JPS5830546A - Vibration damper - Google Patents

Vibration damper

Info

Publication number
JPS5830546A
JPS5830546A JP56128785A JP12878581A JPS5830546A JP S5830546 A JPS5830546 A JP S5830546A JP 56128785 A JP56128785 A JP 56128785A JP 12878581 A JP12878581 A JP 12878581A JP S5830546 A JPS5830546 A JP S5830546A
Authority
JP
Japan
Prior art keywords
foam
solid
performance
layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56128785A
Other languages
Japanese (ja)
Other versions
JPH0260903B2 (en
Inventor
Yoshihide Fukahori
深堀 美英
Shinichi Toyosawa
真一 豊澤
Takashi Nigimura
饒村 隆史
Ryota Fujio
藤尾 亮太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP56128785A priority Critical patent/JPS5830546A/en
Publication of JPS5830546A publication Critical patent/JPS5830546A/en
Publication of JPH0260903B2 publication Critical patent/JPH0260903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches

Abstract

PURPOSE:To obtain not only a vibration damping effect but also excellent acoustical properties by a method wherein a solid restraint layer is attached to one surface of a board-like foamed material while the other surface thereof is attached to a vibrating body. CONSTITUTION:A foamed material 1 is made of normal polyurethane foam, polyvinyl chloride or the like and having a modulus of 100g/cm<2> or less when it is compressed by 25%. As the solid restraint layer 2 attached to the foamed material 1 by an adhesive or the like, a heavy material giving a restraining property to the foam under an using temperature substantially and which will never flow easily by itself may be employed. The density ratio of the solid restraint layer 2 to the foamed material 1 is preferable to be more than five, and more preferably more than ten. The opposite surface of the foamed material 1 is adhered to a vibrating body 4 to use it.

Description

【発明の詳細な説明】 本発明は固体拘束層の存在によって著しい制振効果を発
揮する7オ一ム複合割振材に関し。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 7-ohm composite damping material that exhibits a significant vibration damping effect due to the presence of a solid constraining layer.

さらに詳しくは板状フオーム材の片方の表面に特定の固
体拘束層を結合させ、板状フオームの他方の表面を振動
体に結合させることによって著しい制振効果のみならず
、優れた吸音性能も備えると共に、薄肉化、軽量化が可
能で、かつコスト低減効果の大きい極めて実用的な割振
材料に関する。
More specifically, by bonding a specific solid restraining layer to one surface of the plate-shaped foam material and bonding the other surface of the plate-shaped foam to the vibrating body, it not only has a remarkable vibration damping effect but also has excellent sound absorption performance. In addition, the present invention relates to an extremely practical allocation material that can be made thinner and lighter, and has a large cost reduction effect.

先に本発明者らは固体状物としては制振性能の低いポリ
ウレタンをフオーム化することによって、(1)制振性
能が若干向上する。 (i+)割振性能に大きな周波数
依存性が現われる。ということを見出し、この知見を基
にさらに研究を進めてポリウレタンフォームに粉末状充
填剤を添加することによって優れた制振性能を見出し、
特許出願した(特願昭55−184215)。
First, the present inventors formed polyurethane, which has low vibration damping performance as a solid material, into a foam. (1) The vibration damping performance was slightly improved. A large frequency dependence appears in the (i+) allocation performance. Based on this knowledge, we conducted further research and discovered excellent vibration damping performance by adding powdered filler to polyurethane foam.
A patent application was filed (Japanese Patent Application No. 55-184215).

しかしながらポリウレタンの発泡時に充填剤を添加する
ことは充填剤とのブレンドによる粘度上昇が避けられず
、従って充填剤使用量に限度があるという難点がある。
However, when a filler is added during foaming of polyurethane, an increase in viscosity due to blending with the filler is unavoidable, and therefore there is a problem in that there is a limit to the amount of filler to be used.

本発明者らは上記の点を考慮してさらに研究した結果、
前述の発明とは全く漬った方式で非常に優れた制振性能
を有するフオーム複合制振材が得られることを見出し本
発明に到った。即ち本発明の割振材は特定のフオームに
特定の拘束層を結合させることによって、フオーム自身
の制振性能を最大限に引き出す方法をとっており、従来
の制振材で用いられているポリマーやアスファルトなど
の固体粘弾性物のダンピング特性を利用する方法とは全
く異なるものである。
As a result of further research in consideration of the above points, the present inventors found that
The inventors have discovered that a foam composite vibration damping material having extremely excellent vibration damping performance can be obtained using a method completely different from that of the above-mentioned invention, and have thus arrived at the present invention. In other words, the damping material of the present invention takes a method of maximizing the vibration damping performance of the foam itself by bonding a specific constraining layer to a specific foam, and does not use polymers or other materials used in conventional damping materials. This method is completely different from methods that utilize the damping properties of solid viscoelastic materials such as asphalt.

即ち本発明の主眼点はフオームを振動体に直接貼りつけ
、さらにそのフオームに拘束層を結合−させる(第1図
A)ことによってフオームのみから制振性能を引き出す
点にある。つまりフオームの割振性能はフオームを非拘
束タイプとして振動体に貼りつけただけでは小さいもの
であるが、これを拘束タイプとして使用すると振動に対
してフオームの1変形量が大幅に拡大されると共に、ズ
リ変形の発現によって制振効果が飛躍的に向上する。従
ってそのような割振性能の発現機構を考えた場合、フオ
ーム材料としては当然柔かいものが望ましく、逆にその
ような柔かいフオームを用いることによって低周波制振
性能の優れた拘束タイプフオーム複合割振材となりうる
That is, the main point of the present invention is to derive vibration damping performance from the foam alone by attaching the foam directly to the vibrating body and further bonding the restraining layer to the foam (FIG. 1A). In other words, the allocation performance of the foam is small if it is simply attached to a vibrating body as an unrestricted type, but when used as a restrained type, the amount of deformation of the foam in response to vibration is greatly expanded, and The vibration damping effect is dramatically improved by the occurrence of shear deformation. Therefore, when considering the mechanism by which such damping performance occurs, it is naturally desirable to use a soft foam material, and conversely, by using such a soft foam, a constraint type foam composite damping material with excellent low frequency vibration damping performance can be obtained. sell.

一方、拘束層の役目を果たす固体物は原則的にはそれ自
身では割振性能を備えることは必要でなく、単にフオー
ムに対して拘束性を発揮できる重量物であればよい。た
だし拘束層自身の割振効果が非常に大きい場合、この効
果が付加され、フオーム複合割振材の全体としての制振
性能が若干向上する。この際固体拘束層として注意すべ
き点は、それが金属板などのように非常に硬い場合、低
周波より中周波にいたる周波数の、ある特定の領域で制
振性能の著しい低下を招く。従って低周波より中周波領
域までの幅広い周波数領域で優れた制振性能を発揮させ
るためには、拘束層にも柔かさが必要である。
On the other hand, the solid material that serves as a constraining layer does not need to have an allocating performance by itself in principle, and may simply be a heavy material that can exert a constraining property on the foam. However, if the constraining layer itself has a very large damping effect, this effect is added and the damping performance of the foam composite damping material as a whole is slightly improved. At this time, it is important to note that when using a solid restraining layer, if it is very hard, such as a metal plate, the vibration damping performance will drop significantly in a certain frequency range from low to medium frequencies. Therefore, in order to exhibit excellent vibration damping performance in a wide frequency range from low frequencies to medium frequencies, the restraining layer must also be flexible.

ところで本発明の制振材を吸音性能の面より見た場合、
イオームを母体としている点から吸音性鉾を有すること
は当然であるが、フオーム表面に結合された固体拘束層
の存在によって低周波吸音性能が向上すると共に高周波
吸音性能が低下する傾向がある。しかしながらフオーム
材の吸音性能はフオームの厚さが薄くなると。
By the way, when looking at the damping material of the present invention from the perspective of sound absorption performance,
It is natural that the foam has sound absorbing properties since it is based on ions, but the presence of a solid constraining layer bonded to the foam surface tends to improve low frequency sound absorbing performance while decreasing high frequency sound absorbing performance. However, the sound absorption performance of foam material decreases as the thickness of the foam becomes thinner.

低周波領域において極端に低下する傾向力士あるため本
発明の拘束タイプフオーム複合割振材とすることによっ
て実用的な吸音材として最も重要な低〜中周波領域の吸
音性能の向上に役立つ(後述の実施例参照)。もちろん
この場合、拘束層に適量の貫通孔をあけることによって
吸音性能の周波数依存性をコントロールすることが一可
能となる。
Since there is a tendency for sumo wrestlers to deteriorate extremely in the low frequency range, the use of the restraint type foam composite damping material of the present invention helps to improve the sound absorption performance in the low to medium frequency range, which is the most important as a practical sound absorbing material. (see example). Of course, in this case, it is possible to control the frequency dependence of the sound absorption performance by providing an appropriate number of through holes in the constraint layer.

さて騒音対策を総合的かつ効果的に行なうには割振効果
と吸音効果の両方を発揮させることが必要であるが、こ
の両性能を兼備した材料は前述の出願中の発明に係るフ
ィラー充填フオーム以外に現状では見当らない。そこで
現実的解決法として一般の市販品では振動源に固体制振
材料を貼りつけ、その上にさらにフオームを貼りつける
ことによって両方の性能を備えさせている(第1図B)
Now, in order to comprehensively and effectively implement noise countermeasures, it is necessary to exhibit both a vibration allocation effect and a sound absorption effect, but materials that have both of these performances are other than the filler-filled foam according to the aforementioned pending invention. It is currently not found. Therefore, as a practical solution, commercially available products have both properties by attaching a solid damping material to the vibration source and then attaching a foam on top of it (Figure 1B).
.

この場合、当然のこと乍ら制振性能はほとんどすべてが
固体制振材に起因するものであり。
In this case, of course, the damping performance is almost entirely due to the solid damping material.

一方吸音性能はフオームによって齋らされる。On the other hand, sound absorption performance is affected by the foam.

従ってこのような貼り合せ複合体(市販品)の場合、充
分な制振性能を得るためには当然高価な割振材を多量に
使用する必要があり、これにフオームの材料費を加える
と製品コストが非常に高くなる。
Therefore, in the case of such a bonded composite (commercially available), it is necessary to use a large amount of expensive damping material in order to obtain sufficient vibration damping performance, and when the material cost of the foam is added to this, the product cost increases. becomes very high.

このような市販の貼り合せ複合体に比べると。Compared to such commercially available laminated composites.

本発明のフオーム複合制振材は前述の通り形態的にはも
ちろん2割振性能の発現機構も全く異なるものであり1
、市販め貼り合せ複合体とは厳密に区別されるべきもの
である。さらにコスト的には、(1)固体拘束層は安価
な重量物であればよい、 (1+)固体拘束層の重量増
加に伴ない、フオーム厚さを小さくできる。などの点か
らかなり大幅なコストダウンが可能となる。さらにまた
拘束層として適当な材料を用いることによって難燃°性
、耐油性、耐久性などの向上に役立つ〇このように本発
明のフオーム複合制振材は新規性はもちろん、実用的に
も多くの長所を持つ防音材料であるといえる。
As mentioned above, the foam composite vibration damping material of the present invention is completely different not only in form but also in the mechanism of expression of the 2-frequency vibration performance.
, which should be strictly distinguished from commercially available bonded composites. Furthermore, in terms of cost, (1) the solid constraint layer only needs to be an inexpensive and heavy material; (1+) the foam thickness can be reduced as the weight of the solid constraint layer increases; From these points of view, considerable cost reductions are possible. Furthermore, by using an appropriate material as a restraining layer, it is useful for improving flame retardancy, oil resistance, durability, etc. In this way, the foam composite vibration damping material of the present invention is not only novel, but also has many practical uses. It can be said that it is a soundproofing material with the following advantages.

ところでフオームを吸音材として使用する際。By the way, when using foam as a sound absorbing material.

フォ、−ムの表面にアルミニウムやプラスチックの薄膜
を貼りつけることによって表面仕上げを行なったり、ま
た低周波吸音性能を向上させる方法がとられており、さ
らに内装材としてもフオームの表面に各種の薄膜を貼り
つけることが行なわれている。この場合、高周波での吸
音性能を損なわない条件として薄膜の厚さはbOμ′以
下であることが望ましい(建築音響シリーズ〈材料編〉
 L 吸音材料1日本音響材料協会編。
The surface of the foam is finished with a thin film of aluminum or plastic, and low-frequency sound absorption performance is improved.Furthermore, various thin films are applied to the surface of the foam as interior materials. Pasting is being done. In this case, it is desirable that the thickness of the thin film be less than bOμ' in order not to impair sound absorption performance at high frequencies (Architectural Acoustics Series <Materials Edition>)
L Sound Absorbing Materials 1 Edited by Japan Acoustic Materials Association.

子安勝56P)。これらのいずれの場合もフォー材の割
振性能には全く着目されていず、また性能面からみても
薄膜とフオームの重量比が0.1〜0.5程度であるた
め薄膜が拘束層の働きをしない、即ち薄膜による制振性
能の向上はほとんど望めないものとなっており9本発明
のフオーム複合制振材とは明らかに区別されるものであ
る0 本発明に使用されるフオーム材は25%圧縮したときの
モジュラス(M、、)が1oor/i以下。
Masaru Koyasu 56P). In all of these cases, no attention was paid to the distribution performance of the foam material, and from a performance standpoint, the thin film acts as a constraining layer because the weight ratio between the thin film and the foam is about 0.1 to 0.5. In other words, it is hardly possible to expect an improvement in damping performance by using a thin film.9 This is clearly distinguishable from the foam composite damping material of the present invention.0 The foam material used in the present invention is 25% The modulus (M, ,) when compressed is 1 oor/i or less.

好ましくはsoy/(j以下、さらに好ましくは50t
lcr&以下が望ましい。ただし特に低周波領域の制振
性能を向上させるためには2of/cr/I以下が好ま
しい0この場合、フオームのMNSが1009/cdを
超えると拘束層の効果が現われにくくなる。使用される
フオーム材としては1通常のポリウレタンフォームをは
じめ、ポリ塩化ビニル、ポリエチレン、ポリスチレン、
フェノール樹脂等の各種プラスチックフオームおよびこ
れらにフィラー、可塑剤、難燃剤などを添加したフオー
ムおよび一般のフオームに含浸液を加えた含浸フオーム
、さらに一般フオームを圧縮して得られる圧縮フオーム
など、どのようなタイプの発泡材料であっても差支えな
いが、優れた吸音性能を兼備するという点を考慮すれば
これらのうち連続気孔を有するフオームが望ましく。
Preferably soy/(j or less, more preferably 50t
lcr& or less is desirable. However, in order to particularly improve the vibration damping performance in the low frequency range, it is preferable that the MNS of the foam is 2of/cr/I or less.In this case, if the MNS of the foam exceeds 1009/cd, the effect of the constraining layer becomes difficult to appear. Foam materials used include 1 normal polyurethane foam, polyvinyl chloride, polyethylene, polystyrene,
Various plastic foams such as phenolic resin, foams made by adding fillers, plasticizers, flame retardants, etc. to these foams, impregnated foams made by adding an impregnating liquid to general foams, and compressed foams obtained by compressing general foams. Although any type of foamed material may be used, foams with continuous pores are preferable in view of having excellent sound absorption performance.

特にポリウレタンフォームが好ましい。Particularly preferred is polyurethane foam.

固体拘束層としては、原則的には使用温度でフオームに
拘束性を与え1.かつ自ずから)゛は、容・、易′に流
動しない重量物であればよいが2次の条件を満たすこと
が好ましい。即ち固体拘束層の25Cにおける動的貯蔵
弾性率Eは、E≦I X 106にり、4−2好ましく
はE≦6 X 10’V4Zcrl、さらに好ましくは
E≦4XIO’にり/dである。また固体拘束層とフオ
ームの密度比は5以上、好ましくは10以上であること
が望ましい。
As a solid restraint layer, in principle, it provides restraint to the foam at the operating temperature.1. (and naturally) may be a heavy material that does not flow easily, but preferably satisfies the following conditions. That is, the dynamic storage modulus E of the solid constrained layer at 25C is E≦I×106, preferably 4-2, preferably E≦6×10′V4Zcrl, and more preferably E≦4XIO′/d. Further, it is desirable that the density ratio between the solid constrained layer and the foam is 5 or more, preferably 10 or more.

さらにこれらの固体物が拘束層としての働きを示すのは
拘束層とフオームとの重量比が2.0〜1. OX 1
08の範囲が好ましい。即ち固体物とフオームの結合面
に垂直方向を考えた場合、結合面の単位面積当りの固体
物の重量とフオームの重量比が2.0未満であると制振
性能の向上が認められず、一方1・0×10Bを超える
とフオームが押しつぶされて正常な働きをしない。ただ
し、より好ましくは両者の重量比が8.5以上。
Furthermore, these solid substances function as a constraining layer when the weight ratio of the constraining layer to the foam is 2.0 to 1. OX1
A range of 0.08 is preferred. That is, when considering the direction perpendicular to the bonding surface between the solid object and the foam, if the ratio of the weight of the solid object to the weight of the foam per unit area of the bonding surface is less than 2.0, no improvement in vibration damping performance will be observed. On the other hand, if it exceeds 1.0×10B, the foam will be crushed and will not function properly. However, more preferably the weight ratio of both is 8.5 or more.

8.0X102以下である。さらに吸音性能の面から考
えると、固体拘束層に適当な直径の貫通孔が適当量存在
することが望ましい。
It is 8.0×102 or less. Furthermore, from the standpoint of sound absorption performance, it is desirable that the solid constraining layer has an appropriate number of through holes with an appropriate diameter.

これらの固体物はフオーム表面に対して(1)  何ら
かの方法で液状物として吹きつけtまたはコテ塗りする
These solid substances are applied to the foam surface by (1) spraying or using a trowel as a liquid substance;

(11)  シート状物としてそれ自身で、または接着
剤を用いて貼りつける・ (fit)  織布、不織布または網状物として貼りつ
ける− Qφ フオーム発泡時に一体成形する−などの方法によ
って結合される。
(11) Bonding by itself as a sheet-like product or using an adhesive; (fit) bonding as a woven fabric, non-woven fabric, or net-like material; (fit) bonding by integrally molding when foaming Qφ foam;

このようにして得られたフオーム複合制振材はそのフオ
ーム側の面を振動体に貼りつけて使用されるが、その他
熔融圧着またはフオーム発泡時の一体成形でも差支えな
い。
The foam composite vibration damping material thus obtained is used by pasting its foam side surface onto a vibrating body, but it may also be melt-bonded or integrally molded during foam foaming.

本発明のフオーム複合制振材は、車輛、船舶。The foam composite damping material of the present invention can be used in vehicles and ships.

自動車、航空機などの割振材料として、また鉄道用レー
ル、家電機械、金属加工機械などに。
As an allocation material for automobiles, aircraft, etc., as well as railway rails, home appliances, metal processing machines, etc.

さらに住居、オフィス、工場などの建物用として、さら
にまた事務機器、電算機、音響システムなどの制振およ
び吸音材料として広く利用される。
Furthermore, it is widely used for buildings such as residences, offices, and factories, and as a vibration damping and sound absorbing material for office equipment, computers, sound systems, etc.

次に実施例に基づき本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail based on Examples.

実施例1.比較例1〜8 表艮に示したサンプルを厚さImp幅25鴎。Example 1. Comparative examples 1 to 8 The sample shown in the table has a thickness of Imp and a width of 25 mm.

長さ800 mmの亜鉛引鉄板上に貼りつけて試験体と
し、明石製作所■製の振動解析装置(メカニカルインピ
ーダンス法)を用いて損失係数(η)を測定した。なお
使用周波数lθ〜5’0OOHz。
It was pasted on a galvanized iron plate with a length of 800 mm to serve as a test specimen, and the loss coefficient (η) was measured using a vibration analysis device (mechanical impedance method) manufactured by Akashi Seisakusho ■. Note that the frequency used is lθ~5'0OOHz.

室温(29tll’)測定という条件は実施例12を除
きすべての実施例および比較例に共通である。
The condition of room temperature (29tll') measurement is common to all Examples and Comparative Examples except Example 12.

−実施例1と比較例1はフオーム、拘束層ともに同一組
成物、同一形状であるが、実施例1は本発明の主旨に従
い、第1図のAタイプとして。
- Example 1 and Comparative Example 1 have the same composition and shape for both the foam and the constraint layer, but Example 1 is of type A in FIG. 1 in accordance with the gist of the present invention.

また比較例1は市販の貼合せ材と同じ第1図のBタイプ
として振源(鉄板)に貼りつけたものである。
Comparative Example 1 was a type B shown in FIG. 1, which is the same as a commercially available bonding material, and was bonded to a vibration source (iron plate).

一方比較例2.比較例8は各々の前述の実施例1.比較
例1に用いたフオームのみおよび拘束層のみを振源に貼
りつけたものであり、これらのサンプルについて得られ
た結果を第2図に示す。
On the other hand, comparative example 2. Comparative Example 8 is the same as each of the above-mentioned Examples 1. Only the foam and only the constraint layer used in Comparative Example 1 were attached to the vibration source, and the results obtained for these samples are shown in FIG.

比較例1のηの値は比較例2および比較例8に用いたフ
オームおよび拘束層のほぼ各ηの和として与えられる。
The value of η of Comparative Example 1 is given as approximately the sum of each η of the foam and constraint layer used in Comparative Example 2 and Comparative Example 8.

一方実施例1の場合、比較例1に比べてはるかに高いη
値、即ちその構成因子であるフオームおよび拘束層のη
値からは推定できないような高いη値を示し、良好な割
振性能の目安であるη≧0.05.(好ましくはη≧0
.1)を充分に超えたレベルにある。このことは本発明
のフオーム複合割振材の特殊な制振性発現機構を裏づけ
るものである。
On the other hand, in the case of Example 1, η is much higher than that of Comparative Example 1.
value, i.e. its constituent factors form and constrained layer η
It shows a high η value that cannot be estimated from the value, and η≧0.05, which is a guideline for good allocation performance. (preferably η≧0
.. It is at a level that sufficiently exceeds 1). This confirms the special damping performance mechanism of the foam composite damping material of the present invention.

表  1 傘1 c/f−=園俸伺釆層とフオームの1重比 Jな
おフオームの25%圧縮時のモジユラス(M!!1)は
試験片上に直径200闘の円形加圧板をのせ100s+
ψinの速度で圧縮し、歪量が25%に達したとき円板
を静止させ、静止20秒後の応力値として求めた。
Table 1 Umbrella 1 c/f- = 1 density ratio of the garden layer and the foam JThe modulus (M!!1) of the foam at 25% compression was determined by placing a circular pressure plate with a diameter of 200mm on the test piece for 100s+
The disk was compressed at a speed of ψin, and when the amount of strain reached 25%, the disk was stopped, and the stress value was obtained after 20 seconds of stopping.

実施例z、8.比較例4 表2に示したサンプルを第1図のAタイプ(これ以後の
実施例2比較例とも制振性能測定に関する限りすべてA
タイプ)として貼りつけたときのηの周波数依存性を第
8図に示す0拘束層の弾性率が非常に大きい鉄板の場、
合低周波での制振性能が大きく低下することがわかる。
Example z, 8. Comparative Example 4 The samples shown in Table 2 were of type A in Fig.
Figure 8 shows the frequency dependence of η when pasted as 0 type).
It can be seen that the damping performance at low frequencies deteriorates significantly.

表  2 実施例4,5.比較例5 表8に与えられたサンプルのη−周波数曲線を第4図に
示す。フ、オームのみの制振性能(比較例5)に比べ、
拘束タイプにした場合、拘束層の重量増加に伴ない、η
の値が著しく向上する(実施例4,5)。
Table 2 Examples 4 and 5. Comparative Example 5 The η-frequency curves of the samples given in Table 8 are shown in FIG. Compared to the damping performance of ohm only (comparative example 5),
When using the restraint type, as the weight of the restraint layer increases, η
The value of is significantly improved (Examples 4 and 5).

表  8 実施例6.比較例6 フオーム自身の柔かさの効果について表4に与えられた
サンプルを用いて測定した結果を第5図に示す。同一の
拘束層を用いても、柔かいフオームの場合制振性能の向
上が著しいことがわかる。
Table 8 Example 6. Comparative Example 6 The effect of the softness of the foam itself was measured using the samples given in Table 4, and the results are shown in FIG. It can be seen that even if the same constraint layer is used, the vibration damping performance is significantly improved in the case of a soft foam.

表  4 実施例7〜9 その他の例として表5に与えられた系のη−周波数曲線
を第6図に示す。いずれの場合もかなり広い周波数領域
に亘って優れた制振性能を示している0 、表5 実施例10,11.比較例? 表6に代表的サンプルの室温(zor)における垂直入
射吸音率の周波数依存性を第7図に示す。
Table 4 Examples 7 to 9 As another example, the η-frequency curve of the system given in Table 5 is shown in FIG. In all cases, excellent damping performance is exhibited over a fairly wide frequency range.Table 5 Examples 10 and 11. Comparative example? Table 6 shows the frequency dependence of the normal incidence sound absorption coefficient at room temperature (ZOR) for representative samples as shown in FIG.

この場合吸音性能は垂直式、射法によって剛壁密着させ
て測定した(ただし拘束タイプフオーム複合制振材の場
合固体拘束層の方から音が入射するようセットした)。
In this case, the sound absorption performance was measured using a vertical projection method, with the material in close contact with a rigid wall (however, in the case of a constraint type foam composite damping material, it was set so that the sound was incident from the solid constraint layer).

拘束層のないフオームのみの場合(比較例7)2図でわ
かるように低周波吸音率が非常に低い。これに拘束層が
ついた場合、実用上重要な低周波、中周波領域の吸音性
能が改善され(実施例10)、さらに拘束層に適当な孔
をあけることによってこの曲線をコントロールできる(
実施例11)。
In the case of only a foam without a constraining layer (Comparative Example 7), as can be seen in Figure 2, the low frequency sound absorption coefficient is extremely low. When a constraint layer is attached to this, the sound absorption performance in the practically important low and medium frequency ranges is improved (Example 10), and this curve can be further controlled by making appropriate holes in the constraint layer (
Example 11).

実施例12 サンプルとしてフオームは2種類にウレタンフオーム+
 Mgs  16 t/al e厚さ5nを、拘束層と
して種類にフィラー充填PVO,E 2X10’に4/
d、c/r  zsよりなるものを用いた。このフオー
ム複合制振材を1fl厚の鉄板に貼りつけた後振動させ
て音圧レベルを測定し、鉄板だけの場合と比較したのが
第8図である。
Example 12 There are two types of foam as samples: urethane foam +
Mgs 16t/al e thickness 5n, type filler filled PVO as constraining layer, E 2X10' to 4/
A material consisting of d, c/r zs was used. This foam composite vibration damping material was attached to a 1 fl thick iron plate and then vibrated, the sound pressure level was measured and compared with the case of only the iron plate, as shown in FIG.

第8図によれば本発明のフオーム複合制振材が特に低周
波、中周波領域で優れた割振性能を有することを示して
おり、制振材料として極め′て有用であることが確認さ
れた。
Figure 8 shows that the foam composite damping material of the present invention has excellent vibration allocation performance, especially in the low frequency and medium frequency regions, and it was confirmed that it is extremely useful as a vibration damping material. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は割振材め断面を示すもので、Aぼ本発明のフオ
ーム複合割振材であり、Bは従来の割振材と7オームの
貼り合せ材(市販品)である。第2〜第6図は各表に与
えられた実施例。 比較例をサンプルとして室温(29C)で測定した損失
係数(η)の周波数依存性を示す。第7図は室温(29
C)における垂直入射吸音率の周波数依存性を示す。第
8図はフオーム複合制振材による25Cでの音圧レベル
の低減効果を示す。 1・・・・・・フオーム   2・・・・・・固体拘束
層色・・・・・・制振材   4・・・・・・振動゛源
特許出願人 ブリデストンタイヤ株式会社代理人 弁理
士 伊 東  彰 第1 (A) (B) ;〉− ネi′ 蝉 ÷m、、<斗グφ件(メ)
FIG. 1 shows a cross section of the distribution material, where A is the foam composite distribution material of the present invention, and B is a conventional distribution material and a 7-ohm bonded material (commercially available product). Figures 2-6 are examples given in each table. The frequency dependence of the loss coefficient (η) measured at room temperature (29C) using a comparative example as a sample is shown. Figure 7 shows room temperature (29
The frequency dependence of the normal incidence sound absorption coefficient in C) is shown. FIG. 8 shows the effect of reducing the sound pressure level at 25C by using the foam composite damping material. 1... Form 2... Solid constraint layer color... Damping material 4... Vibration source patent applicant Patent attorney for Brideston Tire Co., Ltd. Shi Ito Akira 1 (A) (B);〉−Ne i′ cicada ÷ m,,<斗guφitem (Me)

Claims (2)

【特許請求の範囲】[Claims] (1)、25%の圧縮モジュラスが10017cd以下
であるフオーム−材料の振動体に取付ける面と反・対何
の面に、25Cにおける動的貯蔵弾性率がlX10’J
l/d以下で、該フオームとの密度比が5以上であり、
かつ該フオームとの重量比が20以上lXl0’以下で
ある固体拘束層を結合させた制振材
(1) A foam material with a compression modulus of 10017 cd or less at 25% has a dynamic storage modulus of lX10'J at 25C on the surface opposite to the surface to be attached to the vibrating body.
l/d or less, the density ratio with the foam is 5 or more,
and a vibration damping material combined with a solid constraining layer whose weight ratio with the foam is 20 or more and lXl0' or less.
(2)25%の圧縮モジュラスが80 P/cd以下で
あり、固体拘束層の25C’における動的貯蔵弾性率が
6 x 10’Kp/lI以下で、該フオーム−との密
度比が10以上であり、かつ該フオームとの重量比が2
5以上8XlO”以下である特許請求の範囲第(1)項
記載の制振材
(2) The 25% compression modulus is 80 P/cd or less, the dynamic storage modulus at 25C' of the solid constrained layer is 6 x 10' Kp/lI or less, and the density ratio with the foam is 10 or more. and the weight ratio with the foam is 2
5 or more and 8XlO” or less, the damping material according to claim (1)
JP56128785A 1981-08-19 1981-08-19 Vibration damper Granted JPS5830546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56128785A JPS5830546A (en) 1981-08-19 1981-08-19 Vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56128785A JPS5830546A (en) 1981-08-19 1981-08-19 Vibration damper

Publications (2)

Publication Number Publication Date
JPS5830546A true JPS5830546A (en) 1983-02-23
JPH0260903B2 JPH0260903B2 (en) 1990-12-18

Family

ID=14993389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128785A Granted JPS5830546A (en) 1981-08-19 1981-08-19 Vibration damper

Country Status (1)

Country Link
JP (1) JPS5830546A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222894A (en) * 1983-05-31 1984-12-14 住友電気工業株式会社 Sound absorbing/vibration damping material
EP0657647A1 (en) * 1993-11-09 1995-06-14 Gec-Marconi Limited Noise reduction for wind turbine
US6213721B1 (en) * 1993-11-09 2001-04-10 Thomson Marconi Sonar Limited Noise emission reduction
JP2003122371A (en) * 2001-10-11 2003-04-25 Showa Electric Wire & Cable Co Ltd Sound absorbing and vibration damping material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342270A (en) * 1976-09-29 1978-04-17 Mtp Kasei Kk Method of manufacture of conjugate buffer material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342270A (en) * 1976-09-29 1978-04-17 Mtp Kasei Kk Method of manufacture of conjugate buffer material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222894A (en) * 1983-05-31 1984-12-14 住友電気工業株式会社 Sound absorbing/vibration damping material
EP0657647A1 (en) * 1993-11-09 1995-06-14 Gec-Marconi Limited Noise reduction for wind turbine
US6213721B1 (en) * 1993-11-09 2001-04-10 Thomson Marconi Sonar Limited Noise emission reduction
JP2003122371A (en) * 2001-10-11 2003-04-25 Showa Electric Wire & Cable Co Ltd Sound absorbing and vibration damping material

Also Published As

Publication number Publication date
JPH0260903B2 (en) 1990-12-18

Similar Documents

Publication Publication Date Title
EP1570461B1 (en) Ultralight trim composite
US4461796A (en) Sound damping materials
EP2311028B1 (en) Multilayer sound absorbing sheet and method of absorbing sound
US3160549A (en) Vibration damping structures
US20040168853A1 (en) Acoustic tile and its use in vehicle sound proofing
JPS6346942A (en) Interior panel for automobile
JP2007519556A (en) Automotive dash insulator containing viscoelastic foam
JP2001522751A (en) Vibration damping laminate
US3542638A (en) Acoustical surface covering
JPS5830546A (en) Vibration damper
JP2010026258A (en) Sound absorber
JP2010097137A (en) Sound absorbing structure
WO1992020523A1 (en) Sound-damping sandwich material and a method for its manufacture
JPH031150B2 (en)
JP2000020070A (en) Sound absorbing sheet
JP2008033160A (en) Sound insulating material
JP2000081084A (en) Vibration reducing method and disk drive
JPH0147300B2 (en)
JP2018036518A (en) Sound absorption member and wall member
JPH08506784A (en) Sealing panel, especially for motor vehicles, including loudspeaker housing
JPH10254453A (en) Sound insulating member
JPH07261768A (en) Composite sound absorbing material
JPH10254454A (en) Sound insulating member
JP7259076B2 (en) sound absorbing material
JPH0343242A (en) Soundproofing material