed. The grounding rod is made of steel, and the insulated cable 8 connects the transformer Tajik 2t.
sK@continued. 9ij grating lid.

地下匹1の上面を覆っている。It covers the top of underground animal 1.

このように地下孔1の上面をグレーチング9で覆ってい
るので雨水や汚水が流れ込み、また地下孔1の水抜き穴
10や継目からも地下水が浸水することもあり地下孔1
内に水が溜まって。
Since the upper surface of the underground hole 1 is covered with the grating 9 in this way, rainwater and sewage can flow in, and groundwater can also flood from the drainage holes 10 and joints of the underground hole 1.
Water collects inside.

変圧器タンク2aが水につかシミ気化学的腐食作用を生
じる。発明者が既設の地下埋設変圧器を調査したところ
、設置場所や季節によシ程度の差こそあn、殆んどが水
没していた。
If the transformer tank 2a is exposed to water, it will cause chemical corrosion. When the inventor investigated existing underground transformers, most of them were submerged in water, with varying degrees of damage depending on the installation location and season.

そこで、変圧器タンクの防食対策として電気防食法が考
えられる。電気防食法には変圧器タンクなど被防食埋設
物に防食電流を流入させる方法によって次のに方式があ
る。
Therefore, cathodic protection method can be considered as a corrosion prevention measure for transformer tanks. Cathodic protection methods include the following methods, depending on the method of flowing a protective current into the buried object to be protected, such as a transformer tank.

(1)  外部電源方式:交流電源を整流器で直流に変
換して防食電流を流す方 法。
(1) External power supply method: A method in which AC power is converted to DC using a rectifier and anti-corrosion current is passed.

(2)流電陽極方式:異種金属間の電位差を利用して防
食電流を流す方法。
(2) Galvanic anode method: A method that uses the potential difference between different metals to flow an anti-corrosion current.

従来の流電陽極方式では第1図体)に示すように、犠牲
陽極11′ft地下孔1外の地中に埋設して犠牲陽極1
1と変圧器タンク21Lを絶縁ケーブル12で接続しな
ければならないため施工に手間がかかシ、特に既設の地
下埋設変圧器の場合a施工が困難である。また、従来の
外部電源方式では第1図6)に示すように1直流発生装
置14のプラス側に接続した電極15(磁性陵化鉄、け
い素鋳鉄や黒鉛など)1地下孔1外の地中に埋設するの
で、この場合4施工に手間がかかる。
In the conventional galvanic anode method, as shown in Figure 1, the sacrificial anode 1 is buried underground outside the underground hole 1 with a height of 11' ft.
1 and the transformer tank 21L with the insulated cable 12, construction is time consuming and particularly difficult in the case of an existing underground transformer. In addition, in the conventional external power supply method, as shown in Fig. 1 6), an electrode 15 (magnetic iron, silicon cast iron, graphite, etc.) connected to the positive side of the DC generator 14 is connected to the ground outside the underground hole 1. Since it is buried inside, construction is time-consuming in this case.

そこで本発明は施工が簡単な地下埋設変圧器の電気防食
方法を提供することを第1の目的とし、また施工が簡単
であると共に犠牲陽極11や電極15の寿命を延長でき
る地下埋設変圧器の電気防食作用法の提供¥ttlE2
の目的とする。以下、図面に示す各実施例とともに本発
明を説明する。なお、図面中で第1図と同じ部材には同
じ符号を付して説明の重複を省く。
Therefore, the first object of the present invention is to provide a method for cathodic protection of an underground transformer that is easy to install, and which is easy to install and can extend the life of the sacrificial anode 11 and electrode 15. Providing cathodic protection method¥ttlE2
The purpose of The present invention will be described below with reference to each embodiment shown in the drawings. In the drawings, the same members as in FIG. 1 are given the same reference numerals to avoid redundant explanation.

第8図に電気防食f11/aシていない従来例を示し、
第5図及び第4図に本発明【流電陽極方式に適用し友場
合の各実施例上水す、第5.4図いずれの実施例でも犠
牲陽極11は絶縁ケーブル12Yr介して地下孔1内に
設置しである。先に述べ良如く地下埋設変圧器では変圧
器タンク2aが地下孔1内で浸水状態となるのて、腐食
の始まる浸水状態では犠牲陽極11も水16につかシ、
従来の地中に埋設する場合と同様に電気防食作用を発揮
する。このように地下孔1内に犠牲陽極11を設置する
だけで電気防食ができ、施工が簡単である。しかも、地
下孔l内に水が溜っていない場合は、犠牲陽極11から
は防食電流が流出せず、錆の出ない状態て無駄に犠牲陽
極11が消耗することがない、なお、第2.5.4図中
の符号1sは高圧絶縁ケーブルのシース・アースである
Figure 8 shows a conventional example without cathodic protection f11/a,
Figures 5 and 4 show examples of the present invention when applied to the galvanic anode system, and Fig. 5.4. It is installed inside. As mentioned above, in an underground transformer, the transformer tank 2a is submerged in water inside the underground hole 1, and in the submerged state where corrosion begins, the sacrificial anode 11 is also submerged in water 16.
It exerts the same cathodic protection effect as conventional buried underground. In this way, cathodic protection can be achieved simply by installing the sacrificial anode 11 inside the underground hole 1, and construction is simple. Moreover, when no water remains in the underground hole l, no anticorrosion current flows out from the sacrificial anode 11, and no rust occurs and the sacrificial anode 11 is not wasted. 5.4 The symbol 1s in Figure 4 is the sheath earth of the high voltage insulated cable.

一方、第5図の例では変圧器タンクjlaが従来通り地
下孔1の鉄筋6と電気的に接続しであるのに対し、第4
図の例では両者を電気的に絶縁しである。第4図の如く
変圧器タンクmal鉄筋6から絶縁すると、防食時に′
おける犠牲陽極11の消耗が減シ、寿命が長くなる。以
下に理由を説明する。
On the other hand, in the example shown in FIG.
In the example shown in the figure, both are electrically insulated. If the transformer tank is insulated from the mal reinforcing bar 6 as shown in Figure 4,
The wear and tear of the sacrificial anode 11 during storage is reduced and its lifespan is extended. The reason is explained below.

第1表に1通常用いられている材質について。Table 1 lists materials commonly used.

鉄筋6.接地棒フ、変圧器タンク2a及び犠牲陽極11
それぞれの自然電位を測定した結果を示す。なお、この
測定で゛は飽和せ求電極を基準とし、第5図に示す測定
回路で測定した。第6図において、l’/#i飽和甘索
電極せ8.C1)。
Rebar 6. Ground rod, transformer tank 2a and sacrificial anode 11
The results of measuring each natural potential are shown. In this measurement, "" is based on the saturated electrode, and the measurement was carried out using the measuring circuit shown in FIG. In FIG. 6, l'/#i saturated sweet cord electrode 8. C1).

18Fi電圧計、19it切換スイツチである。18Fi voltmeter, 19it changeover switch.

第   1   表 第1表よシわかる様に、鉄筋6が最も責で、以下接地棒
フ、変圧器タンク2a、犠牲陽極11の順で卑となる。
Table 1 As can be seen from Table 1, the reinforcing bar 6 is the most responsible, followed by the grounding rod, transformer tank 2a, and sacrificial anode 11 in that order.

電気化学的腐食作用ては電位の責なものから卑なものへ
電流が流れる丸め、鉄筋6に変圧器タンク2aが接続さ
れていると。
Electrochemical corrosion is a process in which a current flows from a high potential to a low potential, and the transformer tank 2a is connected to the reinforcing bar 6.

鉄筋6から犠牲陽極11へ大きな電流が流れ。A large current flows from the reinforcing bar 6 to the sacrificial anode 11.

犠牲1s1ii11が早く消耗してしまう。そこで。The sacrifice 1s1ii11 will be exhausted quickly. Therefore.

第4図の如く変圧器タンク2aを鉄筋6から絶縁すれば
、鉄筋6に基づいた分の電流がなくなシ、犠牲陽極11
の寿命が長くなる。第2表に。
If the transformer tank 2a is insulated from the reinforcing bars 6 as shown in FIG.
has a longer lifespan. In Table 2.

@3図及び第4図の各例並びに第2図に示す電気防食を
施していない従来例における。各部材の腐食電流及び防
食電流の測定結果を示す。なお、第8表で、+は腐食電
流を示し、−は防食電at−示し%また第1−4図中で
白抜き矢印(1)は腐食電流を示し、黒矢印(→)は防
食電流を示す。
In the examples shown in Figures 3 and 4, and the conventional example shown in Figure 2, which is not provided with cathodic protection. The measurement results of corrosion current and anticorrosion current of each member are shown. In Table 8, + indicates the corrosion current, - indicates the anti-corrosion current, and in Figure 1-4, the white arrow (1) indicates the corrosion current, and the black arrow (→) indicates the anti-corrosion current. shows.

第2表よシわかるように、第3図の例の如く犠牲陽極1
1を地下孔l内に設置するだけでも地下埋設変圧器の浸
水状態で簡単に防食効果を得られるが、第4図の例の如
く変圧器タンク2aを鉄筋6から電気的に絶縁すれば、
第3図の偽でij !5 eb Oymムであった犠牲
陽極11の電流が3a3mムへと大幅に減少し、七nだ
け寿命が長くなる。また、鉄筋6からの電流が無いので
As shown in Table 2, as in the example in Figure 3, the sacrificial anode 1
1 in the underground hole 1 can easily provide a corrosion protection effect when the underground transformer is flooded, but if the transformer tank 2a is electrically insulated from the reinforcing steel 6 as in the example shown in FIG.
Figure 3 is fake and ij! The current of the sacrificial anode 11, which was 5 eb Oym, is significantly reduced to 3 a3 mm, and the life span is increased by 7 n. Also, since there is no current from reinforcing bar 6.

、第3図の例よシも第4WJの例では変圧器タンク2a
の防食電流が増し、防食効果が向上している。
In the example of Fig. 3, the transformer tank 2a is also used in the example of the 4th WJ.
The anti-corrosion current is increased and the anti-corrosion effect is improved.

変圧器タンクを地下孔の鉄筋から電気的に絶縁して固定
する一例を第6図に示す、従来の固定il1図(c)K
示す如く1鉄筋6に固着さn九金具aaと変圧器夕/り
2鶏に固着され九金具5bとをボルト5cで直接締付け
て固定してい友、そこで、第6図の固定装置20では片
端に鍔の付いた絶縁スリーブ5dと穴あきの絶縁板6・
とをポル)5eK買装して両金具5a、5bt締付ける
ようKしている。5d+56の絶縁材としては耐水性が
良く、絶縁抵抗が高く1機械的強度の強いものが必要で
あシ、例えば塩化ビニール製とする。
An example of fixing a transformer tank while electrically insulating it from reinforcing bars in an underground hole is shown in Figure 6, which is a conventional fixing system.
As shown, the metal fitting aa fixed to the reinforcing bar 6 and the metal fitting 5b fixed to the transformer 2 are directly tightened with bolts 5c. Therefore, in the fixing device 20 of FIG. An insulating sleeve 5d with a flange and an insulating plate 6 with a hole.
I bought a 5eK and tightened both metal fittings 5a and 5b. The insulating material for 5d+56 must be one that has good water resistance, high insulation resistance, and high mechanical strength; for example, it is made of vinyl chloride.

以上の説明は本発明管流電陽極方弐に適用し友場合につ
いてのものであるが、外部電源方式にも適用できること
は言うまでもない、この場合の一実施例を第1図に示す
、第1図中の符号goFi第6図に示し良電気絶縁構造
の固定装置を示す。
The above explanation is for the case where the present invention is applied to the tube current anode system, but it goes without saying that it can also be applied to an external power supply system. One embodiment of this case is shown in FIG. The reference numeral goFi in FIG. 6 indicates a fixing device having a good electrical insulation structure.

なお、配電系統金考えると、地下埋設変圧器ノ高圧絶縁
ケーブル3のシースと低圧絶縁ケー接続され且つ接地さ
れている。し九がって、全ての地下埋設変圧器に本発明
を適用しなくても。
In addition, considering the power distribution system, the sheath of the high voltage insulated cable 3 of the underground transformer is connected to the low voltage insulated case and grounded. Therefore, the present invention does not have to be applied to all underground transformers.

例えば、一般に地下埋設変圧器ha絡路上電柱間隔で設
置されているので2〜S台の内の1台に適用すれば、隣
接するものの変圧器タンクも防食効果を受けることとな
シ、施工費が大幅に減少する。この効果について実験を
行ったので、測定結果を第3表に示すと共にその内容を
第8図を用いて説明する。第8図中、φ1及びφ8の地
下埋設変圧器はともにその変圧器タンク2aを鉄筋6か
ら絶縁して設置し、φ2の地下埋設変圧器側の地下孔1
内にだけ犠牲陽極11を設けである。また、゛変圧器タ
ンクlaa、鉄筋6及び犠牲陽極11の接続は必要に応
じてスイッチ81〜81で条件を変更するようにしであ
る。
For example, since underground transformers are generally installed at intervals of 2 to 5 power poles, if it is applied to one of the 2 to S units, the adjacent transformer tank will also receive the corrosion protection effect, and the construction cost will be reduced. will be significantly reduced. An experiment was conducted regarding this effect, and the measurement results are shown in Table 3, and the contents will be explained using FIG. 8. In Fig. 8, both the φ1 and φ8 underground transformers are installed with their transformer tanks 2a insulated from the reinforcing bars 6, and the underground hole 1 on the side of the φ2 underground transformer is installed.
A sacrificial anode 11 is provided only inside. Furthermore, the conditions for connecting the transformer tank laa, the reinforcing steel 6 and the sacrificial anode 11 can be changed using switches 81 to 81 as necessary.

以下、第3表に示した実験内容を第8図を参照しながら
説明する。
The contents of the experiment shown in Table 3 will be explained below with reference to FIG.

実  験  Al この実験は電気防食管節していない従来設置例のもので
あり、スイッチ81’101PF、スイッチS!とB@
 f ONとしす1と+2の地下埋設変圧器を同一条件
とした。この結果#i、いずれの変圧器タンク2aKも
大きな腐食電流が流れた。
Experiment Al This experiment is for a conventional installation without cathodic protection pipe sections, with switch 81'101PF and switch S! and B@
f ON, underground transformers 1 and +2 were under the same conditions. As a result, a large corrosion current flowed through both transformer tanks 2aK in #i.

実験A2 この実験は犠牲陽極11の効果を検証するためのもので
、各スイッチ81mBz*8s’に: ON (!:し
、す1の地下埋設変圧器は実験JI61のままに、+2
の地下埋設変圧器は第3図と同じ電気防食を施した。こ
の結果は、犠牲陽極11から各地下孔lの鉄筋に電流の
大部分が流れるが、+1の地下埋設変圧器のタンクの腐
食電流は大幅に減少、+2の地下埋設変圧器のタンクj
!aKt:を防−負電流が流れ、防食作用が働いている
Experiment A2 This experiment was to verify the effect of the sacrificial anode 11, and each switch was set to 81mBz*8s': ON (!: The underground transformer in S1 was left as Experiment JI61, +2
The underground transformer was given the same cathodic protection as shown in Figure 3. This result shows that although most of the current flows from the sacrificial anode 11 to the reinforcing bars in each underground hole l, the corrosion current in the tank of the underground transformer +1 is significantly reduced, and the corrosion current in the tank of the underground transformer +2 is significantly reduced.
! aKt: Anti-corrosion - Negative current flows and anti-corrosion action is working.

実  験  ム  3 この実験はφlの地下埋設変圧器と鉄筋6とを絶縁した
場合の防食効果を検証するためのもので、スイッチ81
と88をON、スイッチ8.1OFFとし、+2の地下
埋設変圧器は第3図と同じである。この結果#i、すl
の地下埋設変圧器のタンクの腐食電流が更に減少した。
Experiment 3 This experiment was to verify the corrosion protection effect when insulating the φl underground transformer and the reinforcing steel 6.
and 88 are ON, switch 8.1 is OFF, and the +2 underground transformer is the same as in Figure 3. This result #i, sl
The corrosion current in underground transformer tanks was further reduced.

実験ムロ との実験は◆2の地下埋設変圧器と鉄筋6とtIm!!
縁し九場合の防食効果を検証するためのもので、スイッ
チ6IとB、f OM &スイッチ8.1i−OFFと
し、φlの地下埋設変圧器社従来設置例のttK、+2
の地下埋設変圧器は第4図と同じ電気防食t−mした。
The experiment with Muro is ◆2 underground transformer, reinforcing steel 6 and tIm! !
This is to verify the anti-corrosion effect in the case of edge 9, with switches 6I and B, f OM & switch 8.1i-OFF, and ttK, +2 of the conventional installation example of φl underground transformer company.
The underground transformer was subjected to the same cathodic protection t-m as shown in Figure 4.

この結果Fi。This result Fi.

実験4gと同じく+1の地下埋設変圧器のタンクの腐食
電流が減ると共にす2の地下埋設変圧器のタンクgaK
は防食電流が流れゐ他、犠牲陽極11からの電流が大輻
忙滅っている。
As in Experiment 4g, the corrosion current in the tank of underground transformer +1 decreases, and the tank gaK of underground transformer 2 decreases.
In addition to the anti-corrosion current flowing, the current from the sacrificial anode 11 is also flowing.

実  験  Aに の実験は+1と+2の両地下埋設変圧器を鉄筋6から絶
縁し、犠牲陽極11の効果と。
Experiment A In the experiment A, both underground transformers +1 and +2 were insulated from the reinforcing steel 6, and the effect of the sacrificial anode 11 was investigated.

犠牲陽極11の入っている地下孔1内のす2の地下埋設
変圧器及び犠牲陽極の入っていない近接し丸抱下孔l内
のす1の地下埋設変圧器の防食効果とを検証した本ので
あり、スイッチs、 f ON 、スイッチ8雪と8.
1−OFFとし、ナ2の地下埋設変圧器は第4図と同じ
である。
This book verifies the corrosion protection effect of the underground transformer (S2) in the underground hole 1 containing the sacrificial anode 11 and the underground transformer S1 (S1) in the adjacent underground hole L without the sacrificial anode. , switch s, f ON, switch 8 snow and 8.
1-OFF, and the underground transformer No. 2 is the same as in Fig. 4.

この結J!に、 4’lの地下埋設変圧器のタンクの腐
食電流が大幅に減少すると共にす2の地下埋設変圧器の
タンク2亀の防食電流が増して防食効果が大きくなり、
且つ、犠牲陽極11の電流が大幅に減少した。第雪図中
の矢印に)と→とけこの実験A5における腐食電流と防
食電流との流れ方向管それぞれ示す。
This knot J! In addition, the corrosion current in the tank of the 4'L underground transformer is significantly reduced, and the corrosion protection current in the tank 2 of the 2 underground transformer increases, increasing the corrosion protection effect.
Moreover, the current of the sacrificial anode 11 was significantly reduced. The arrows in the Snow diagram indicate the flow directions of the corrosion current and anti-corrosion current in Experiment A5, respectively.

以上説明したように、従来は地下孔l外の地中に、流電
*極方弐に用いる犠牲陽極ユ1や外部電源方式に用いる
電極15を埋設していたので施工が面倒であったが、本
発明によれば犠牲陽極11や電極15Yt単に地下孔1
内に設置するだけで良いから、特に既設の地下埋設変圧
器に対しての織工が容易になると共に犠牲陽極11や電
極115の消耗駅管理及び交換が容易となる。
As explained above, in the past, the sacrificial anode 1 used for galvanic current *pole 2 and the electrode 15 used for external power supply method were buried underground outside the underground hole 1, which was troublesome to install. According to the present invention, the sacrificial anode 11 and the electrode 15Yt are simply connected to the underground hole 1.
Since it is only necessary to install the sacrificial anode 11 and the electrode 115 inside the ground, it is easy to install the sacrificial anode 11 and the electrode 115 in the existing underground transformer.

を九、変圧器タンクaaYr鉄筋6から電気的に絶縁し
て地下孔l内に設置すると、犠牲陽極11や電極15の
寿命を簡単に大幅延長てきる。
(9) If the sacrificial anode 11 and the electrode 15 are electrically insulated from the transformer tank aaYr reinforcing steel 6 and installed in the underground hole 1, the life of the sacrificial anode 11 and the electrode 15 can be easily extended significantly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 6)L (0)は従来技術に係り、6
)は流電陽極方式による電気防食を施し友地下埋設変圧
器の縦断面図、(bl#i外部電源方弐による電気防食
を輪した地下埋設変圧器の縦断面図、(aIkikl、
(1+)における変圧器タンクの固定装置のム矢視断面
図である。第2図は電気防食を施していない地下埋設変
圧器を示す回路図、第S図及び第4図はそれぞれ本発明
の実施例を示す回路図。 第5図は自然電位の測定回路図、第6図は固定方法の一
例を示す断面図、第1図は本発明の他の寮施例上水す縦
断面図、第8図は本発明の適用によるlI接した地下埋
設変圧器への防食作用を調べるための回路図である。 図  面  中、 1ij地下孔、2aは変圧器タンク、 3はシース付高圧絶縁ケーブル、 4は低圧絶縁ケーブル、 6tj鉄筋。 フは接地棒、 a、xgFi絶縁ケーブル、 9#−1グレーチング。 11Fi犠牲陽極。 13#iシース・アース。 14は直流発生装置。 15は電極。 16Fi水。 17は飽和せ采電極。 18ij電圧針、 19は切換スイッチ。 20は固定装置、 81 * fh e ss  はスイッチである。 第1図(0) 第1図(C) 第2図 第5図 q lt   ど    l 第6図 第8図
Figure 1 (al, 6)L (0) relates to the prior art, 6
) is a vertical sectional view of an underground transformer with cathodic protection using galvanic anode method, (bl#i vertical sectional view of an underground transformer with cathodic protection using external power source 2, (aIkikl,
FIG. 3 is a cross-sectional view of the fixing device for the transformer tank in (1+), taken along arrows. FIG. 2 is a circuit diagram showing an underground transformer without cathodic protection, and FIGS. S and 4 are circuit diagrams showing embodiments of the present invention, respectively. Fig. 5 is a circuit diagram for measuring the natural potential, Fig. 6 is a sectional view showing an example of a fixing method, Fig. 1 is a vertical sectional view of another dormitory according to the present invention, and Fig. 8 is a longitudinal sectional view of another dormitory according to the present invention. FIG. 2 is a circuit diagram for investigating the corrosion protection effect on an underground transformer in contact with II by application. In the drawing, 1ij is underground hole, 2a is transformer tank, 3 is high voltage insulated cable with sheath, 4 is low voltage insulated cable, 6tj is reinforcing steel. F: Ground rod, A: XGFi insulated cable, 9#-1 grating. 11Fi sacrificial anode. 13#i sheath earth. 14 is a DC generator. 15 is an electrode. 16Fi water. 17 is a saturated electrode. 18ij voltage needle, 19 is a changeover switch. 20 is a fixed device, and 81 * fh e ss is a switch. Figure 1 (0) Figure 1 (C) Figure 2 Figure 5 q lt Do l Figure 6 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)  鉄筋コンクリート製の地下孔内KJI設され
る変圧器のタンク管電気防食するに際し、流電陽極方式
における犠牲陽極や外部電源方式にお社る電極などタン
クに防食電流管流入させる電極を絶縁ケーブル管介して
地下孔内に配置することを特徴とした地下埋設変圧器の
電気防食方法。
(1) When performing cathodic protection on tank pipes of transformers installed at KJI in reinforced concrete underground holes, insulate the electrodes that flow into the tank, such as sacrificial anodes in galvanic anode systems and electrodes used in external power supply systems. A method for cathodic protection of an underground transformer, characterized by placing it in an underground hole via a cable pipe.
(2)  鉄筋コンクリート製の地下孔内K11l設さ
れる変圧器のタンクを電気防食するに際し、流電陽極方
式における犠牲1極や外部電源方式における電極などタ
ンクに防食電流を流入させる電極を絶縁ケーブルを介し
て地下孔内に′ 配置すると共に、変圧器のタンクを地
下孔の鉄筋から電気的に絶縁することを特徴とし丸地下
埋設賢圧器の電気防食方法。
(2) When cathodic protection is applied to the tank of a transformer installed in a reinforced concrete underground hole, an insulated cable is used to connect the electrode that allows anti-corrosion current to flow into the tank, such as the sacrificial single pole in a galvanic anode method or the electrode in an external power supply method. This is a method for electrolytic corrosion protection of round underground smart voltage transformers, which is characterized by placing the transformer in the underground hole through the tube and electrically insulating the transformer tank from the reinforcing steel in the underground hole.
JP56128816A 1981-08-19 1981-08-19 Electrolytical corrosion proof method for underground buried transformer Granted JPS5831087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56128816A JPS5831087A (en) 1981-08-19 1981-08-19 Electrolytical corrosion proof method for underground buried transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56128816A JPS5831087A (en) 1981-08-19 1981-08-19 Electrolytical corrosion proof method for underground buried transformer

Publications (2)

Publication Number Publication Date
JPS5831087A true JPS5831087A (en) 1983-02-23
JPS6261671B2 JPS6261671B2 (en) 1987-12-22

Family

ID=14994119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128816A Granted JPS5831087A (en) 1981-08-19 1981-08-19 Electrolytical corrosion proof method for underground buried transformer

Country Status (1)

Country Link
JP (1) JPS5831087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3498885A3 (en) * 2017-12-15 2019-06-26 Huawei Technologies Co., Ltd. Electronic device assembly
CN112599990A (en) * 2020-12-08 2021-04-02 河北上广网络科技有限公司 Electric power iron tower ground connection downlead structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3498885A3 (en) * 2017-12-15 2019-06-26 Huawei Technologies Co., Ltd. Electronic device assembly
CN112599990A (en) * 2020-12-08 2021-04-02 河北上广网络科技有限公司 Electric power iron tower ground connection downlead structure
CN112599990B (en) * 2020-12-08 2022-04-12 德州广鑫铁塔制造有限公司 Electric power iron tower ground connection downlead structure

Also Published As

Publication number Publication date
JPS6261671B2 (en) 1987-12-22

Similar Documents

Publication Publication Date Title
US4626330A (en) Torsionally installed anode and earth anchor/penetrator
Ibrahim Corrosion control in electric power systems
Aylott et al. Impact and management of stray current on DC rail systems
JPS5831087A (en) Electrolytical corrosion proof method for underground buried transformer
Zakowski et al. Protection of bridges against stray current corrosion
CN210074181U (en) Low ground resistance ground structure
McIntosh Grounding where corrosion protection is required
JPS609887A (en) Electrolytic protection method of underground buried material
US3602726A (en) Anodic or cathodic protection of below grade electrical housings
JPS5932593Y2 (en) Cathodic protection structure on the underside of the bottom plate of outdoor storage tanks
JP4132174B2 (en) Macro cell corrosion prevention method for buried piping
JP2780915B2 (en) Corrosion protection structure of metal body connected to reinforced concrete structure
US3725225A (en) Cathodic protection method
JP4037074B2 (en) Corrosion prevention method and apparatus for coated sheathed buried pipe
Nikolakakos Cathodic protection system design for steel pilings of a wharf structure
CN218910521U (en) Corrosion-proof device for inner wall current of storage tank
Alzetouni Impressed current cathodic protection for oil well casing and associated flow lines
RU2017862C1 (en) Anode grounding
JP7023400B1 (en) Anticorrosion system and anticorrosion method
Buxton et al. Impact and management of stray current on DC rail systems
da Silva et al. Cathodic protection for tower foundations using induction from the transmission line electric field
RU2075542C1 (en) Method of protection from corrosion
JP2776385B2 (en) Cathodic protection method for conducting pipes
SU1008280A1 (en) Device for cathode protection of pipelines
Aylott et al. Impact and management of stray current on DC rail systems