JPS5830533A - Magnetic particle type electromagnetic coupling device - Google Patents

Magnetic particle type electromagnetic coupling device

Info

Publication number
JPS5830533A
JPS5830533A JP12970981A JP12970981A JPS5830533A JP S5830533 A JPS5830533 A JP S5830533A JP 12970981 A JP12970981 A JP 12970981A JP 12970981 A JP12970981 A JP 12970981A JP S5830533 A JPS5830533 A JP S5830533A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic particles
connecting part
coupling device
type electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12970981A
Other languages
Japanese (ja)
Inventor
Ryosuke Okita
良介 沖田
Kiyohide Okamoto
岡本 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12970981A priority Critical patent/JPS5830533A/en
Publication of JPS5830533A publication Critical patent/JPS5830533A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/002Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by a single substantially axial gap in which the fluid or medium consisting of small particles is arranged

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE:To improve the durabiity of an electromagnetic coupling device and transmit a torque efficiently by a method wherein the coupling surface of a magnetic particle type electromagnetic coupling device is formed with recesses and protrusions. CONSTITUTION:The coupling surface of a driving member 11 made of a magnetic material is formed with a multitude of relatively small recesses and protrusions. A driven member 17, provided so as to oppose the coupling surface of the driving member 11 with a small gap, is also made of the magnetic material and the coupling surface thereof is formed with a multitude of recesses and protrusions. The magnetic particles between the coupling surfaces of the driving member 11 and the driven member 17 are magnetized by the excitation of an exciting coil 12 and effect the transmission of the power.

Description

【発明の詳細な説明】 この発明は磁性粒子式電磁連結装置に関し、特に磁性粒
子を使用した電磁連結装置において回転力(tたはトル
ク)を伝達する磁性粒子式電磁連結装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic particle type electromagnetic coupling device, and more particularly to a magnetic particle type electromagnetic coupling device that transmits rotational force (t or torque) in an electromagnetic coupling device using magnetic particles.

周知のように、磁性粒子式電磁連結装置は自動車のクラ
ッチ等に使pBされている。この磁性粒子式電磁連結装
置はその連結面と磁性粒子間、または磁性粒子間同志で
の磁気結合に対するすべり摩擦を利用して回転力を伝達
する。このため、磁性粒子式電磁連結装置の各連結面は
この摩擦に耐え得るようにクロムメッキ等の表面硬化見
場が施されている。また、磁性粒子式電磁連結装置に使
用される磁性粒子が耐熱性および耐摩耗性を要求するた
め、磁性粒子式電磁連結装置の各連結面は鏡面仕上げに
近い表面錫塩が施されている。
As is well known, magnetic particle type electromagnetic coupling devices are used in automobile clutches and the like. This magnetic particle type electromagnetic coupling device transmits rotational force by utilizing sliding friction due to magnetic coupling between the coupling surface and magnetic particles, or between magnetic particles. For this reason, each connecting surface of the magnetic particle type electromagnetic connecting device is coated with surface hardening such as chrome plating to withstand this friction. Furthermore, since the magnetic particles used in the magnetic particle type electromagnetic coupling device require heat resistance and wear resistance, each coupling surface of the magnetic particle type electromagnetic coupling device is coated with a surface tin salt that is close to a mirror finish.

第1図はこの発明の背景となり、この発明に適用される
磁性粒子式電磁連結装置の断面図を示す。
FIG. 1 provides the background of this invention and shows a sectional view of a magnetic particle type electromagnetic coupling device applied to this invention.

第2図は第1mの各連結面を拡大した断面図を示す。FIG. 2 shows an enlarged cross-sectional view of each connecting surface of the 1m.

第3図は第11の磁性粒子の結合状態の拡大−を示す。FIG. 3 shows an enlarged view of the bonding state of the eleventh magnetic particles.

構成において、磁性粒子式電磁連結装置10はドライブ
メンバ11、励磁コイル12、プラケツ) 13a、1
3b 、ベアリング14al114b %出力軸15、
シール材16a116b %  ドリブンメンバ17、
磁性粒子18、およびラビーリンス19a、19bから
構成される。ドライブメンバl’lはスリップリングプ
ツシ(図示せず)等により電力が供給される環状13b
で支承されボルト等によって固定される。ブラケツl−
13亀、13bは駆動側(図示せず)に連結されるとと
もにベアリング14ae141)と出力軸15によって
回転自在に支承されている。ブラケット13a1.13
bと出力軸15との接触面のベアリング14&・14b
の近傍には、磁性粒子18がベアリング14m、14b
に侵入しないように、シール材16諷、16bが設けら
れる。シール材16の内側には、ブラケット13m、1
3bと少しの隙間を設けて出力軸15−と固着されるド
リブンメンバ17が設ケられる。ドリブンメンバ17と
ブラケット13a、13bとの間の隙間には、磁性粒子
18をできるだけドライブメンバ11とドリブンメンバ
17との連結面の近くに保持し、かつ磁性粒子18がシ
ール材16m、16bへの侵入を少なくするためにドリ
ブンメンバ17の側壁にラビリンス191.19bが設
けられる。゛ドライブメンーイll詔よびドリブンメン
バ17の各連結面、すなわち第2#Aに示すようにドラ
イブメンバ11の内側表面111およびドリブンメンバ
17の外側表面171は、鏡面仕上げに近イクロムメッ
キ等の表面硬化l&場が施こされる。
In the configuration, the magnetic particle type electromagnetic coupling device 10 includes a drive member 11, an excitation coil 12, and a bracket (13a, 1).
3b, bearing 14al114b % output shaft 15,
Sealing material 16a116b % Driven member 17,
It is composed of magnetic particles 18 and labyrinses 19a and 19b. The drive member l'l has an annular shape 13b to which power is supplied by a slip ring pusher (not shown) or the like.
It is supported with bolts, etc. bracket l-
The tortoise 13 and 13b are connected to a drive side (not shown) and are rotatably supported by a bearing 14ae141) and an output shaft 15. Bracket 13a1.13
Bearings 14 & 14b on the contact surface between b and output shaft 15
Magnetic particles 18 are located near the bearings 14m and 14b.
A sealing material 16, 16b is provided to prevent the material from entering. Inside the sealing material 16, there are brackets 13m, 1
A driven member 17 fixed to the output shaft 15- is provided with a small gap from the output shaft 3b. In the gap between the driven member 17 and the brackets 13a, 13b, the magnetic particles 18 are held as close as possible to the connection surface between the drive member 11 and the driven member 17, and the magnetic particles 18 are held in the gap between the sealing members 16m, 16b. A labyrinth 191.19b is provided on the side wall of the driven member 17 to reduce intrusion.゛The connecting surfaces of the drive member 17 and the driven member 17, that is, the inner surface 111 of the drive member 11 and the outer surface 171 of the driven member 17, as shown in #2A, have a surface hardening process such as Ichrome plating, which is close to a mirror finish. will be performed.

また、ドリブンメンバ17の外側表面17′1は第2凶
に示すように径方向の間隔をもってV型の溝部172が
、設けられる。
Further, the outer surface 17'1 of the driven member 17 is provided with V-shaped grooves 172 at intervals in the radial direction, as shown in the second row.

なお、ドライブメンバ11は、駆動側に設けられ、ドリ
ブンメンバ17が駆動される側に設けられる。
Note that the drive member 11 is provided on the drive side, and the driven member 17 is provided on the side to be driven.

動作において、駆動fIA(図示せず)と連結されたブ
ラケット131.13bが回転すると、ドライブメンバ
llは回転する。また、ドライブメンバ11に内蔵され
た励磁コイル12に電力を供給すると、励磁コイル12
は第1図の点線に示すようにドライブメンバ11とドリ
ブンメンバ17を介して励磁コイル12の外周に磁束Φ
が発生する。このため、磁性粒子18は磁化され、ドラ
イブメンバ11とドリブンメンバ17との間に連鎖状に
結合する。・その結果、磁性粒子18は出力軸15と固
着されたドリブンメンバ17とドライブメンバ11を連
結し、ドライブメンバ11の回転力をドリブンメンバ1
7と出力軸15に伝達し駆動する。このとき、ドリブン
メンバ17の外側表面171にv蚕の溝部172が形成
されているため、ドライブメンバ°11の内側表面11
1とドリブンメンバ17の外側表面171との有効な連
結表面積との関係でドリブンメンバ17の外側表面17
1上の磁束密度がドライブメンバ11の内側表面111
上・の磁束密度よりも高くなる。このため、磁性粒子1
8は第2図に示すように連鎖状の結合状態となる。また
、磁性粒子18はドリブンメンバ17の外側表面171
に設けられたv型の溝部172の磁気抵抗が大きいため
、溝11172に集積せず空隙のままとなる。その結果
、ドリブンメンバ17の外側表面171の磁気的吸引力
がドライブメンバ11の内側表面11−1の磁気的吸引
力よりも大きくなり、すべりが生じる部分は王にドライ
ブメンバ11の内側表面111となる。従って、■箆の
溝部172を設けることによって、すべり摩擦による発
熱は磁性粒子18内あるいはドリブンメンバ17に吸収
されることなく、ドライブメンバ11を通して外周に伝
導される。また、V型の溝部172は連結状態において
も磁性粒子18が溜まらず空隙のままであるため、連結
状態が解除されるとすみやかに磁性粒子18の結命を解
消し、ドライブメンバ11からドリブンメンバ17と出
力軸15への回転力の遮断の応答性を良(している。
In operation, when the bracket 131.13b coupled to the drive fIA (not shown) rotates, the drive member 11 rotates. Furthermore, when power is supplied to the excitation coil 12 built in the drive member 11, the excitation coil 12
As shown by the dotted line in FIG.
occurs. Therefore, the magnetic particles 18 are magnetized and bonded in a chain between the drive member 11 and the driven member 17. - As a result, the magnetic particles 18 connect the driven member 17 fixed to the output shaft 15 and the drive member 11, and transfer the rotational force of the drive member 11 to the driven member 1.
7 and the output shaft 15 for driving. At this time, since the v-shaped groove 172 is formed on the outer surface 171 of the driven member 17, the inner surface 11 of the drive member 11
1 and the effective connecting surface area of the outer surface 171 of the driven member 17.
The magnetic flux density on the inner surface 111 of the drive member 11
It becomes higher than the magnetic flux density above. For this reason, magnetic particles 1
8 are connected in a chain as shown in FIG. Additionally, the magnetic particles 18 are arranged on the outer surface 171 of the driven member 17.
Since the magnetic resistance of the v-shaped groove portion 172 provided in the groove 11172 is large, the particles do not accumulate in the groove 11172 and remain as a gap. As a result, the magnetic attraction force of the outer surface 171 of the driven member 17 becomes larger than the magnetic attraction force of the inner surface 11-1 of the drive member 11, and the portion where the slip occurs is mainly connected to the inner surface 111 of the drive member 11. Become. Therefore, by providing the groove portion 172, the heat generated by sliding friction is not absorbed into the magnetic particles 18 or into the driven member 17, but is conducted to the outer periphery through the drive member 11. Further, even in the connected state, the V-shaped groove 172 does not collect the magnetic particles 18 and remains a gap, so when the connected state is released, the fate of the magnetic particles 18 is quickly eliminated, and the drive member 11 is removed from the driven member. 17 and the output shaft 15.

一方、励磁コイル12への供給電力を遮断すると、磁性
粒子18は磁気的吸引力を解消して磁性粒子18間の結
合を解除する。このため、ドライブメンバ11からドリ
ブンメンバ17と出力軸15への回転力の伝達は遮断さ
れる。このとき、ドライブメンバ11とブラケット13
1L、13bが回転駆動しているため、磁性粒子18は
ドライブメンバイ11の内側表面111上に遠心力で押
付けられる。
On the other hand, when the power supply to the excitation coil 12 is cut off, the magnetic particles 18 release their magnetic attraction force and release the bond between the magnetic particles 18 . Therefore, transmission of rotational force from the drive member 11 to the driven member 17 and output shaft 15 is interrupted. At this time, the drive member 11 and the bracket 13
Since 1L and 13b are rotationally driven, the magnetic particles 18 are pressed onto the inner surface 111 of the drive member 11 by centrifugal force.

その結果、回転力の伝達はV型の溝fib 172の前
述の効果とともにすみやかに遮断される。
As a result, the transmission of rotational force is quickly interrupted along with the aforementioned effect of the V-shaped groove fib 172.

しかし、このような構造の磁性粒子式電磁連結装置はド
リブンメンバ17の外側表面171の磁気的吸収力がド
ライブメンバ11の内側表面111の磁気的吸引力より
も大きいため、ドライブメンバイ11の内側表面111
と磁性粒子18との間ですべり摩擦を生じドライブメン
バ11かもドリブンメンバ17と出力軸15への回転力
の伝達が他の方式の連結装置と比較して低くなる。
However, in the magnetic particle type electromagnetic coupling device having such a structure, the magnetic absorption force of the outer surface 171 of the driven member 17 is larger than the magnetic attraction force of the inner surface 111 of the drive member 11. surface 111
Sliding friction is generated between the drive member 11 and the magnetic particles 18, and the transmission of rotational force to the driven member 17 and the output shaft 15 is lower than that of other types of coupling devices.

次に、113Eを参照して磁性粒子と各連結面とのすべ
、り摩擦について説明する。
Next, the sliding friction between the magnetic particles and each connecting surface will be explained with reference to 113E.

まず、磁性粒子18がj!3図に示すように球形であり
かつ連鎖状に結合していると仮定した場合において、ド
リブンメンバ17の外側表面171に回転力に基づく径
方向の力Yが働くものとするOまた、ドリブンメンバ1
7の外側表面171と磁性粒子181との間の磁気的吸
引力をPQ、磁気的吸引力POによる摩擦力を鼠、ドリ
ブンメンバ17の外側表面171と磁性粒子1881と
の間の摩擦係数をP、磁性粒子18mと磁性粒子18b
との磁気的吸引力をPl、ドリブンメンバ17の外側表
面171と磁性粒子18&の接点Aと磁性粒子1811
と磁性粒子18bの接点Bが軸方向に対してつくる角度
をθl。
First, the magnetic particles 18 are j! Assuming that the driven member 17 is spherical and connected in a chain as shown in Figure 3, a radial force Y based on rotational force acts on the outer surface 171 of the driven member 17. 1
The magnetic attraction force between the outer surface 171 of the driven member 17 and the magnetic particles 181 is PQ, the frictional force due to the magnetic attraction PO is PQ, and the friction coefficient between the outer surface 171 of the driven member 17 and the magnetic particles 1881 is PQ. , magnetic particles 18m and magnetic particles 18b
The magnetic attraction force between Pl and the contact point A between the outer surface 171 of the driven member 17 and the magnetic particle 18& and the magnetic particle 1811
The angle that the contact point B of the magnetic particle 18b makes with respect to the axial direction is θl.

磁性粒子18mの中100と磁性粒子18bの中心0′
とが軸方向に対してつ(る角度θ2、磁性粒子18の半
径をrとする。このとき、ドリブンメンバ17の外側表
面171に接した磁性粒子1811に働く力は次のよう
になる。すなわち、j13図に示す径方向の摩擦力には
式(1)で表わされる。
100 inside magnetic particle 18m and center 0' of magnetic particle 18b
is an angle θ2 with respect to the axial direction, and r is the radius of the magnetic particle 18. At this time, the force acting on the magnetic particle 1811 in contact with the outer surface 171 of the driven member 17 is as follows. , j The radial frictional force shown in Figure 13 is expressed by equation (1).

RmPlsinθl R,、/A PO p Pg = Plsinθ1−・−−−−−(11ま
た、第3図に示す軸方向の磁気的吸引力POは式(2)
で表わされる。
RmPlsinθl R,, /A PO p Pg = Plsinθ1−・------(11) Also, the axial magnetic attraction force PO shown in FIG. 3 is expressed by formula (2)
It is expressed as

PO冨P1 cos 01 −一曲・・・(2)従って
、磁性粒子18aに働(力のつりあいは式(1)と式(
2)より式(3)となる。
POtomi P1 cos 01 - One song... (2) Therefore, the force acting on the magnetic particles 18a (the balance of forces is expressed by equation (1) and equation (
2), formula (3) is obtained.

p Nl 凰!lθl     −・−(31次に、磁
性粒子18aと磁性粒子18bとの接点Bにおけるモー
メントは式(4)で表わされる。
p Nl 凰! lθl −·−(31) Next, the moment at the contact point B between the magnetic particles 18a and the magnetic particles 18b is expressed by equation (4).

P□ rlinθ2 W Rr Cl+c Osθ2)
m p P Q r (1+C0802)また、式(3
)と式(4)より角度θlと角度θ2との関係は式(5
)となる。
P□ rlinθ2 W Rr Cl+c Osθ2)
m p P Q r (1+C0802) Also, the formula (3
) and equation (4), the relationship between angle θl and angle θ2 is expressed as equation (5
).

なお、式(3)、式(4)、および式(5)の関係はド
ライ′ブメンパ110内側表面illについても同様で
ある。さらに、磁性粒子18cについて考えると、この
場合は軸方向に対して角度θlに沿って磁気的吸引力P
Iの力でつりあうことになる。このことは磁性粒子18
b以降の磁性粒子についても同様であり、磁性粒子18
が角度θlの傾きをもって連鎖状に結合し、かつPls
inθ1mpPQの摩擦力が磁性粒子18間に働(こと
になる。ここで、ドライブメンバ11の内側表面111
:&tよびドリブンメンバ17の外側NJili171
に回転力に基づく径方向の力Fは式(6)で表わされ、
磁気的吸引力POと摩擦係数Pによって決まる。
Note that the relationships among equations (3), (4), and (5) are the same for the inner surface ill of the drive member 110. Furthermore, considering the magnetic particle 18c, in this case, the magnetic attraction force P along the angle θl with respect to the axial direction
It will be balanced by the power of I. This means that magnetic particles 18
The same applies to the magnetic particles after b, and magnetic particle 18
are connected in a chain with an inclination of angle θl, and Pls
A frictional force of inθ1mpPQ acts between the magnetic particles 18 (here, the inner surface 111 of the drive member 11
:&t and outside NJili171 of driven member 17
The radial force F based on the rotational force is expressed by equation (6),
It is determined by the magnetic attraction force PO and the friction coefficient P.

すなわち、連鎖状に結合している磁性粒子18は磁性粒
子間の接点、各連結面と磁性粒子間の接点、またはM気
的吸引力の小さい部分で切断されることになる。その結
果、連鎖状に結合している磁性粒子18の切断あるいは
すべりは、鏡面仕上げが施されるドライブメンバ11の
内側表面111およびドリブンメンバ17の外側表面1
71の摩擦係数がほぼ0.15〜0.2程度で磁性粒子
18間の摩擦係数よりも小さいため、磁気的吸引力の小
さいドライブメンバ11の内側表面111に生じやす(
なる。
That is, the magnetic particles 18 connected in a chain form are cut at the contact points between the magnetic particles, the contact points between each connecting surface and the magnetic particles, or at a portion where the magnetic attraction force is small. As a result, the cutting or sliding of the magnetic particles 18 bonded in a chain is prevented from occurring on the inner surface 111 of the drive member 11 and the outer surface 1 of the driven member 17, which are mirror-finished.
Since the coefficient of friction between the magnetic particles 71 is approximately 0.15 to 0.2, which is smaller than the coefficient of friction between the magnetic particles 18, it is likely to occur on the inner surface 111 of the drive member 11, where the magnetic attraction force is small (
Become.

従って、上述のように磁性粒子式電磁連結装置は各連結
面と磁性粒子間あるいは磁性粒子間のすべり摩擦が寄因
してこの摩擦に耐え得るような耐熱性および耐摩耗性を
備えた各連結面と磁性粒子が要求され、コスト的に高く
なり、かつ−この摩擦に基づいて回転力の伝達が他の方
式の連結装置に比較して低くなるという欠点があった。
Therefore, as mentioned above, the magnetic particle type electromagnetic coupling device has each coupling having heat resistance and wear resistance that can withstand the sliding friction between each coupling surface and the magnetic particles or between the magnetic particles. The disadvantage is that surfaces and magnetic particles are required, which increases the cost, and - because of this friction, the transmission of rotational forces is low compared to other types of coupling devices.

それゆえに、この発明の目的は、安価でかつ耐久性があ
り、回転力を効率よく伝達でき回転力の大きい磁性粒子
式電磁連結装置を提供するξとである。
Therefore, an object of the present invention is to provide a magnetic particle type electromagnetic coupling device that is inexpensive, durable, can efficiently transmit rotational force, and has a large rotational force.

この発明は要約すれば、各連結面に磁性粒子がはまり込
む、程度の凹凸をエツチング処理で形成するようにした
ものである。
In summary, the present invention is such that an etching process is used to form irregularities of such a degree that magnetic particles fit into each connecting surface.

以下に、図面を参照してこの発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図はこの発明の一実施例の磁性粒子式電磁連結装置
の各連結面における磁性粒子の結合状態の拡大図を示す
、第4rjA1こおいt%jl1図ないしj13図と同
一符号は同一あるいは相当する部分を示す。構成におい
て、ξの実施例が111図ないし第3図と異なる点は第
1の連結部の〒゛例のドライブメンバ11の内側表面1
11とj12の連結部の一例のドリブンメンバ17の外
側表面171をエツチング処理によって磁性粒子18が
はまり込む11度の凹凸41を形成したことである。す
なわち、ドライブメンバ110内側表面111およびド
リブンメンバ・17の外側表面171はまず洗浄脱脂が
行なわれ、印刷法その他の方法によって所定のパターン
で耐腐触性のレジスト膜な被着と乾燥喜せる。
FIG. 4 shows an enlarged view of the bonding state of magnetic particles on each coupling surface of a magnetic particle type electromagnetic coupling device according to an embodiment of the present invention. The corresponding parts are shown. In the configuration, the embodiment of ξ differs from FIGS. 111 to 3 in that the first coupling portion is
The outer surface 171 of the driven member 17, which is an example of the connecting portion between the magnetic particles 11 and j12, is etched to form an 11 degree concavity and convexity 41 into which the magnetic particles 18 fit. That is, the inner surface 111 of the drive member 110 and the outer surface 171 of the driven member 17 are first cleaned and degreased, and then a corrosion-resistant resist film is applied in a predetermined pattern by printing or other methods and dried.

その後、ドライブメンバ11の内側表面m1ldよびド
リブンメンバ17の外側表面171は塩化第2鉄等のエ
ツチング溶液中に浸漬喜れるか、または塩化第2鉄等、
をスプレーすることによってエツチング処理が施される
。このとき、ドライブメンバ11の内側表面1ullよ
びドリブンメンバ17の外側表面1711こ形成される
凹凸41の床裏はこのエツチング#l&場時間の1m!
iによって所定の深さに選択される。そして、ドライブ
メンバ11の内側表面111J5よびドリブンメンバ1
7の外m表面171はレジスト被膜除去液によってレジ
スト被膜が除去”され、水洗いおよび乾燥等の処理が施
ざべ規′則的にまたは不規則的に凹凸41が形成される
Thereafter, the inner surface m1ld of the drive member 11 and the outer surface 171 of the driven member 17 are immersed in an etching solution such as ferric chloride or etching solution such as ferric chloride.
Etching treatment is performed by spraying. At this time, the back of the floor of the unevenness 41 formed on the inner surface 1ull of the drive member 11 and the outer surface 1711 of the driven member 17 is 1 m of etching #l & field time!
A predetermined depth is selected by i. Then, the inner surface 111J5 of the drive member 11 and the driven member 1
The resist film is removed from the outer surface 171 of 7 by a resist film removing liquid, and the process such as washing with water and drying is performed to form irregularities 41 regularly or irregularly.

次に、第4図を参照してこの実施例の磁性粒子と各連結
面とのすべり摩擦につ゛いて説明する。なお、この実施
例の磁性粒子式電磁連結装置の動作は各連結面の形状お
よび磁性粒子の結合状態を除いて従来の磁性粒子式電磁
連結装置の動作と同じであるため説明を省略する。
Next, the sliding friction between the magnetic particles and each connecting surface of this embodiment will be explained with reference to FIG. Note that the operation of the magnetic particle type electromagnetic coupling device of this embodiment is the same as that of the conventional magnetic particle type electromagnetic coupling device except for the shape of each coupling surface and the bonding state of the magnetic particles, so a description thereof will be omitted.

磁性粒子18は第4図に示すように各連結面に磁性粒子
18の寸法に相当する凹凸41の凹にはさみ込まれ各連
結面に固定された状態となり磁性粒子18の中心を通る
一直線上に連鎖状に結合する。このと會、ドリブンメン
バ17の外側表面171に接した磁性粒子181に働く
力は第(7)および式(87で表わされる。
As shown in FIG. 4, the magnetic particles 18 are sandwiched between the concavities and convexities 41 corresponding to the dimensions of the magnetic particles 18 on each connecting surface, and are fixed to each connecting surface, so that they are aligned in a straight line passing through the center of the magnetic particles 18. Combine in a chain. At this time, the force acting on the magnetic particles 181 in contact with the outer surface 171 of the driven member 17 is expressed by No. (7) and Equation (87).

F −PI sin el  ”== (7)PO難P
4cosθ1 −−−−−−−−8)また、ここで磁性
粒子181Iに相当する軸方向に直角な面積を5.透磁
率をP。、重力加速度をgとすると、この面積Sを通過
する直角な磁束Φによって生じる軸方向の磁気的吸引力
Pxは式(9)で表わさ6に、磁性粒子1811と磁性
粒子18bとの接点Bに働(磁気的吸引力Plは磁気的
吸引力Plの働く面が軸方向、すなわち、面積8に対し
て角wlhだけ傾斜しているため式(至)となる。
F −PI sin el ”== (7) PO difficult P
4 cos θ1 ----------8) Here, the area perpendicular to the axial direction corresponding to the magnetic particle 181I is 5. Permeability is P. , when the gravitational acceleration is g, the axial magnetic attractive force Px generated by the perpendicular magnetic flux Φ passing through this area S is expressed by equation (9). Since the surface on which the magnetic attraction force Pl acts is inclined by an angle wlh with respect to the axial direction, that is, the area 8, the magnetic attraction force Pl is expressed as follows.

その結果、式(9)と式αGとの関係は式但となる。As a result, the relationship between equation (9) and equation αG is as follows.

p l m Px cosθ1 −−−−−−− dl
lまた、ドリブンメンバ17の外側表面171に回転力
に基づく径方向のカFは式(7)、式(8:I%および
式圓より式(2)となり、角度θlが45[のとき最大
となる。
p l m Px cosθ1 -------- dl
l Also, the radial force F based on the rotational force on the outer surface 171 of the driven member 17 is expressed as Equation (7), Equation (8: I%) and Equation (2), and is maximum when the angle θl is 45[ becomes.

J’ wm Px Cogθ1 sinθlこのとき、
磁気的吸引力P6は式0で表わされる。
J' wm Px Cogθ1 sinθl At this time,
The magnetic attraction force P6 is expressed by equation 0.

式(7)〜式(2)の関係はドライブメンバ11の内側
表面Illについても同様である。従って、式a3$よ
び式(至)より次のことが壇解できる。
The relationships expressed by equations (7) to (2) also apply to the inner surface Ill of the drive member 11. Therefore, the following can be understood from the equation a3$ and the equation (to).

すなわち、ドライブメンバ11からドリブンメンバ17
と出方軸15への回転力が伝達専れない状態で励磁コイ
ル12に電力が供給されると、磁性粒子18は凹凸41
にはさみ込まれた状態で磁性粒子18の軸方向に沿って
一列に配列される。
That is, from the drive member 11 to the driven member 17
When power is supplied to the excitation coil 12 in a state where the rotational force is not exclusively transmitted to the output shaft 15, the magnetic particles 18 become uneven 41.
The magnetic particles 18 are arranged in a line along the axial direction while being sandwiched between them.

その後、回転力が伝達されると回転力に基づく径方向の
力Fによって磁性粒子18間の配列は鮫化し、式(2)
で表わされる角度017)傾斜をもって連鎖状に結合す
る。このとき、磁性粒子18の配列の変化は磁性粒子1
8間のすべり、あるいはころがりによって生じ、式(2
)より摩擦係数が起因しないことが境解できる。また、
各連結面の回と磁性粒子18との接触あるいは各連結面
の凸の磁性粒子18との接触における磁性粒子18の配
列の変化は式(7)〜式0より角度θ1をもった磁気吸
引力Plによって生じる。そして、角度θlが45度に
なると、径方向にかかるカ(すなわち回転力)−PPO
’v(0,15〜0.2)PX ヨリカutJ大fk<
fJる。その結果、ドライブメンバ11からドリブンメ
ンバ17と出方軸15への回転力の伝達は従来の各連結
翼と磁性粒子18との連結スリップ、あるいは磁性粒子
18間のすべりによる相対的な回転と具なり、角度θl
をもった磁気的吸引力P1で結合している磁性粒子18
間が引含離喜れることによって磁性粒子l春間の配列が
変化し回転する。このと壷、引き離される磁性粒子18
間には磁気的吸引力に対する摩擦抵抗は″作用しない。
After that, when the rotational force is transmitted, the arrangement between the magnetic particles 18 becomes similar due to the radial force F based on the rotational force, and formula (2)
The angle represented by 017) is connected in a chain with an inclination. At this time, the change in the arrangement of the magnetic particles 18 is
It is caused by sliding or rolling between 8 and is expressed by the formula (2
), it can be understood that the friction coefficient is not the cause. Also,
The change in the arrangement of the magnetic particles 18 due to the contact between the magnetic particles 18 and the convex magnetic particles 18 on each connecting surface is determined by the magnetic attraction force having an angle θ1 from equations (7) to 0. Caused by Pl. When the angle θl becomes 45 degrees, the force applied in the radial direction (i.e., rotational force) - PPO
'v(0,15~0.2)PX Yorika utJ large fk<
fjru. As a result, the transmission of the rotational force from the drive member 11 to the driven member 17 and the output shaft 15 is achieved by the relative rotation of the conventional connecting blades and the magnetic particles 18, or by the sliding between the magnetic particles 18. , the angle θl
Magnetic particles 18 bound together by magnetic attraction P1 with
The arrangement of the magnetic particles changes and rotates as the space increases and separates. This jar, magnetic particles 18 being separated
There is no frictional resistance against the magnetic attraction force between them.

従って、この実施例の磁性粒子式電磁連結装置は従来の
磁性粒子式電磁連結装置と比較して効率よく回、伝力を
伝達できる。
Therefore, the magnetic particle type electromagnetic coupling device of this embodiment can transmit rotation and power more efficiently than the conventional magnetic particle type electromagnetic coupling device.

なお、上述の実施例ではドライブメンバ11の回転力を
ドリブンメンバ17と出力軸15に伝達しクラッチとし
て作用する場合について説明したが、これに限らず、ド
ライブメンバ11またはドリブンメンバ17のいずれか
一方を固定してプレー牛として使用しても良い。また、
上述の実施例ではドライブメンバ11の内側表面111
#よびドリブンメンバ17の外側表面171の凹凸41
をエツチングamによって形成される場合について説明
したが、これに限らず、その他の方法で凹凸を形成して
も良い。
Note that in the above-described embodiment, a case has been described in which the rotational force of the drive member 11 is transmitted to the driven member 17 and the output shaft 15 to act as a clutch, but the present invention is not limited to this, and either one of the drive member 11 or the driven member 17 You can also fix it and use it as a play cow. Also,
In the embodiment described above, the inner surface 111 of the drive member 11
# and irregularities 41 on the outer surface 171 of the driven member 17
Although the case where the unevenness is formed by etching has been described, the present invention is not limited to this, and other methods may be used to form the unevenness.

以上のように、この発明によれば、磁性粒子式電磁連結
装置の各連結面を凹凸に形成することによってクロムメ
ッキ等の表面硬化や鏡面仕上げ等を必要とせず、安価に
形成できかり耐久性があり、回転力を効率よく伝達でき
大きな回転力が得らべまた凹凸をエツチングII&鳩で
形成することによって規則正しく凹凸を形成で會る等の
特有の効果が奏される。なお、ξの発明によれば、凹凸
をエツチング錫塩によって規則正しく形成する必要性が
ある場合は容易に形成できる。
As described above, according to the present invention, each connecting surface of the magnetic particle type electromagnetic connecting device is formed with unevenness, thereby eliminating the need for surface hardening such as chrome plating, mirror finishing, etc., and it can be formed at low cost and has high durability. The rotational force can be transmitted efficiently and a large rotational force can be obtained. Also, by forming the unevenness by etching II and dovetailing, unique effects such as regular unevenness are produced. In addition, according to the invention of ξ, if it is necessary to form irregularities regularly by etching tin salt, it can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第15Aはこの発明の背景となり、この発明に適用され
る磁性粒子式電磁連結装置の断面図を示す。 第2−は第1囮の連結面を拡大した断面図を示す。 第3図は第具図の磁性粒子の結合状態の拡大図を示す。 Ws4図は乙の発明の一実施例の磁性粒子式電磁連結装
置の各連結面における磁性粒子の結合状態の拡大図を示
す。 図において、lOは磁性粒子式電磁連結装置、11はド
ライブメンバ、12は励磁コイル、131および13b
はブラケット、14亀および14bはボールベアリング
、15は出力軸、17はドリブンメンバ、18は磁性粒
子を示す。 代場人 葛 野 値 −(外1名) 拠 1 凹 /71      /7?     /;/昂:3躬
No. 15A serves as the background of this invention and shows a sectional view of a magnetic particle type electromagnetic coupling device applied to this invention. No. 2- shows an enlarged sectional view of the connecting surface of the first decoy. FIG. 3 shows an enlarged view of the bonding state of the magnetic particles shown in FIG. Figure Ws4 shows an enlarged view of the bonding state of magnetic particles on each coupling surface of the magnetic particle type electromagnetic coupling device according to an embodiment of the invention of B. In the figure, lO is a magnetic particle type electromagnetic coupling device, 11 is a drive member, 12 is an excitation coil, 131 and 13b
14 is a bracket, 14 is a turtle, 14b is a ball bearing, 15 is an output shaft, 17 is a driven member, and 18 is a magnetic particle. Substitute person Kuzuno Value - (1 other person) Base 1 concave /71 /7? /;/昂:三謬

Claims (4)

【特許請求の範囲】[Claims] (1)磁性材から成りかつ連結面に相対的に小さな凹凸
部が多数形成され、回転可能な第1の連結部・ 前記181の連結部の連結面に対向して少しの隙間をあ
けて設けられ、磁性体から成りかつその連結面一こ相対
的に小さな凹凸部が多数形成され、該j!1の連結部の
回転力が伝達されて回転される第2の連結部、 前記第1の連結部と前記第2の連結部との間に封入され
、磁化されることによって磁気的に該第1の連結部の回
転力を該第2の連結部に伝達する磁性粒子、および 選択的に励磁されることによって前記磁性粒子を磁化さ
せる励磁コイルを備えた、磁性粒子式電磁連結装置。
(1) A rotatable first connecting part made of a magnetic material and having a large number of relatively small uneven parts formed on the connecting surface. A rotatable first connecting part. A rotatable first connecting part. A rotatable first connecting part. A rotatable first connecting part. The j! a second connecting part to which the rotational force of the first connecting part is transmitted and rotated; a second connecting part is enclosed between the first connecting part and the second connecting part and is magnetized to magnetically rotate the second connecting part; A magnetic particle type electromagnetic coupling device comprising magnetic particles that transmit the rotational force of one coupling part to the second coupling part, and an excitation coil that magnetizes the magnetic particles by being selectively excited.
(2)前記凹凸部は、前記磁性粒子がはまり込む程良の
相対的に小さな形状に形成される、特許請求の範囲第(
13項項記載磁性粒子式電磁連結装置。
(2) The uneven portion is formed in a relatively small shape that is suitable for the magnetic particles to fit into.
The magnetic particle type electromagnetic coupling device described in item 13.
(3)゛前記凹凸部は、不ツチング処場によって形成さ
れる、特許請求の範囲第(1)項または第(2)項記載
の磁性粒子式電磁連結装置。
(3) The magnetic particle type electromagnetic coupling device according to claim (1) or (2), wherein the uneven portion is formed by a non-etching process.
(4)前記エツチング厖雛は、前記第1および第2の連
結部の連結面を洗浄脱脂し、印刷法により所定のパター
ンで耐腐触性のレジスト膜を被着して乾燥させ、塩化I
!2鉄のエツチング溶液中に浸漬することによって処理
される、特許請求の範囲第(3)項記載の磁性粒子式電
磁連結装置。
(4) The etching plate is prepared by cleaning and degreasing the connecting surfaces of the first and second connecting portions, applying a corrosion-resistant resist film in a predetermined pattern by a printing method, and drying it.
! A magnetic particle type electromagnetic coupling device according to claim 3, which is processed by immersion in a diiron etching solution.
JP12970981A 1981-08-18 1981-08-18 Magnetic particle type electromagnetic coupling device Pending JPS5830533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12970981A JPS5830533A (en) 1981-08-18 1981-08-18 Magnetic particle type electromagnetic coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12970981A JPS5830533A (en) 1981-08-18 1981-08-18 Magnetic particle type electromagnetic coupling device

Publications (1)

Publication Number Publication Date
JPS5830533A true JPS5830533A (en) 1983-02-23

Family

ID=15016258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12970981A Pending JPS5830533A (en) 1981-08-18 1981-08-18 Magnetic particle type electromagnetic coupling device

Country Status (1)

Country Link
JP (1) JPS5830533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204142A (en) * 1987-02-19 1988-08-23 Ishikawajima Harima Heavy Ind Co Ltd Cracking inspection for concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204142A (en) * 1987-02-19 1988-08-23 Ishikawajima Harima Heavy Ind Co Ltd Cracking inspection for concrete

Similar Documents

Publication Publication Date Title
US6347905B1 (en) Connecting element for the frictional connection of components
EP0789818B1 (en) Engine bearing surface treatment
KR100987165B1 (en) Methods and tool for maintenance of hard surfaces, and a method for manufacturing such a tool
EP1787751B1 (en) Use of a system for for everyday maintenance of a hard floor surface of stone or stone-like material
CZ293380B6 (en) Connecting element for connection of structural parts and process for producing thereof
JPS6084424A (en) Manufacture of sliding joint part, sliding joint assembly and part with spline
JPS6026814A (en) Thrust bearing
JP5332597B2 (en) Grinding wheel
JPS5830533A (en) Magnetic particle type electromagnetic coupling device
KR20120120168A (en) Magnetic fixture
US2208975A (en) Open line shaft bearing
JPS626989Y2 (en)
JPS5830534A (en) Magnetic particle type electromagnetic coupling device
CA2802659A1 (en) Method for protecting a component of a hydraulic machine against erosion
WO2020062701A1 (en) Float polishing device and method for small-size complex surface part
JP2713712B2 (en) Electromagnetic wet clutch device
JP2004281617A (en) Substrate transport device and substrate processing equipment provided therewith
JPS5989823A (en) Fluid bearing device
JP2002327764A (en) Bearing waterproof structure and disc cleaning device
TWM498087U (en) Polishing wheel and fastening jigthereof
JPH1177548A (en) Arraying method for non-magnetic material
CN218474991U (en) Wear-resisting rotor structure of filter pump
JP3936527B2 (en) Manufacturing method of hydrodynamic bearing device
JPH0424572B2 (en)
JP2004205009A (en) Manufacturing method for pulley