JPS5830716A - Terminal part of optical fiber - Google Patents

Terminal part of optical fiber

Info

Publication number
JPS5830716A
JPS5830716A JP12858681A JP12858681A JPS5830716A JP S5830716 A JPS5830716 A JP S5830716A JP 12858681 A JP12858681 A JP 12858681A JP 12858681 A JP12858681 A JP 12858681A JP S5830716 A JPS5830716 A JP S5830716A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
face
glass block
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12858681A
Other languages
Japanese (ja)
Inventor
Yoshio Miyake
三宅 良雄
Rumiko Suganuma
菅沼 ルミ子
Toshio Takei
竹居 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12858681A priority Critical patent/JPS5830716A/en
Publication of JPS5830716A publication Critical patent/JPS5830716A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To eliminate the reflection in the terminal part of an optical fiber without degrading characteristics of the optical fiber, by connecting optical glass, which has a refractive index approximately equal to that of the optical fiber core, to the obliquely formed end face of the optical fiber. CONSTITUTION:An optical fiber 1 and a glass block 2 are connected on a junction face 3 formed obliquely to the axis of the optical fiber. The other face 4 of the glass block 2 is so coated that a used light wavelength is not reflected, and refractive indexes of the glass block 2 and the optical fiber core are set to the same value. Consequently, even if a luminous flux 11 incident to the optical fiber 1 is reflected partially by discontinuity of refractive index, a reflected luminous flux 12 is much deviated from the fiber optical axis and is easily eliminated because a boundary face 3 is formed obliquely to the fiver optical axis, and as the result, the reflection in the terminal part of the optical fiber is eliminated effectively to obtain a stable optical circuit.

Description

【発明の詳細な説明】 この発明は、光フアイバ伝送路用光回路部品に用いられ
る光ファイバの端末部に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a terminal portion of an optical fiber used in an optical circuit component for an optical fiber transmission line.

光フアイバ伝送用光回路部品に用いられる光フアイバ端
末部は単に光ファイバをその中心軸に#1は直角に切断
研磨したものが用いられていることが多いが、このよう
な端末部では、光フアイバ端面でのフレネル反射が光回
路部品や光フアイバ伝送系の特性に影響を与える場合が
ある。例えば、半導体レーザと光ファイバをレンズによ
って結合せしめる半導体レーザ結合器においては、光フ
アイバ端面でのフレネル反射成分が半導体レーザに戻り
半導体レーザの特性が変化するため安定な半導体レーザ
結合器が得られない。このような問題点をなくすため、
従来とられている手法は光フアイバ端面にARコートを
施こすか又は光フアイバ端面を光フアイバ中心軸に対し
斜めに研磨し、光フアイバ端面で生じるフレネル反射成
分が光回路を形成する光学系や、あるいは光ファイバへ
再入射することを防ぐものである。しかしながら光フア
イバ端面にARコートを施こすことは、ARコート処理
中に光ファイバが高温にさらされるため、光フアイバ強
度上から望ましくなく又、光フアイバ端面を斜めに形成
することは、光ファイバよりの出射ビームがこの端面で
の屈折によってりむき。
Optical fiber terminals used in optical circuit components for optical fiber transmission are often simply cut and polished at right angles to the central axis of the optical fiber. Fresnel reflection at the fiber end face may affect the characteristics of optical circuit components and optical fiber transmission systems. For example, in a semiconductor laser coupler that couples a semiconductor laser and an optical fiber with a lens, a stable semiconductor laser coupler cannot be obtained because the Fresnel reflection component at the end face of the optical fiber returns to the semiconductor laser and changes the characteristics of the semiconductor laser. . In order to eliminate such problems,
The conventional method is to apply an AR coating to the end face of the optical fiber or to polish the end face diagonally with respect to the central axis of the optical fiber. , or to prevent it from entering the optical fiber again. However, applying an AR coating to the end face of an optical fiber is undesirable from the viewpoint of strength of the optical fiber, as the optical fiber is exposed to high temperatures during the AR coating process. The outgoing beam is deflected by refraction at this end face.

この結果光ファイバの中心軸と光フアイバ出射ビームの
光軸が一致しなくなるため、光回路構成が複雑になる欠
点があった。
As a result, the central axis of the optical fiber and the optical axis of the beam emitted from the optical fiber do not match, resulting in a disadvantage that the optical circuit configuration becomes complicated.

この発明は、これらの欠点を解決するため。This invention aims to solve these drawbacks.

斜めに形成された光フアイバ端面に光ファイバのコアの
屈折率にほぼ等しい光学ガラスをつぎ合わせたもので以
下図面について詳細に説明する。
An optical glass having a refractive index approximately equal to that of the core of the optical fiber is bonded to an obliquely formed end face of the optical fiber, and will be described in detail below with reference to the drawings.

第1図は、この発明による一実施例を示すものであって
、(1)は光ファイバ、(2)はガラスブロックである
。光ファイバ(1)とガラスブロック(2)は、光フア
イバ中心軸に対し斜めに形成された接合面(3)におい
て接合されている。又ガラスブロック(2)の端面(4
)は使用光波長に対し無反射コートされている。ガラス
ブロック(2)の屈折率は光ファイバのコアの屈折率に
ほぼ等しく設定されている。このような構成となってい
るので。
FIG. 1 shows an embodiment according to the present invention, in which (1) is an optical fiber and (2) is a glass block. The optical fiber (1) and the glass block (2) are joined at a joining surface (3) formed obliquely to the central axis of the optical fiber. Also, the end face (4) of the glass block (2)
) is coated with anti-reflection coating for the wavelength of light used. The refractive index of the glass block (2) is set approximately equal to the refractive index of the core of the optical fiber. Because it is configured like this.

第2図(、)に示す如く、光ファイバ(1)へ入射する
光束αDがガラスブロック(2)と7フイバコア部01
の屈折率の不連続によりて一部反射されても。
As shown in FIG.
Even if it is partially reflected due to the discontinuity in the refractive index.

境界面(3)がファイバ光軸と斜めに形成されているこ
とから反射光束υはファイバ光軸より太きくそれてしま
うので容易に除去でき、他の光回路部品に影響をおよぼ
さない。又ガラスブロック(2)の端面(4)は無反射
コートされており反射は生じない。ところでこのような
ガラスブロック(2)の端面への無反射コートは光ファ
イバ+11とガラスブロック(2)をつぎ合わせる工程
の前のガラスブロック単体の段階で行なうことにより、
光ファイバの特性には何ら影響と及ぼさず無反射コート
が可能でちゃ、従来の光フアイバ端末部の光フアイバ端
面に無反射コートをする場合の欠点を全て除去できる。
Since the boundary surface (3) is formed obliquely to the optical axis of the fiber, the reflected light beam υ deviates from the optical axis of the fiber, so it can be easily removed and does not affect other optical circuit components. Further, the end face (4) of the glass block (2) is coated with a non-reflection coating, so that no reflection occurs. By the way, such anti-reflection coating on the end face of the glass block (2) can be done at the stage of the glass block alone, before the process of joining the optical fiber +11 and the glass block (2).
If a non-reflection coating can be applied without affecting the characteristics of the optical fiber, all the drawbacks of conventional anti-reflection coating on the end face of the optical fiber at the end of the optical fiber can be eliminated.

さて、一方第2図(b)に示すように光ファイバ(1)
の光軸に沿って伝搬してきた光線(至)は厳密にはガラ
スブロック(2)と光フアイバコア(1Gの屈折率のち
がいによって斜めに形成された境界面(3)で屈折を生
じ、その結果ガラスブロック(2)よ′シ光ファイバの
光軸に対し−の角で出射することとなる。しかしながら
Now, on the other hand, as shown in Figure 2(b), the optical fiber (1)
Strictly speaking, the light rays propagating along the optical axis of the glass block (2) and the optical fiber core (1G) cause refraction at the interface (3) formed diagonally due to the difference in refractive index. However, the glass block (2) emits the light at a negative angle to the optical axis of the optical fiber.

ガラスブロック(2)と光フアイバコアααとの屈折率
差はきわめて容易に十分小さくし得るのでこの角−がき
わめて小さくなる。例えに、石英ガラスのコアをもつ光
ファイバに対し9通常きわめてありふれた光学材料であ
るBK7のガラス材を用いれば屈折率差は各々約1.4
6と1.52である。
Since the refractive index difference between the glass block (2) and the optical fiber core αα can be made sufficiently small very easily, this angle becomes extremely small. For example, if a glass material of BK7, which is a very common optical material, is used for an optical fiber with a core of quartz glass, the difference in refractive index will be approximately 1.4.
6 and 1.52.

一方第2図(b)に示す境界面(3)の傾角σはこの境
界面によって反射した光が光ファイバより出射した光と
十分分離出来れば良いことから光ファイバの最大受光角
よシ若干大きくすれば良く。
On the other hand, the inclination angle σ of the boundary surface (3) shown in Fig. 2(b) is slightly larger than the maximum acceptance angle of the optical fiber, since it is sufficient that the light reflected by this boundary surface can be sufficiently separated from the light emitted from the optical fiber. Just do it.

通常の光ファイバではこの角はほぼ10度であるのでα
を15度と設定したとする。以上の設定からスネルの屈
折の法則による計算をすれば−は0.9度となり、光フ
ァイバの受光入射角に対し十分小さくこのような端末部
をつけたことによる光軸のふれは無視できる。一方従来
の端末部のようにガラスブロック(2)がない場合を上
述の設定から計算すれば0は17度となりきわめて大き
い。このことからこの発明が、従来の端末部の1つであ
るファイバ端末が斜めに形成されている端末の欠点を大
巾に改善していることが理解されよう。
In a normal optical fiber, this angle is approximately 10 degrees, so α
Suppose that the angle is set to 15 degrees. If calculation is performed using Snell's law of refraction from the above settings, - will be 0.9 degrees, which is sufficiently small compared to the light receiving incident angle of the optical fiber, and the deflection of the optical axis due to the provision of such an end portion can be ignored. On the other hand, if the glass block (2) is not present as in the conventional terminal section, if calculated from the above settings, 0 will be 17 degrees, which is extremely large. From this, it will be understood that the present invention greatly improves the drawbacks of the conventional terminal in which the fiber terminal is formed obliquely.

以上のようにこの発明によれば、従来の反射除去端末部
はことなり、光フアイバ出射ビームの光軸を光フアイバ
中心軸と一致させ、かつ光フアイバ端面への無反射コー
トなどによって光ファイバの特性を劣化させることなく
有効に光フアイバ端末部における反射を除去でき、安定
な光回路を構成できる利点がある。
As described above, according to the present invention, unlike the conventional reflection-eliminating terminal, the optical axis of the output beam of the optical fiber is made to coincide with the central axis of the optical fiber, and the optical fiber is coated with a non-reflective coating on the end face of the optical fiber. This has the advantage that reflection at the optical fiber terminal can be effectively removed without deteriorating the characteristics, and a stable optical circuit can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による光フアイバ端末部の一実施例
の斜視図、第2図(a)(b)は光フアイバ端末部の作
用を説明するための断面図である。 図中、(1)は光ファイバ、(2)は光学的に透明なブ
ロック、(3)は光ファイバとブロックのつぎ合わせ面
、(4)はブロックの端面である。なお1図中。 同一あるいは相当部分には同一符号を付して示しである
。 代理人 葛 野 信 −
FIG. 1 is a perspective view of an embodiment of an optical fiber terminal according to the present invention, and FIGS. 2(a) and 2(b) are sectional views for explaining the operation of the optical fiber terminal. In the figure, (1) is an optical fiber, (2) is an optically transparent block, (3) is a joining surface of the optical fiber and block, and (4) is an end face of the block. Also in Figure 1. Identical or equivalent parts are indicated by the same reference numerals. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 光ファイバのコアの屈折率にほぼ等しい屈折率をもつ光
学的に透明なブロックが、光フアイバ端面につぎ合わさ
れ、そのつぎ合わせ面が光7Tイバ中心軸に対し斜めに
形成されており。 かつ上記ブロックのつぎ合わせ面とは逆の端面が光フア
イバ中心軸とほぼ直角をなすよう形成されている光ファ
イバの端末部。
[Claims] An optically transparent block having a refractive index approximately equal to the refractive index of the core of the optical fiber is spliced to the end face of the optical fiber, and the spliced surface is formed obliquely with respect to the central axis of the optical fiber. It has been done. and an end portion of an optical fiber, wherein the end face of the block opposite to the splicing face is formed to be substantially perpendicular to the central axis of the optical fiber.
JP12858681A 1981-08-17 1981-08-17 Terminal part of optical fiber Pending JPS5830716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12858681A JPS5830716A (en) 1981-08-17 1981-08-17 Terminal part of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12858681A JPS5830716A (en) 1981-08-17 1981-08-17 Terminal part of optical fiber

Publications (1)

Publication Number Publication Date
JPS5830716A true JPS5830716A (en) 1983-02-23

Family

ID=14988410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12858681A Pending JPS5830716A (en) 1981-08-17 1981-08-17 Terminal part of optical fiber

Country Status (1)

Country Link
JP (1) JPS5830716A (en)

Similar Documents

Publication Publication Date Title
US4807954A (en) Optical coupling device
US5530781A (en) Optical fiber light coupling interface with an enlarged incident surface and method of making same
JPS58178310A (en) Optical fiber array wrought end face working oblique
JP2896947B2 (en) Optical fiber end structure and method of manufacturing the same
JPH0588041A (en) Optical connecting circuit of optical fiber
JPH0342441B2 (en)
JPS5830716A (en) Terminal part of optical fiber
JPS5927884B2 (en) How to connect optical fiber
US5721426A (en) Optical transmitting/receiving module having communication lines coupled by a single lens
JPS61144607A (en) Mechanism for preventing reflected return light
CA2219510C (en) A method for optically connecting an optical element, for example an end portion of an optical fibre, with a lens
JPS6251515B2 (en)
JPS62116905A (en) Antireflection ferrule
JPS597324A (en) Coupler for optical fiber
JPH01227108A (en) Optical branching circuit
JPS60196710A (en) Optical coupler
JPS58202402A (en) Mode scrambler
JPH0498206A (en) Optical fiber terminal optical connector
JPH07311323A (en) Optical coupling device having reduced face-to-face coupling part and its production
JPS5928890B2 (en) semiconductor light emitting device
JPS6048004A (en) Optical branching and coupling device for optical fiber
KR100269176B1 (en) Optical fiber coupler and multi-optical fiber coupler
JPS62119503A (en) Optical attenuator
JPS60145689A (en) Pig-tailed semiconductor laser device
JPS62249113A (en) Light nonreflecting plug