JPS5830906B2 - Manufacturing method of thermosetting powder coating - Google Patents

Manufacturing method of thermosetting powder coating

Info

Publication number
JPS5830906B2
JPS5830906B2 JP11663576A JP11663576A JPS5830906B2 JP S5830906 B2 JPS5830906 B2 JP S5830906B2 JP 11663576 A JP11663576 A JP 11663576A JP 11663576 A JP11663576 A JP 11663576A JP S5830906 B2 JPS5830906 B2 JP S5830906B2
Authority
JP
Japan
Prior art keywords
temperature
resin
twin
screw
screw extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11663576A
Other languages
Japanese (ja)
Other versions
JPS5342219A (en
Inventor
芳博 林崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegai Corp
Original Assignee
Ikegai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegai Corp filed Critical Ikegai Corp
Priority to JP11663576A priority Critical patent/JPS5830906B2/en
Publication of JPS5342219A publication Critical patent/JPS5342219A/en
Publication of JPS5830906B2 publication Critical patent/JPS5830906B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は耐候性、耐薬品性のすぐれた熱硬化性粉体塗
料を同方向回転噛合いスクリューを内装する二軸押出機
を使用して製造する方法に関するものである。
[Detailed Description of the Invention] This invention relates to a method for producing a thermosetting powder coating with excellent weather resistance and chemical resistance using a twin-screw extruder equipped with co-rotating meshing screws. .

従来、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂
をベースとする熱硬化性粉体塗料あるいはポリエチレン
、ナイロン、ポリ塩化ビニールをベースとする熱可塑性
粉体塗料が製造市販されており、これらの塗料は溶剤は
全く使用しないため、無公害塗料として、特に熱硬化性
粉体塗料は熱硬化性樹脂の分子構造が高熱エネルギーに
より、捷たは配合物に含捷れている硬化剤の作用により
、低熱エネルギーを与えられ変化して巨大分子構造とな
り、耐候性、耐薬品性にすぐれているため、フェンス、
ガードレール、パイプ、変電用品、タンク、建材、モー
タ等の多くの用途に使用されている。
Conventionally, thermosetting powder coatings based on acrylic resins, polyester resins, and epoxy resins, and thermoplastic powder coatings based on polyethylene, nylon, and polyvinyl chloride have been produced and marketed, and these coatings do not require solvents. Because it is not used at all, it is used as a non-polluting paint.In particular, thermosetting powder paints require high thermal energy due to the molecular structure of the thermosetting resin, and low thermal energy due to the action of the curing agent contained in the compound. It changes into a macromolecular structure and has excellent weather resistance and chemical resistance, so it can be used for fences,
It is used in many applications such as guardrails, pipes, substation supplies, tanks, building materials, and motors.

しかるに、硬化剤を含んでいる熱硬化性の樹脂は熱に非
常に敏感であるため、樹脂と硬化剤とを反応させずにい
かに混線分散させるか、樹脂と他の添加剤(例えば顔料
、粘度調整剤、光沢剤、等)はできるだけ均一に混練し
分散させることが問題となっている。
However, thermosetting resins that contain hardening agents are very sensitive to heat, so it is important to consider how to cross-disperse the resin and other additives (such as pigments, viscosity, etc.) without causing the resin and hardening agent to react. The problem is to knead and disperse the additives (adjusting agents, brighteners, etc.) as uniformly as possible.

従来の製造方法にはトライブレンド法と、溶融ブレンド
法の2つがあり、トライブレンド法は樹脂に顔料、充填
剤、流れ調整剤等を溶融混合してから微粉末化したもの
に硬化剤粉末を常温で機械的に乾式混合する方法である
There are two conventional manufacturing methods: the tri-blend method and the melt-blend method.The tri-blend method melt-mixes pigments, fillers, flow control agents, etc. with resin, then finely powders the mixture, and then adds hardening agent powder. This is a mechanical dry mixing method at room temperature.

溶融ブレンド法は、上記配合物を硬化剤とともに、熱ロ
ール、ニーダ、押出機等で溶融混合させる方法である。
The melt blending method is a method in which the above-mentioned compound is melt-mixed with a curing agent using a hot roll, kneader, extruder, etc.

そして、一般的には溶融ブレンド法が行なわれている。A melt blending method is generally used.

しかしながら、この溶融ブレンド法を例え−ば押出機を
用いて行なうと、熱ロール、ニーダ等のバッチ方式と違
って連続製造が可能であり、品質も安定しているが、も
ともと熱可塑性樹脂の成形機として開発されたものであ
るので、その1筐使用する場合には下記の様な種々の欠
点を有する。
However, if this melt blending method is carried out using an extruder, for example, unlike batch methods such as heated rolls or kneaders, continuous production is possible and the quality is stable, but Since it was developed as a machine, there are various drawbacks when using one of the casings, as described below.

イ)熱可塑性樹脂の成形と違い可塑物以外の添加剤の量
が非常に多く混線分散が難しい。
b) Unlike thermoplastic resin molding, the amount of additives other than plastics is extremely large, making it difficult to disperse crosstalk.

また溶融物の粘度は熱可塑性樹脂に比べて非常に小さい
ので、搬送効率が悪い。
Furthermore, since the viscosity of the melt is much lower than that of thermoplastic resin, the conveyance efficiency is poor.

口)混線分散を良くするためにはL/Dを大きくすれば
良いが、逆にL/Dを大きくするとシリンダ内の滞留時
間が長くなり、硬化反応を起して押出しが不可能になる
Ex) In order to improve the crosstalk dispersion, it is sufficient to increase L/D, but conversely, increasing L/D increases the residence time in the cylinder, causing a curing reaction and making extrusion impossible.

ハ)スクリュー回転数を増加すると、滞流時間は短くな
り、L/Dを大きくしても良いことになるが、樹脂の発
熱が大きくなってし!い、回転数を増加すると硬化反応
が発生しやすくなる。
C) If the screw rotation speed is increased, the residence time will be shortened and L/D can be increased, but the heat generation of the resin will increase! However, as the rotation speed increases, curing reactions are more likely to occur.

二)単軸押出機においては、シリンダーとスクリューと
の摩擦の差を利用して搬送混練を行なっているが、前述
の通り溶融物が低粘度のため、その搬送力が確実でなく
、滞留時間の不均一化、安定押出量の確保、プツトポイ
ントの防止等が比較的困難である。
2) In a single-screw extruder, the difference in friction between the cylinder and the screw is used to carry out conveyance and kneading, but as mentioned above, the melt has a low viscosity, so the conveyance force is not reliable, and the residence time is It is relatively difficult to make the material non-uniform, ensure a stable extrusion rate, and prevent put points.

ホ)二軸押出機は単軸押出機の上述の欠点を解決するた
めに開発されたものであるが、二軸押出機の特徴が、も
ともと樹脂温度を抑えるため、できるだけ低速回転で樹
脂に均一に熱が加えられるようにするものであるから熱
可塑性樹脂の成形には適しているが、熱硬化性樹脂には
滞留時間が長いためむかない面があった。
e) The twin-screw extruder was developed to solve the above-mentioned drawbacks of the single-screw extruder, but the characteristic of the twin-screw extruder is that it rotates as slowly as possible to keep the resin temperature as uniform as possible. It is suitable for molding thermoplastic resins because it allows heat to be applied to the material, but it is not suitable for thermosetting resins because of its long residence time.

また回転数を増加すると混線が不充分になる。Furthermore, as the number of rotations increases, crosstalk becomes insufficient.

へ)二軸押出機は搬送は確実であるため、L/Dを小さ
くしたり回転数を硬化反応が発生しないような樹脂温度
の範囲で増加して、一般的には不充分ながら使用されて
いる。
f) Because twin screw extruders are reliable in conveyance, they are generally used, although insufficiently, by reducing the L/D and increasing the rotational speed within the resin temperature range where curing reactions do not occur. There is.

この場合L/Dを小さくしであるので混線が不充分にな
る傾向がある。
In this case, since L/D is made small, crosstalk tends to be insufficient.

以上のように従来熱可塑性樹脂成形用として開発された
二軸押出機をその寸1使用していたこと、及び混線と滞
留時間という相互に矛盾する条件を満たすための試行設
定を行なわなければならないこと、樹脂温度が上昇しす
ぎると硬化反応が発生してし1うので回転数を増加して
混練と滞留時間を同時に解決することは無理であり、事
実回転数を増加してもほとんど分散が良くなるような効
果は得られなかった。
As mentioned above, we used a twin-screw extruder developed for thermoplastic resin molding, and trial settings had to be made to satisfy the mutually contradictory conditions of crosstalk and residence time. In fact, if the resin temperature rises too much, a curing reaction will occur, so it is impossible to solve the problem of kneading and residence time at the same time by increasing the rotation speed, and in fact, even if the rotation speed is increased, there is almost no dispersion. No improvement effect was obtained.

この発明は種々研究を重ねた結果得られた以下に記すよ
うな新しい事実に基づいてなされたものである。
This invention was made based on the following new facts obtained as a result of various studies.

■ 現状の二軸押出機を使用してスクリューの回転数を
増加し、樹脂に剪断エネルギーを与え、ある昇温速度(
(押出樹脂温度−粉末組成物温度)/滞留時間で表現さ
れる値)以上にすると、従来の回転数の増加による効果
とは比較にならないほどの混線分散効果が得られること
、この昇温速度は4℃/sec以上望オしくは5℃/s
ee以上であること。
■ Using a current twin-screw extruder, the screw rotation speed is increased to give shear energy to the resin, and a certain temperature increase rate (
(extrusion resin temperature - powder composition temperature) / value expressed by residence time) or higher, a crosstalk dispersion effect that is incomparable to the conventional effect of increasing the rotation speed can be obtained, and this heating rate is 4℃/sec or more, preferably 5℃/s
Must be at least ee.

■ 上記昇温速度で粉末組成物を溶融混練して押出す寸
での時間を30秒以内、望1しくは25秒以内で可能な
回転数、L/D、スクリュー形状、押出量等を決定する
ことによって硬化反応は全く発生しないことがわかった
■ Determine the possible rotation speed, L/D, screw shape, extrusion amount, etc. within 30 seconds, preferably within 25 seconds, by melting and kneading the powder composition at the above heating rate and extruding it. It was found that no curing reaction occurred by doing so.

粉末組成物を二軸押出機の可塑化部において、押出機先
端に設けたノズルより押出される樹脂温度より低い熱雰
囲気になるように外部より加熱するとともに、スクリュ
ーの回転力による機械的エネルギーを熱エネルギーに変
換させて与え、昇温速度を4℃/s e c以上望捷し
くは5℃/s e c以上にすることにより組成物の樹
脂温度が従来の方法ではすでに硬化反応が発生するよう
な温度に1で達しているにもかかわらず硬化反応が発生
することなく押出すことができた。
The powder composition is heated externally in the plasticizing section of the twin-screw extruder so that the temperature is lower than the temperature of the resin extruded through a nozzle installed at the tip of the extruder, and the mechanical energy generated by the rotational force of the screw is also applied. By converting it into thermal energy and giving it at a heating rate of 4° C./sec or more, preferably 5° C./sec or more, the resin temperature of the composition can be increased so that a curing reaction has already occurred in the conventional method. Despite reaching such a temperature at 1, extrusion was possible without any curing reaction occurring.

0 上記昇温速度を得るためには、スクリューが樹脂に
与える剪断エネルギーは、(スクリューの噛合ピッチ円
における相対的円周速度/スクリュー噛合溝深さ)を剪
断速度とした場合この剪断速度は160 sec ”以
上、望1しくは200sec’以上によジ熱に変換させ
て与えられるエネルギーであることがわかった。
0 In order to obtain the above temperature increase rate, the shearing energy given by the screw to the resin must be 160 It has been found that the energy is converted into heat and given over a period of 200 sec or more, preferably 200 sec or more.

しかし剪断速度を低くし、外部加熱を犬にして昇温速度
を上昇させても良好な混線分散はできなかった。
However, even if the shear rate was lowered and the external heating was increased to increase the heating rate, good crosstalk dispersion could not be achieved.

これらの事実を第3図によって説明するならば、一定昇
温速度で可塑化混練し、完全溶融後は等温状態で混線を
続けたとすると、A領域は身重での方法による分散度を
示す領域であるが一般的に昇温速度は1℃/see以下
しかなく、混合時間を長くとっても分散度は期待できな
いものであった。
To explain these facts using Figure 3, if we plasticize and knead at a constant temperature increase rate and continue mixing in an isothermal state after complete melting, region A is the region that shows the degree of dispersion according to the weight method. However, the temperature increase rate is generally only 1° C./see or less, and even if the mixing time is long, the degree of dispersion cannot be expected.

しかも混合時間が長くなってくると分散度の上昇率が低
くなり、ある程度の混合時間以上は全く不要であるばか
りでなく、かえって悪い結果をあたえてし1つていた。
Moreover, as the mixing time becomes longer, the rate of increase in the degree of dispersion decreases, and mixing longer than a certain amount of time is not only unnecessary, but also gives worse results.

a点が最も良い所でありa′点を過ぎると品質の低下が
でてくる。
Point a is the best point, and beyond point a' the quality begins to deteriorate.

一方昇温速度を2°C/see 、 3°C/secと
上げていったところ4℃/sec以上で急激な分散の向
上が見られた。
On the other hand, when the temperature increase rate was increased to 2°C/see and 3°C/sec, a rapid improvement in dispersion was observed at 4°C/sec or higher.

B領域がそれであるが、このような分散の向上はA領域
と違った分散メカニズムが考えられ、第4Aないし4B
図及び第5人ないし5B図に示すようなメカニズムであ
ると考えられる。
This is the case in area B, but this improvement in dispersion is thought to be caused by a different dispersion mechanism than in area A.
It is thought that the mechanism is as shown in Figure 5 and Figures 5 to 5B.

これは全く新しい領域である。This is completely new territory.

ところがこのような分散度の上昇率もb点以内であれば
良いがb′点にいくと急激な分散の低下が見られあきら
かに硬化反応が発生している兆候を示している。
However, the rate of increase in dispersion is fine as long as it is within point b, but as it approaches point b', a rapid drop in dispersion is observed, clearly indicating that a curing reaction is occurring.

C領域は今1での方法による最大分散度域を示す。Region C indicates the maximum dispersion degree region obtained by the method in 1.

なおここで表現する分散度とは凝集顔料渣たは硬化物な
どの粗大粒子がどの程度少ないかを相対的に示したもの
で次の通りである。
Note that the degree of dispersion expressed here is a relative indication of how little coarse particles such as aggregated pigment residue or cured product are present, and is as follows.

(粒子の大きさを示すものではない) 粗大粒子数 分散度 O個/10i 100係 10個/10i 90φ 100個以上/10ffl O俸第4Aないし
4C図は低昇温速度の場合で4A→4Cに進み、第5A
ないし5C図は高昇湛速度の場合で5A→5Cと進むこ
とを示し、Cはシリンダ、S(I′iスクリューである
(This does not indicate the size of the particles) Number of coarse particles Dispersity O pieces/10i 100 coefficient 10 pieces/10i 90φ 100 pieces or more/10ffl Proceed to 5th A
Figures 5 to 5C show that the flow progresses from 5A to 5C in the case of high rising speed, where C is the cylinder and S (I'i screw).

第4A図第5A図のPは凝集顔料で第4B図では凝集顔
料Pが回転するのみであるが第5B図では凝集顔料Pの
崩壊が起るので、第4C図では硬化粒子R内に凝集顔料
Pが含寸れるが、第5C図では硬化粒子R内に分散顔料
P′が含1れるので分散がよいと考えられる。
P in FIG. 4A and FIG. 5A is an agglomerated pigment. In FIG. 4B, the agglomerated pigment P only rotates, but in FIG. 5B, the agglomerated pigment P collapses, so in FIG. Although the pigment P is included, it is considered that the dispersion is good because the dispersed pigment P' is included in the cured particles R in FIG. 5C.

以下に、この発明方法をこれを行う二軸押出機を示す図
面に関して説明する。
In the following, the method of the invention will be explained with reference to a drawing showing a twin screw extruder in which it is carried out.

第1及び2図において、二軸押出機1は同方向回転噛合
スクリュー2a 、2bを内装し、ホッパ3に供給され
た熱硬化性樹脂、顔料、光沢剤、流れ止め剤及び硬化剤
等の混和物はフィードスクリュー4により二軸押出機1
内のスクリュ2a。
In Figures 1 and 2, a twin-screw extruder 1 is equipped with co-rotating meshing screws 2a and 2b, and mixes thermosetting resin, pigment, brightener, anti-flow agent, hardening agent, etc. supplied to a hopper 3. The product is transferred to twin screw extruder 1 by feed screw 4.
Screw 2a inside.

2bの搬送部L1へ供給され、可塑化部L2へ送られる
2b is supplied to the conveying section L1, and sent to the plasticizing section L2.

スクリュ2a、2bの可塑化部L2はスクリュー直径D
、スクリュー軸心間距離C1溝深さt、スクリューの非
噛合面積S、噛合面積S′、スクリューの平均溝深さC
′及び回転速度の関係が樹脂lこ与える剪断エネルギー
が前述の如く剪断速度として160 sec ’以上に
なるように設定する。
The plasticized portion L2 of the screws 2a and 2b has a screw diameter D.
, Distance between screw axes C1 Groove depth t, Screw non-meshing area S, Meshing area S', Average screw groove depth C
The relationship between the rotational speed and the shearing speed is set so that the shearing energy given to the resin is 160 sec or more as described above.

かつ可塑化部の温度が混和物の溶融温度よシ少くとも1
0°C1望1しくは15℃以上低い熱雰囲気となるよう
に、加熱装置5によシ外部から加熱することにより、凝
集顔料を溶融樹脂がのみこんでし捷うことのないように
温度設定を行なう。
and the temperature of the plasticizing part is at least 1 higher than the melting temperature of the mixture.
By heating from the outside using the heating device 5, the temperature is set to create a thermal atmosphere that is 0°C1, preferably 15°C or more lower, so that the molten resin does not swallow the agglomerated pigment and break it up. Let's do it.

このようにすると昇温速度は4℃/see以上になる。In this way, the temperature increase rate becomes 4° C./see or more.

この時押出機1に供給された混和物が押出される1での
押出機1のシリンダ巴の滞留時間はフィードスクリュー
4により供給される混和物の供給量(押出量に等しい)
によって大きく変化するが30秒以下になるようにL/
Dの大きさとスクリュー形状を決定する。
At this time, the residence time in the cylinder tomoe of the extruder 1 at which the mixture supplied to the extruder 1 is extruded is the amount of the mixture supplied by the feed screw 4 (equal to the extrusion amount)
L/
Determine the size of D and the screw shape.

シリンダは少なくとも可塑化部L2において押出樹脂温
度より低くなるように加熱装置5により温度を制御する
The temperature of the cylinder is controlled by the heating device 5 so that the temperature is lower than the extruded resin temperature at least in the plasticizing section L2.

可塑化部L2で混練溶融された樹脂の混和物は脱気部L
3で脱気され計量部L4で硬化しない状態でノズル6よ
り押出される。
The resin mixture kneaded and melted in the plasticizing section L2 is transferred to the degassing section L.
It is degassed in Step 3 and extruded from the nozzle 6 in an uncured state in the measuring section L4.

ノズル6より押出される樹脂温度は可塑化部L2より若
干高くなっている。
The temperature of the resin extruded from the nozzle 6 is slightly higher than that of the plasticizing part L2.

ノズルより押出された樹脂は冷却固化した後に粉砕され
る。
The resin extruded from the nozzle is cooled and solidified, and then pulverized.

次に図に示す成形装置を用い、熱硬化性粉体塗料の製造
について述べる。
Next, the production of a thermosetting powder coating will be described using the molding apparatus shown in the figure.

実施例 1 樹脂配合 樹脂 エポキシ エピコート1004 xoo部(シ
ェル化学社製) 顔料酸化チタンR−55080部 (6原産業社製) 光沢剤 モダフロー 5部(モンサ
ント化学社製) 流れ エロジール200 4部調整剤
(日本エロジール社製)硬化剤 エビキ
ュアー108 4.5部(シェル化学製) 上記配合樹脂材料をヘンシェルミキサーで10分間混合
後第1図に示す、同方向回転噛合二軸押出機1のホッパ
ー3へ供給した。
Example 1 Resin compound resin Epoxy Epicoat 1004 xoo part (manufactured by Shell Chemical Co., Ltd.) Pigment titanium oxide R-55080 parts (manufactured by 6 Hara Sangyo Co., Ltd.) Brightener Modaflow 5 parts (manufactured by Monsanto Chemical Co., Ltd.) Flow Erosil 200 4 parts Conditioner
(manufactured by Nippon Erosil Co., Ltd.) Curing agent: 4.5 parts of Ebicure 108 (manufactured by Shell Chemical Co., Ltd.) After mixing the above compounded resin materials in a Henschel mixer for 10 minutes, they were transferred to the hopper 3 of the co-rotating intermeshing twin-screw extruder 1 shown in Fig. 1. supplied.

二軸押出機の仕様は次の通りである。The specifications of the twin screw extruder are as follows.

D−・・・85mm 、 C・・・・・・75mm 、
t ・・−10mm 。
D-...85mm, C...75mm,
t...-10mm.

S・・・・・・4260mrfi 、 S’・・・・・
450mrfi 、 R(S′/5X100)・・・・
・・10.6俤、L/D・・・・・・20.ベント孔の
位置・・・・・・スクリュー先端部よりL/D=5゜C
1・・・・・・120°C2C2・・・・・・1200
C2C3・・・・・・130℃、Q(押出量)・・・・
・・200に9/h上記仕様の二軸押出機1に樹脂材料
の混和物を供給し、スクリューの回転数、剪断速度、押
出樹脂温度、滞留時間、昇温速度及び色換え時間を表1
に示すよう゛に変化させてサンプルを押出した。
S...4260mrfi, S'...
450mrfi, R(S'/5X100)...
...10.6 tai, L/D...20. Vent hole position: L/D = 5°C from the screw tip
1...120°C2C2...1200
C2C3...130℃, Q (extrusion amount)...
...200 to 9/h A mixture of resin materials was supplied to the twin screw extruder 1 with the above specifications, and the screw rotation speed, shear rate, extruded resin temperature, residence time, temperature increase rate, and color change time were determined in Table 1.
The sample was extruded with the following changes as shown in .

上記表1の条件により押出した後冷却固化し微粉砕した
粉体塗料を鋼板に65〜70μの膜厚に**なるように
160℃で30分間焼付けを行なった。
After being extruded under the conditions shown in Table 1 above, the powder coating was cooled, solidified, and finely ground, and then baked on a steel plate at 160° C. for 30 minutes to a film thickness of 65 to 70 μm.

この粉体塗料の性能を示す試験結果を表2に示す。Table 2 shows test results showing the performance of this powder coating.

上記サンプル中AI及びA2は外部加熱が高すぎるため
光沢、粒径が悪い。
AI and A2 in the above samples had poor gloss and particle size because the external heating was too high.

A3〜I6.8は光沢、オレンジビール、粒径、エリク
セン及び衝撃性に(特にA3〜A8)すぐれている。
A3 to I6.8 are excellent in gloss, orange beer, particle size, Erichsen and impact properties (especially A3 to A8).

実施例 2 樹脂配合及び二軸押出機は実施例1と同様のものを使用
し、二軸押出機の温度と押出量をC1・・・・・・50
℃ C2・・・・・・75°CC3・・・・・・90℃
Q(押出量) −・−=−300kg/hrとして、樹
脂配合材料を押出す押出条件を表3に示す。
Example 2 The same resin compounding and twin-screw extruder as in Example 1 were used, and the temperature and extrusion rate of the twin-screw extruder were set to C1...50.
℃ C2・・・75°CC3・・・90℃
Table 3 shows the extrusion conditions for extruding the resin compound material, with Q (extrusion rate) -.-=-300 kg/hr.

上記表3の条件により樹脂配合材料を押出した後冷却固
化し微粉砕した粉体塗料を実施例1と同**様に鋼板に
焼きつけた。
The resin compound material was extruded under the conditions shown in Table 3 above, cooled and solidified, and the powder coating powder was pulverized and baked onto a steel plate in the same manner as in Example 1**.

この粉体塗料の性能を示す試験結果を表4に示す。Table 4 shows test results showing the performance of this powder coating.

上記サンプル中A9は樹脂配合材料の温度が低すぎて混
線不充分であった。
In sample A9, the temperature of the resin compound material was too low, resulting in insufficient crosstalk.

AIOは昇温速度が小さいため粗大粒子ができやすく品
質が落ちる。
AIO has a slow heating rate, so coarse particles tend to form and the quality deteriorates.

黒11及び煮12は塗面の平滑性が非常に良い。Black 11 and Ni 12 have very good coating surface smoothness.

実施例 3 樹脂配合 樹脂 アクリル アルマテックスP D 100
部(三井東圧化学社製) エポキシ DER661−J 10部(ダウケミ
カル社製) 顔料 酸化チタン R−82015部 (6原産業社製) フタロシアニンブルー 1部 (BASF社製) 流れ エロジール200 5部調整剤
(日本エロジール社製)光沢剤 モダ
クロー 3部(モンサントケ□カル社製) 硬化剤 ドデカン2酸 15部(東亜
合成化学社製) 上記配合樹脂材料をヘンシェルミキサーで10分間混合
後第1図に示す、同方向回転噛合二軸押出機1のホッパ
ー3へ供給した。
Example 3 Resin blended resin Acrylic Almatex P D 100
Part (manufactured by Mitsui Toatsu Chemical Co., Ltd.) Epoxy DER661-J 10 parts (manufactured by Dow Chemical Company) Pigment Titanium oxide R-82015 parts (manufactured by 6 Hara Sangyo Co., Ltd.) Phthalocyanine Blue 1 part (manufactured by BASF Company) Flow Erosil 200 5 parts Adjustment agent
(manufactured by Nippon Erosil Co., Ltd.) Brightener Modaclaw 3 parts (manufactured by Monsanto Cal Co., Ltd.) Curing agent Dodecane dioic acid 15 parts (manufactured by Toagosei Kagaku Co., Ltd.) The above compounded resin materials were mixed for 10 minutes in a Henschel mixer, as shown in Figure 1. , and supplied to the hopper 3 of the co-rotating intermeshing twin-screw extruder 1.

押出機1の仕様は実施例1と同様のものを使用し、温度
及び押出量を C1・・・・・・600C2C2・・・・・・110℃
、C3・・・・・・130′C2Q(押出量)・・・・
・・300kg/hとして、上記配合樹脂材料を押出す
押出し条件を表5に示す。
The specifications of extruder 1 are the same as in Example 1, and the temperature and extrusion amount are C1...600C2C2...110℃
, C3...130'C2Q (extrusion amount)...
Table 5 shows the extrusion conditions for extruding the above compounded resin material at a rate of 300 kg/h.

上記表5の条件により配合樹脂材料を押出した後冷却固
化し微粉砕した粉体塗料を鋼板に50〜60μの膜厚に
なるように200℃で20分分間率申付けを行なった。
The blended resin material was extruded under the conditions shown in Table 5, cooled and solidified, and the finely pulverized powder coating was applied to a steel plate at a temperature of 200° C. for 20 minutes to obtain a film thickness of 50 to 60 μm.

この粉体塗料の性能を示す試験結果を表6に示す。Table 6 shows test results showing the performance of this powder coating.

上記サンプル中A、 13及びA14は昇温速度が低い
ためオレンジピールがやや不良であった。
Among the above samples, A, 13, and A14 had a low temperature increase rate, so the orange peel was somewhat poor.

應15〜A17は塗面が非常に平滑で、光沢が良い。The coated surfaces of R15 to A17 are very smooth and have good gloss.

比較例 1 樹脂配合 樹脂 エポキシ エピジー)1004 100部(シ
ェル化学社製) 顔料 酸化チタン R−55080部 (6原産業社製) 光沢剤 モダクロー 5部(モン
サント化学社製) 流 れ エロジール200 4部調整剤
(日本エロジール社製)硬化剤 ジ
シアンジアミド 5部(日本カーバイト社製) 上記配合樹脂材料をヘンシェルミキサーで1゜分間混合
後実施例1と同様の押出機1のホッパー3へ供給した。
Comparative example 1 Resin compound resin Epoxy Epigy) 1004 100 parts (manufactured by Shell Chemical Co., Ltd.) Pigment Titanium oxide R-55080 parts (manufactured by 6 Hara Sangyo Co., Ltd.) Brightener Modaclaw 5 parts (manufactured by Monsanto Chemical Co., Ltd.) Flow Erosil 200 4 parts Adjustment Agent (manufactured by Nippon Erosil Co., Ltd.) Curing agent Dicyandiamide 5 parts (manufactured by Nippon Carbide Co., Ltd.) The above compounded resin material was mixed for 1° in a Henschel mixer and then fed to the hopper 3 of the extruder 1 similar to Example 1.

この時、温度及び押出量を、 C1・・・・・・200’C,C2・・・・・・200
0C2C3・・曲200℃、Q(押出量)・・・・・・
300 kg/hとして、上記配合樹脂材料を押出す押
出条件を表7に示す。
At this time, the temperature and extrusion amount are C1...200'C, C2...200
0C2C3...Tune 200℃, Q (extrusion amount)...
Table 7 shows the extrusion conditions for extruding the above compounded resin material at a rate of 300 kg/h.

上記表7の条件により配合樹脂材料を押出した後冷却固
化し微粉砕した粉体塗料を鋼板に50〜60μの膜厚に
なるように200℃で20分間焼*本付けを行なった。
The blended resin material was extruded under the conditions shown in Table 7 above, and then cooled and solidified, and the finely ground powder coating was baked on a steel plate at 200° C. for 20 minutes to a film thickness of 50 to 60 μm.

この粉体塗料の性能を示す試験結果を表8に示す。Table 8 shows test results showing the performance of this powder coating.

上記サンプル中A18は二軸押出機内で硬化反応が若干
起っているため全く塗面にならない。
Among the samples mentioned above, A18 did not form a coated surface at all because a slight curing reaction occurred in the twin-screw extruder.

煮19は昇温速度が4°C/sec以上であるが剪断速
度が小さく滞留時間が長くかつ押出し樹脂温度が高いた
め塗面が非常に悪い。
In No. 19, the temperature increase rate was 4° C./sec or more, but the shear rate was low, the residence time was long, and the temperature of the extruded resin was high, so the coated surface was very poor.

應20は剪断速度、昇温速度は大きいが外部加熱が高す
ぎるため光沢が悪く塗面が悪い。
Although 20 has a high shear rate and a high temperature increase rate, the external heating is too high, so the gloss is poor and the coating surface is poor.

比較例 2 配合樹脂材料は比較例1と同様であって二軸押出機を従
来の熱可塑性樹脂成形用のものを使用し※た。
Comparative Example 2 The blended resin material was the same as Comparative Example 1, and a conventional twin-screw extruder for molding thermoplastic resins was used*.

二軸押出機の仕様は、D−−110mm 、 C−90
mm 、 t −20mm。
The specifications of the twin screw extruder are D--110mm, C-90
mm, t-20mm.

Sa−・−・・−11300tr+r?+、 sb =
−・・・1720mr1M。
Sa-・-・・-11300tr+r? +, sb =
-...1720mr1M.

R(Sb/Sa x 1o o ) −・−・・−1s
%、L/D−−−−・・22、ベント孔位置・・・・・
・先端部よりL/D=4゜C1・・・・・・500C2
C2・・・・・・75°C2C5・・・・・・90°C
2Q(押出量)・・・・・・200kg/hとして、配
合樹脂材料を押出す押出条件を表9に示す。
R(Sb/Sax 1o o ) -・-・・-1s
%, L/D----22, vent hole position...
・L/D=4゜C1...500C2 from the tip
C2...75°C2C5...90°C
2Q (extrusion rate)...Table 9 shows the extrusion conditions for extruding the blended resin material at 200 kg/h.

上記表9の条件により配合樹脂材料を押出した後に冷却
固化し、微粉砕した粉体塗料を鋼板に焼付け、実施例1
と同様の試験を行なった。
Example 1 After extruding the blended resin material under the conditions shown in Table 9 above, it was cooled and solidified, and the finely pulverized powder coating was baked on a steel plate.
A similar test was conducted.

この粉体塗料の性能を示す試験結果を表10に示す。Table 10 shows test results showing the performance of this powder coating.

上記サンプル中食て剪断速度、昇温速度が小さいため粒
径が非常に太きい。
The particle size of the above sample is very large because the shear rate and temperature increase rate are low.

また光沢も悪い。色換え時間が非常に長い。Also, the gloss is poor. Color change time is very long.

以上説明したように、本発明は配合樹脂材料を混線溶融
する際に同方向回転噛合スクリュを内装する二軸押出機
を使用し、配合樹脂材料に押出し樹脂温度より低い熱雰
囲気で混練溶融し、配合樹脂材料に昇温速度が4℃/
see以上であって剪断速度が160sec−1以上に
より熱に変換させて与えられる剪断エネルギーを30秒
以内加えて押出した後冷却固化し微粉砕して熱硬化性粉
体塗料を製造すると次のような効果を奏する。
As explained above, the present invention uses a twin-screw extruder equipped with co-rotating meshing screws to mix and melt compounded resin materials, kneads and melts compounded resin materials in a hot atmosphere lower than the extrusion resin temperature, Temperature increase rate of compounded resin material is 4℃/
See or more and the shear rate is 160 sec-1 or more, converting it into heat and applying shear energy within 30 seconds, extruding it, cooling it, solidifying it, and pulverizing it to produce a thermosetting powder coating will result in the following: It has a great effect.

■)配合樹脂材料の滞流時間が非常に短くかつ混線溶融
が均一なので品質が安定している。
■) The residence time of the compounded resin material is very short and the cross-wire melting is uniform, so the quality is stable.

捷た従来の押出し方法と異なり、滞留時間が短いため色
換え時間が短くなり、樹脂材料の損失が少なくなる。
Unlike traditional extrusion methods, which require shorter residence times, color change times are shorter and less resin material is lost.

2)配合樹脂材料の滞留時間が非常に短いので硬化反応
速度の速い硬化剤(一般に速硬化タイプと称する)でも
硬化反応が発生する前に押出すことができ、あらゆる硬
化剤に適応できる。
2) Since the residence time of the compounded resin material is very short, even a curing agent with a fast curing reaction rate (generally referred to as a fast curing type) can be extruded before the curing reaction occurs, and it can be applied to any curing agent.

3)二軸押出機の特性上、スクリューの回転数を増加し
ても配合樹脂材料の温度はある一定温度になるとほとん
ど上昇せず、滞留時間が短いためむしろ下降する傾向に
あり二軸押出機内で硬化反応は発生しない。
3) Due to the characteristics of a twin-screw extruder, even if the screw rotation speed is increased, the temperature of the compounded resin material hardly rises once it reaches a certain temperature, and because the residence time is short, it tends to decrease. No curing reaction occurs.

4)溶融樹脂の滞留時間が非常に短いので長時間押出機
を稼動させても硬化反応を起こさずに押出すことができ
る。
4) Since the residence time of the molten resin is very short, even if the extruder is operated for a long time, it can be extruded without causing a curing reaction.

したがって硬化反応物が混入するために発生するオレン
ジピールと称する塗膜の欠かんがでにくい。
Therefore, a coating film called orange peel, which is caused by the contamination of curing reactants, is less likely to occur.

5)剪断速度が高いため凝集顔料が溶融樹脂につつみこ
1れる前にスクリューフライト内で潮解し非常に微細に
分散し出来た塗膜の表面には粗大粒子は見られず平滑で
あり顔料の隠ペイ化が増大する。
5) Due to the high shear rate, the agglomerated pigment deliquesces in the screw flight and becomes very finely dispersed before being enveloped in the molten resin.The surface of the resulting coating film is smooth and no coarse particles are observed, and the pigment is Hidden payments will increase.

一方低剪断速度範囲では外部からの熱により樹脂が溶融
し凝集顔料が潮解する前に樹脂につつみこ寸れてし1う
ためスクリューフライト内での潮解はほとんど期待され
ずその渣1押出されてし1い塗膜の平滑さが悪くなる。
On the other hand, in the low shear rate range, the resin is melted by external heat and the aggregated pigment is wrapped in the resin before it deliquesces, so deliquescence within the screw flight is hardly expected and the residue is extruded. 1) The smoothness of the coating film deteriorates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二軸押出機の断面図、第2図はスクリューの噛
合を示す断面図、第3図は混合時間と分散度を示すグラ
フ、第4Aないし4C図は低昇温速度の第5人ないし5
C図は高昇温速度の場合の溶融混練の機構の説明図であ
る。 1・・・・・・押出機、2a、2b・・・・・・スクリ
ュー 3・・・・・・ホッパ、4・・・・・・フィード
スクリュー 5・・・・・・加熱装置、6・・・・・・
ノズル。
Figure 1 is a sectional view of a twin screw extruder, Figure 2 is a sectional view showing screw engagement, Figure 3 is a graph showing mixing time and degree of dispersion, and Figures 4A to 4C are 5 person or 5
Figure C is an explanatory diagram of the melt-kneading mechanism at a high temperature increase rate. 1... Extruder, 2a, 2b... Screw 3... Hopper, 4... Feed screw 5... Heating device, 6...・・・・・・
nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 同方向回転噛合いスクリューを内装する二軸押出機
を使用して熱硬化性粉体塗料を製造する方法において、
前記二軸押出機の可塑化部の温度を押出し樹脂温度より
少くとも10℃以上低い熱雰囲気となるように外部より
加熱し、前記二軸押出機内に供給された粉末組成物に昇
温速度を4°C/s e c以上としかつその滞留時間
が30sec以内となるように前記スクリューにより剪
断速度を160sec’以上とする剪断エネルギーを加
えて、該粉末組成物を均一に溶融混練し未硬化の11押
出した後に冷却し、微粉末に粉砕することを特徴とする
熱硬化性粉体塗料の製造方法。
1. In a method for producing a thermosetting powder coating using a twin-screw extruder equipped with co-rotating meshing screws,
The temperature of the plasticizing section of the twin-screw extruder is heated from the outside so that the temperature is at least 10° C. lower than the temperature of the extruded resin, and the rate of temperature rise is controlled for the powder composition supplied into the twin-screw extruder. The powder composition is uniformly melted and kneaded by applying shearing energy such that the shear rate is 160 sec' or more using the screw so that the temperature is 4°C/sec or more and the residence time is 30 sec or less. 11. A method for producing a thermosetting powder coating, which comprises extruding, cooling, and pulverizing into fine powder.
JP11663576A 1976-09-30 1976-09-30 Manufacturing method of thermosetting powder coating Expired JPS5830906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11663576A JPS5830906B2 (en) 1976-09-30 1976-09-30 Manufacturing method of thermosetting powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11663576A JPS5830906B2 (en) 1976-09-30 1976-09-30 Manufacturing method of thermosetting powder coating

Publications (2)

Publication Number Publication Date
JPS5342219A JPS5342219A (en) 1978-04-17
JPS5830906B2 true JPS5830906B2 (en) 1983-07-02

Family

ID=14692069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11663576A Expired JPS5830906B2 (en) 1976-09-30 1976-09-30 Manufacturing method of thermosetting powder coating

Country Status (1)

Country Link
JP (1) JPS5830906B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971317A (en) 2017-12-27 2019-07-05 Agc株式会社 The manufacturing method of powder coating

Also Published As

Publication number Publication date
JPS5342219A (en) 1978-04-17

Similar Documents

Publication Publication Date Title
KR0121859B1 (en) Process for processing elastomeric compositions
KR940011143B1 (en) Method and apparatus for producing thermoplastic and products produced thereform
Gale Compounding with single‐screw extruders
JPS60109804A (en) Method of blending high-viscosity silicon
CN105980123B (en) Prepare soft pvc process of semi-finished
US4113822A (en) Method of dispersing inorganic additives within extruder
US3906065A (en) Process for the production of shaped, marbled thermoplastic products
JP2673712B2 (en) Method for producing colored thermoplastic resin composition containing filler
JP2866049B2 (en) Method for producing resin colorant
Shih Fundamentals of polymer compounding: The phase‐inversion mechanism during mixing of polymer blends
JPS5830906B2 (en) Manufacturing method of thermosetting powder coating
JPH0234307A (en) Manufacture of polymer containing powder additive
US4343912A (en) Novel method for reducing the processing temperature of thermoplastic polymers and novel blowing agent concentrates produced thereby
JPH0222094B2 (en)
US5030408A (en) Method of producing molded resin article
CN107513208B (en) Preparation method of oil-resistant high-flame-retardant irradiation crosslinking low-smoke halogen-free cable material
JP3248528B2 (en) Granular additive for synthetic resin and method for producing the same
JPH0762076B2 (en) Method for producing master chip with improved pigment dispersibility
JPS59155434A (en) Production of powdery resin composition
JPH0251447B2 (en)
JPH11140192A (en) Production of polymer alloy by using solid-phase shear grinder and polymer alloy obtained thereby
CN113265109A (en) High-concentration engineering plastic flame-retardant master batch and preparation method thereof
JP3152047B2 (en) Composition for coloring
JPS5912689B2 (en) Dispersion method of inorganic additives in screw extruder
JP2000344897A (en) Master batch for coloring and manufacture thereof