JPS5830658A - Ultrasonic probe and manufacture therefor - Google Patents

Ultrasonic probe and manufacture therefor

Info

Publication number
JPS5830658A
JPS5830658A JP12593581A JP12593581A JPS5830658A JP S5830658 A JPS5830658 A JP S5830658A JP 12593581 A JP12593581 A JP 12593581A JP 12593581 A JP12593581 A JP 12593581A JP S5830658 A JPS5830658 A JP S5830658A
Authority
JP
Japan
Prior art keywords
ultrasonic
vibrator
probe
acoustic
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12593581A
Other languages
Japanese (ja)
Other versions
JPS6344194B2 (en
Inventor
Takeshi Fujie
藤江 健
Hiroaki Ookawai
宏明 大川井
Masayoshi Omura
正由 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP12593581A priority Critical patent/JPS5830658A/en
Publication of JPS5830658A publication Critical patent/JPS5830658A/en
Publication of JPS6344194B2 publication Critical patent/JPS6344194B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To suppress sufficiently subsidiary peak values and provide acute directivity in the range from short distance to long distance by forming the vibrating face of a vibrator in the shape of a rotating face with two circular arc leaves and arranging an imaginary ring shaped sound source behind the vibrator. CONSTITUTION:An ultrasonic probe is formed by laminating successively an ultrasonic vibrator 12 and an acoustic matching layer 16 on an acoustic packing material 10. The surface shape of those members, the acoustic packing material 10, vibrator 2 and matching layer 16 is a rotating face formed by rotating two circular arcs with respect to the center axis X-X' and those two circular arcs used as a reference face of this rotating face does not cross the axis X-X'. Since the vibrating face of the vibrator 12 is formed on the rotating face of the two circular arcs, it is possible to provide an imaginary ring focus with an imaginary ring sound source arranged behind the vibrator 12 without using an acoustic lens.

Description

【発明の詳細な説明】 本発明は超音波探触子およびその製造方法、特に超音波
診断装置に用いられ被検体に向は診断用の超音波を送受
波する超音波探触子およびその製造方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic probe and a method of manufacturing the same, particularly an ultrasonic probe that is used in an ultrasonic diagnostic apparatus and transmits and receives diagnostic ultrasonic waves to a subject, and the manufacturing method thereof. Concerning improvements in methods.

現在、医療等の分野においては、超音波を用いて生体内
部の画像表示等を行う超音波診断装置が゛用いられてい
る。この装置において、生体等の被検体に向は超音波を
送受波するために用いられる超音波探触子は、病変組織
等の診断を確実に行うため、広い視野を有し、かつ視野
全域内で高い分解能を有することが要求される。
2. Description of the Related Art Currently, in the medical field, ultrasonic diagnostic apparatuses are used that display images of the inside of a living body using ultrasonic waves. In this device, the ultrasonic probe used to transmit and receive ultrasonic waves to and from a subject such as a living body has a wide field of view and within the entire field of view in order to reliably diagnose diseased tissue. It is required to have high resolution.

しかし、従来の探触子はその焦点が固定化され、焦点付
近において高い分解能を有し、鮮明な画像を得ることが
できる反面、焦点より近距離、遠距離においては十分鮮
明な画像が得られないという欠点があった。このため、
近距離から遠距離まで距離に関係なく高い分解能を有し
、鮮明な画像を得ることができる超音波探触子の研究が
行われて ゛いた。このような研究の成果として、リン
グ状の超音波探触子が知られている。このリング状探触
子は直前から遠距離に至るまで、最も鋭い指向性を有す
る。しかし、との探触子は目的方向以外への不要感度を
示す第1副極大が一16dBと大きく、更に遠方での感
度を示す軸上感度が距離の2乗に反比例して急速に低下
するという2つの欠点を有している。これらの欠点を解
消するため、第1図に示す仮想リング状超音波探触子が
開発された。
However, while conventional probes have a fixed focus and have high resolution near the focus and can obtain clear images, they cannot obtain sufficiently clear images at distances near and far from the focus. There was a drawback that there was no For this reason,
Research has been carried out on ultrasonic probes that can obtain clear images with high resolution regardless of distance, from short to long distances. A ring-shaped ultrasonic probe is known as a result of such research. This ring-shaped probe has the sharpest directivity from the immediate vicinity to the farthest distance. However, the first sub-maximum of this probe, which indicates unnecessary sensitivity in directions other than the target direction, is as large as 116 dB, and the on-axis sensitivity, which indicates sensitivity at far distances, rapidly decreases in inverse proportion to the square of the distance. It has two drawbacks. In order to eliminate these drawbacks, a virtual ring-shaped ultrasonic probe shown in FIG. 1 was developed.

との探触子は音響バッキング材10上にフラットな超音
波振動子12を積層し、更にこの振動子12上に音響レ
ンズ14を積層する構造に形成されており、上記音響レ
ンズ14はその表面を、12図に示すように、中心を0
,0゛とする円弧2葉を中心軸X−X′に関し回転させ
た回転面形状に形成されている。
The probe has a structure in which a flat ultrasonic transducer 12 is laminated on an acoustic backing material 10, and an acoustic lens 14 is further laminated on this vibrator 12. As shown in Figure 12, the center is 0.
, 0'' are rotated about the central axis X-X'.

この音響レンズ14は振動子12から送受波される超音
波に仮想リングフォーカスを施し、上記゛超音波の見掛
は上の音源を振動子の後方にoo′を直径とするリング
状に配する(以下リング状をしたこの見掛は上の音源を
仮想リング音源と記す)0 このよう(、見掛は上の音
源を振動子12の後方に配することにより、探触子の軸
感度の低下は補償され、この見掛は上の音源がOO′を
直径とする幅広いリング音源を形成することにより、副
極大を十分に抑圧している。しかし、この仮想リング状
の探触子はフラットな振動子12の振動面上に厚さの異
なる音響レンズ14を積層して使用する必要があるため
、この音響レンズ14内で超音波の多重反射が生じ、こ
の結果、実質的に受信エコーのパルス幅が長くなシ、超
音波診断画像の距離分解能の劣化を引き起こす欠点があ
る。
This acoustic lens 14 applies a virtual ring focus to the ultrasonic waves transmitted and received from the transducer 12, and the apparent sound source of the ultrasonic waves is placed behind the transducer in a ring shape with a diameter of oo'. (Hereinafter, this apparent ring-shaped sound source will be referred to as a virtual ring sound source.) The drop is compensated for, and the apparent upper sound source forms a wide ring sound source with diameter OO′, which sufficiently suppresses the submaximum.However, this virtual ring-shaped probe is flat. Because it is necessary to stack acoustic lenses 14 of different thicknesses on the vibrating surface of the vibrator 12, multiple reflections of ultrasonic waves occur within the acoustic lenses 14, and as a result, the received echoes are substantially reduced. There is a drawback that the pulse width is long, which causes deterioration in the distance resolution of ultrasonic diagnostic images.

本発明は従来のこのようか課題に鑑みなされたもので、
その目的は副極大を十分に抑圧しつつ、近距離から遠距
離まで鋭い指向性を有し、かつ超音波診断画像の距離分
解能の劣化を引き起こすことのない超音波探触子を提供
することにある。
The present invention was made in view of the above-mentioned problems in the prior art.
The purpose is to provide an ultrasound probe that has sharp directivity from short to long distances while sufficiently suppressing sub-maximum, and does not cause deterioration of the distance resolution of ultrasound diagnostic images. be.

上記目的を達成するため、本発明は音響バッキング材上
に積層された超音波振動子から被検体に向は超音波を送
受波する超音波探触子において、上記超音波振動子の振
動面を円弧2葉の回転面形状に形成し、この振動子の後
方に上記超音波の仮想リング音源を配したことを特徴と
する。
To achieve the above object, the present invention provides an ultrasonic probe that transmits and receives ultrasonic waves toward a subject from an ultrasonic transducer laminated on an acoustic backing material, in which the vibration surface of the ultrasonic transducer is It is characterized in that it is formed in the shape of a rotating surface with two circular arcs, and that the virtual ring sound source of the ultrasonic waves is arranged behind the vibrator.

また上記超音波探触子においては、超音波振動子として
一般に高分子圧電フィルムを用いる。ここにおいて、高
分子圧電フィルムは熱を加えると分極が取れてしまうた
め、その製造方法に問題がある。
Further, in the above-mentioned ultrasonic probe, a polymer piezoelectric film is generally used as the ultrasonic transducer. Here, since the polarization of the polymer piezoelectric film is removed when heat is applied, there is a problem with the manufacturing method.

そこで、上記課題を解決するため、本発明の方法は高分
子圧電フィルムを熱圧縮成型して振動面が円弧2葉の回
転面形状を有し、かつその後方に超音波の仮想リング音
源を配した超音波振動子を形成し、その後に、この超音
波振動子に分極操作を施し、予め形成された音響バッキ
ング材上に上記超音波振動子を積層することにより、超
音波探触子を製造することを特徴とする。
Therefore, in order to solve the above problems, the method of the present invention involves thermal compression molding of a polymer piezoelectric film so that the vibration surface has a rotating surface shape of two circular arcs, and an ultrasonic virtual ring sound source is arranged behind it. An ultrasonic probe is manufactured by forming an ultrasonic transducer, then performing a polarization operation on this ultrasonic transducer, and laminating the ultrasonic transducer on a pre-formed acoustic backing material. It is characterized by

次に本発明の好適な実施例を図面に基づいて説明する。Next, preferred embodiments of the present invention will be described based on the drawings.

なお前述した各部材と対応する御所には、同一符号を付
して説明を省略する。
Note that the imperial palaces corresponding to each of the above-mentioned members are given the same reference numerals, and explanations thereof will be omitted.

本発明の超音波探触子は第1図に示す従来の探触子の欠
点が音響レンズを用いることによって生ずることに鑑み
、超音波振動子自体の振動面を円弧2葉の回転面に形成
することにより、音響レンズを用いることなく、振動子
の後方に仮想リング音源を配し、との探触子を介して得
られる超音波診断画像の距離分解能を高めている。
In view of the fact that the drawbacks of the conventional probe shown in Fig. 1 are caused by the use of an acoustic lens, the ultrasonic probe of the present invention forms the vibration surface of the ultrasonic transducer itself into a rotating surface of two circular arcs. By doing so, a virtual ring sound source is placed behind the transducer without using an acoustic lens, and the distance resolution of the ultrasound diagnostic image obtained through the probe is improved.

第3図はこのような超音波探触子の断面構造を示す説明
図であり、音響バッキング材lo上に超音波振動子12
および音響マツチング層16を順次積層して形成されて
いる。これら各部材、すなわち、音響バッキング材10
、振動子12、マツチング層16の表面の形状はそれぞ
れ円弧2葉を中心軸x −x’に関し回転させた回転面
から成、す、この回転面の基準に用いられる上記2葉の
円弧は中心が中心軸x−x’と交差しない形状のものが
用いられている。
FIG. 3 is an explanatory diagram showing the cross-sectional structure of such an ultrasonic probe, in which an ultrasonic transducer 12 is placed on an acoustic backing material lo.
and an acoustic matching layer 16 are sequentially laminated. Each of these members, that is, the acoustic backing material 10
The shapes of the surfaces of the vibrator 12 and the matching layer 16 each consist of a rotating surface formed by rotating two circular arcs about the central axis x-x'. A shape that does not intersect with the central axis x-x' is used.

本実施例においては、音響バッキング材1oをタンゲス
テン粉末入りシリコンゴムにより形成し、振動子12を
高分子圧電フィルム、音響マツチング層16をポリエス
テルにより形成した。なお上記高分子圧電フィルムとは
例えば、ポリ弗化ビニリデン、ポリ弗化ビニルおよびこ
れらを主成分とする共重合体、更にはこれらと強誘電体
セラミック粉末の混合体を成極して得られる圧電体を意
味する。
In this embodiment, the acoustic backing material 1o is made of silicone rubber containing tungsten powder, the vibrator 12 is made of a polymer piezoelectric film, and the acoustic matching layer 16 is made of polyester. The above polymer piezoelectric film is, for example, a piezoelectric film obtained by polarizing polyvinylidene fluoride, polyvinyl fluoride, copolymers containing these as main components, or a mixture of these and ferroelectric ceramic powder. means the body.

本発明は以上の構成から成シ、次にその作用を説明する
The present invention consists of the above configuration, and its operation will be explained next.

本発明の超音波探触子はその振動子12の振動面が円弧
2葉の回転面に形成されているため、第1図に示す従来
の探触子のように音響レンズを用いることなく、振動子
12の後方に仮想リング音源を配した仮想リングフォー
カスを行うことができる。
In the ultrasonic probe of the present invention, the vibration surface of the vibrator 12 is formed as a rotating surface of two circular arcs, so unlike the conventional probe shown in FIG. 1, there is no need to use an acoustic lens. Virtual ring focus can be performed by arranging a virtual ring sound source behind the vibrator 12.

従って、探触子の音響マツチング層16を生体等の被検
体に当接し、超音波診断を行うに際しては、振動子12
から被検体に向けた超音波の送受波を音響レンズ内での
多重反射を生ずることなく行うことができ、その結果、
この探触子を介して得られる被検体の超音波診断画像は
極めて高い距離分解能を有することとなる。
Therefore, when performing ultrasonic diagnosis by bringing the acoustic matching layer 16 of the probe into contact with a subject such as a living body, the transducer 12
Ultrasonic waves can be transmitted and received from the object to the subject without causing multiple reflections within the acoustic lens, and as a result,
The ultrasonic diagnostic image of the subject obtained through this probe has extremely high distance resolution.

また本実施例においては、振動子12の表面に音響マツ
チング層16を積層し被検体との整合を取っているため
、探触子と被検体との境界面に生ずる超音波の反射を抑
制することができる。従って、この探触子の感度は向上
し、この探触子を介して得られる被検体の超音波診断画
像も、更に高い距離分解能を有するものとすることがで
きる。なおこの音響マツチング層16は、本実施例のよ
うに、探触子と一体的に形成する必要はなく、また被検
体の種類あるいは被検部位によって用いる必要のない場
合もある。
Furthermore, in this embodiment, an acoustic matching layer 16 is laminated on the surface of the transducer 12 to ensure matching with the object, thereby suppressing the reflection of ultrasound generated at the interface between the probe and the object. be able to. Therefore, the sensitivity of this probe is improved, and the ultrasonic diagnostic image of the subject obtained through this probe can also have higher distance resolution. Note that this acoustic matching layer 16 does not need to be formed integrally with the probe as in this embodiment, and may not need to be used depending on the type of subject or the part to be inspected.

また探触子と被検体との境界面における密着性を向上さ
せるため、探触子の回、転面開口部、すなわち、音響マ
ツチング層16の開口部に、例えば。
In addition, in order to improve the adhesion at the interface between the probe and the subject, for example, it is applied to the opening of the rotating surface of the probe, that is, the opening of the acoustic matching layer 16.

第4図に示すように、密着部が平坦に形成されたフィラ
ー18を充填してもよい。このフィラー18は、例えば
、ローインピーダンス・ポリエステル等を用いて形成す
ることができる。
As shown in FIG. 4, a filler 18 having a flat contact portion may be filled. This filler 18 can be formed using, for example, low impedance polyester.

次に本発明の超音波探触子の製造方法について説明する
Next, a method for manufacturing an ultrasonic probe according to the present invention will be explained.

例えば、第3図に示す如き探触子を製造するに際しては
、超音波振動子12の材料として一般に用いられる高分
子圧電フィルムが熱を受けると分極が取れてしまうとい
う問題がある。そこで、本発明の方法にあっては、まず
円弧2葉の回転面形状をした表面を有する音響バッキン
グ材10.超音波振動子12、音響マツチング層16を
予め熱圧縮成型[2ておき、その後に上記振動子12に
分極操作を施し、音響バッキング材10、振動子I2、
音響マツチング層16の順に貼り合わせて探触子を形成
する。
For example, when manufacturing a probe as shown in FIG. 3, there is a problem in that the polymer piezoelectric film commonly used as the material for the ultrasonic transducer 12 loses its polarization when exposed to heat. Therefore, in the method of the present invention, first, an acoustic backing material 10. The ultrasonic transducer 12 and the acoustic matching layer 16 are preheated and compression molded [2], and then the transducer 12 is polarized, and the acoustic backing material 10, the transducer I2,
A probe is formed by laminating the acoustic matching layers 16 in this order.

ここで、振動子12の分極操作は振動子12の熱圧縮成
型後であればよいため、熱圧縮成型された上記各部材1
0.12.16を順次貼り合わせた後に、振動子12に
分極操作を施してもよい。
Here, since the polarization operation of the vibrator 12 can be carried out after the vibrator 12 is thermally compression molded, each of the above-mentioned members 1
0.12.16 may be sequentially bonded together, then polarization operation may be performed on the vibrator 12.

以上の如く1本発明によれば、超音波振動子の振動面を
円弧2葉の回転面形状とすることによシ。
As described above, according to one aspect of the present invention, the vibration surface of the ultrasonic transducer is formed in the shape of a rotating surface of two circular arcs.

音響レンズを用いることなく仮想リングフォーカスを行
う超音波探触子を得ることができる。その結果、従来の
仮想り/グ状の超音波探触子と同様に副極大を十分に抑
圧しつつ、近距離から遠距離まで鋭い指向性を有し、か
つ従来用いられていた音響し/ズを不要なものとし、音
響レンズ内の多重反射によって引き起こされる距離分解
能の低下を防止して、極めて鮮明な超音波診断画像を得
ることができる。
It is possible to obtain an ultrasonic probe that performs virtual ring focusing without using an acoustic lens. As a result, it has a sharp directivity from short to long distances, while sufficiently suppressing sub-maximum like the conventional virtual rectangular/gu-shaped ultrasonic probe. This eliminates the need for multiple reflections in the acoustic lens, prevents a decrease in distance resolution caused by multiple reflections within the acoustic lens, and allows extremely clear ultrasound diagnostic images to be obtained.

また高分子圧電フィルムを熱圧縮成型して振動面が円弧
2葉の回転面形状をした超音波振動子を形成し、その後
、この振動子に分極操作を施して超音波探触子を形成す
ることによシ、振動子の分極特性が熱により影響を受け
ることを防止して、効率的に上記効果を有する超音波−
探触子を製造することができる。
In addition, a polymer piezoelectric film is thermally compression molded to form an ultrasonic transducer whose vibrating surface has the shape of a rotating surface with two circular arcs, and then this transducer is polarized to form an ultrasonic probe. In particular, it is possible to prevent the polarization characteristics of the transducer from being affected by heat, thereby efficiently producing ultrasonic waves that have the above effects.
A probe can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超音波探触子の断面構造を示す説明図、 第2図はその仮想リング音源の説明図、第3図は本発明
に係る超音波探触子の実施例の断面構造を示す説明図、 第4図は本発明の他の実施例を示す説明図である。 各図中対応する部材には同一符号を付し、10は音響バ
ッキング材、12は超音波振動子、16は音響マツチン
グ層である。 出願人 アロカ株式会社 中1図 第2図 才3図        才4図
FIG. 1 is an explanatory diagram showing the cross-sectional structure of a conventional ultrasound probe, FIG. 2 is an explanatory diagram of its virtual ring sound source, and FIG. 3 is a cross-sectional diagram of an embodiment of the ultrasound probe according to the present invention. FIG. 4 is an explanatory diagram showing another embodiment of the present invention. Corresponding members in each figure are designated by the same reference numerals, and 10 is an acoustic backing material, 12 is an ultrasonic transducer, and 16 is an acoustic matching layer. Applicant Aloka Co., Ltd. 1st grade 2nd grade 3rd grade 4th grade

Claims (1)

【特許請求の範囲】 (1)  音響バンキング材上に積層された超音波振動
子から被検体に向は超音波を送受波する超音波探・触子
において、上記超音波振動子の振動面を円弧2葉の回転
面形状に形成し、この振動子の後方に上記超音波の仮想
リング音源を配したことを特徴とする超音波探触子。 (2、特許請求の範囲(11記載の探触子において5円
弧2葉の回転面形状に形成された音響バッキング材の表
面に超音波振動子を積層したことを特徴とする超音波探
触子〇 (3)特許請求の範囲(1) 、: f2)のいずれか
に記載の探触子において、超音波振動子の振動面上に表
面が円弧2葉に形成された音響マツチング層を積層し7
たことを特徴とする超音波探触子。 (4)高分子圧電フィルムを熱圧縮成型して振動面が円
弧2葉の回転面形状を有しかつその後方に超音波の仮想
リング音源を配した超音波振動子を形成し、その後にこ
の超音波振動子に分極操作を施し、予め形成された音響
バッキング材上に上記超音波振動子を積層することを特
徴とする超音波探触子の製造方法。
[Claims] (1) In an ultrasonic probe/probe that transmits and receives ultrasonic waves toward a subject from an ultrasonic transducer laminated on an acoustic banking material, the vibration surface of the ultrasonic transducer is An ultrasonic probe characterized in that it is formed in the shape of a rotating surface of two circular arcs, and the above-mentioned virtual ring sound source of ultrasonic waves is arranged behind the transducer. (2. Claims (11) An ultrasonic probe characterized in that an ultrasonic transducer is laminated on the surface of an acoustic backing material formed in the shape of a rotating surface of 5 arcs and 2 leaves. 〇(3) In the probe according to any one of claims (1) and: f2), an acoustic matching layer whose surface is formed into two circular arcs is laminated on the vibration surface of the ultrasonic transducer. 7
An ultrasonic probe characterized by: (4) A polymeric piezoelectric film is thermally compression molded to form an ultrasonic vibrator whose vibrating surface has a rotating surface shape of two circular arcs and a virtual ring sound source of ultrasonic waves arranged behind it. A method for manufacturing an ultrasonic probe, comprising subjecting the ultrasonic transducer to a polarization operation and laminating the ultrasonic transducer on a pre-formed acoustic backing material.
JP12593581A 1981-08-15 1981-08-15 Ultrasonic probe and manufacture therefor Granted JPS5830658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12593581A JPS5830658A (en) 1981-08-15 1981-08-15 Ultrasonic probe and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12593581A JPS5830658A (en) 1981-08-15 1981-08-15 Ultrasonic probe and manufacture therefor

Publications (2)

Publication Number Publication Date
JPS5830658A true JPS5830658A (en) 1983-02-23
JPS6344194B2 JPS6344194B2 (en) 1988-09-02

Family

ID=14922599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12593581A Granted JPS5830658A (en) 1981-08-15 1981-08-15 Ultrasonic probe and manufacture therefor

Country Status (1)

Country Link
JP (1) JPS5830658A (en)

Also Published As

Publication number Publication date
JPS6344194B2 (en) 1988-09-02

Similar Documents

Publication Publication Date Title
US5415175A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5438998A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
AU688334B2 (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US7755256B2 (en) Ultrasonic diagnostic apparatus and ultrasonic probe
US5743855A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
JP2001258879A (en) Ultrasonic transducer system and ultrasonic transducer
JPS618033A (en) Ultrasonic converter system
EP2679160A2 (en) Ultrasonic probe having a bonded chemical barrier
JP5691627B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH05228142A (en) Ultrasonic probe and ultrasonic diagnostic device
JPS5830658A (en) Ultrasonic probe and manufacture therefor
KR101955787B1 (en) Focusing ultrasonic transducer to applying needle type hydrophone and method for controlling the focusing ultrasonic transducer
JPH0759769A (en) Ultrasonic probe
JPS60116339A (en) Array type ultrasonic probe and its production
JPH0810256A (en) Ultrasonic diagnostic system
JP2010252065A (en) Acoustic lens, ultrasonic probe, and ultrasonic diagnostic apparatus
JPH03151948A (en) Ultrasonic probe
JPH08173432A (en) Electron scanning type ultrasonic probe
JP2010213766A (en) Ultrasonic probe and ultrasonic diagnosis apparatus
JPH0323849A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
WO2010119729A1 (en) Method of manufacturing acoustic lens, ultrasound probe, and ultrasound diagnostic apparatus
Wang et al. A Bi-frequency co-linear array transducer for biomedical ultrasound imaging
JPH0432726A (en) Hydrophone
KR20220067700A (en) A transducer for shear mode using Y cut LiNbO3
JPH0215446Y2 (en)