JPS5830287B2 - hydroquinone water - Google Patents

hydroquinone water

Info

Publication number
JPS5830287B2
JPS5830287B2 JP5326075A JP5326075A JPS5830287B2 JP S5830287 B2 JPS5830287 B2 JP S5830287B2 JP 5326075 A JP5326075 A JP 5326075A JP 5326075 A JP5326075 A JP 5326075A JP S5830287 B2 JPS5830287 B2 JP S5830287B2
Authority
JP
Japan
Prior art keywords
aqueous solution
hydroquinone
solution
acid
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5326075A
Other languages
Japanese (ja)
Other versions
JPS51128924A (en
Inventor
勲 宮之原
亨 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP5326075A priority Critical patent/JPS5830287B2/en
Publication of JPS51128924A publication Critical patent/JPS51128924A/en
Publication of JPS5830287B2 publication Critical patent/JPS5830287B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はパラジイソプロピルベンゼンを酸化して得たパ
ラジイソプロピルベンゼンハイドロパーオキサイド(以
下「パーオキサイド」という)を酸分解することにより
、ハイドロキノン水溶液を製造することに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to producing an aqueous hydroquinone solution by acid decomposing para-diisopropylbenzene hydroperoxide (hereinafter referred to as "peroxide") obtained by oxidizing para-diisopropylbenzene.

本発明者等はパーオキサイドを酸分解して得た酸分解反
応液から、無色透明なハイドロキノン水溶液を分離・精
製する工業的な手法につき、検討した結果、その新しい
手段を発見し、工業的にも、極めて有効な新規ハイドロ
キノンの製造方法を発明するに至った。
The present inventors investigated an industrial method for separating and purifying a colorless and transparent hydroquinone aqueous solution from an acid decomposition reaction solution obtained by acid decomposing peroxide, and as a result, discovered a new method and found an industrial method to do so. have also invented a new and extremely effective method for producing hydroquinone.

本発明は、バラジイソプロピルベンゼンを酸化して得た
パーオキサイドを、これをよく溶解する有機溶媒に溶解
した状態で酸触媒と接触させることにより、酸分解反応
を行わしめ、酸分解反応液をアルカリ水溶液で中和する
際、中和終点をpH3,0以下の低い状態にpHをとど
めて、酸分解に用いた有機溶媒及びパーオキサイドの酸
分解で生成したアセトンを蒸留留去し、蒸留残留水溶液
中に含まれる有機性不純分を、水に不溶性又は難溶性の
有機溶剤を用い、上記残留水溶液から抽出除去すること
により抽出残留水溶液として、ハイドロキノンを取得す
るハイドロキノン水溶液の製造方法である。
In the present invention, peroxide obtained by oxidizing Baladi isopropylbenzene is brought into contact with an acid catalyst in a state in which it is dissolved in an organic solvent that dissolves it well, thereby carrying out an acid decomposition reaction, and converting the acid decomposition reaction liquid into an alkali. When neutralizing with an aqueous solution, the neutralization end point is kept at a low pH of 3.0 or less, and the organic solvent used for acid decomposition and acetone generated by acid decomposition of peroxide are distilled off, and the residual aqueous solution is distilled off. This is a method for producing a hydroquinone aqueous solution in which hydroquinone is obtained as an extracted residual aqueous solution by extracting and removing organic impurities contained therein from the residual aqueous solution using an organic solvent that is insoluble or poorly soluble in water.

バラジイソプロピルベンゼンの酸化により、パーオキサ
イドを製造し、これを酸分解することにより、ハイドロ
キノンとアセトンとし、以降、蒸留、抽出により、ハイ
ドロキノンを水溶液として分離し、この水溶液からハイ
ドロキノン結晶を取得するハイドロキノンの製造方法は
、従来から、よく知られたハイドロキノンの製造方法で
アル。
Hydroquinone is produced by oxidizing isopropylbenzene to produce peroxide, which is then decomposed with acid to produce hydroquinone and acetone.Then, hydroquinone is separated as an aqueous solution by distillation and extraction, and hydroquinone crystals are obtained from this aqueous solution. The production method is the well-known hydroquinone production method.

しかるに、上記の工程を経るハイドロキノンの製造方法
の場合、酸化工程で生じた種々の副生物が、必然的にパ
ーオキサイドに混入し、また、これら不純物は、更に酸
分解工程で化学変化等をするため、正体不明の種々の不
純物がハイドロキノンと共に酸分解反応液に含まれてく
る。
However, in the case of the method for producing hydroquinone that involves the above steps, various by-products generated in the oxidation step inevitably mix with the peroxide, and these impurities undergo further chemical changes in the acid decomposition step. Therefore, various unidentified impurities are included in the acid decomposition reaction solution together with hydroquinone.

これがため、酸分解反応液は黒褐色、ないし赤褐色を帯
びた溶液として得られるのが普通で、このようなハイド
ロキノン溶液から得られるハイドロキノン結晶もまた汚
染された赤褐色を帯びた製品となり、このような汚染さ
れた酸分解液からは、通常の蒸留、抽出、晶析等の精製
・分離手段では、純白、針状のハイドロキノン結晶の製
造は、事実上、不可能とされて来た。
For this reason, the acid decomposition reaction solution is usually obtained as a blackish brown or reddish brown solution, and the hydroquinone crystals obtained from such a hydroquinone solution are also a contaminated reddish brown product. It has been virtually impossible to produce pure white, acicular hydroquinone crystals from the acid-decomposed solution using conventional purification and separation methods such as distillation, extraction, and crystallization.

しかるに、ハイドロキノンの消費される用途の大半は、
写真現像用、とか、高分子モノマー重合防止用等の分野
であるがため、品質に対する要*が極めて厳しいもので
あることは、JIS規格又はASA規格に見られる通り
である。
However, most of the uses in which hydroquinone is consumed are;
Since it is used in fields such as photographic development and polymerization prevention of polymeric monomers, the requirements for quality are extremely strict, as seen in the JIS and ASA standards.

従って、上記の製造方法で製造されるハイドロキノンは
、従来大量の活性炭を用いて脱色でもしない限り、この
ような分野での使用は、従来不可能とされて来た。
Therefore, it has hitherto been impossible to use hydroquinone produced by the above-mentioned production method in such fields unless it is decolorized using a large amount of activated carbon.

本発明者等は、パーオキサイドの酸分解によって得たハ
イドロキノンを含む酸分解液について詳細な検討を重ね
た結果、該溶液中に共存する有機性不純物はpHが低い
状態では水に対して不溶性であるが、pHが高い状態で
はこれが水溶液となるという驚くべき事実を見出し、該
酸分解液をアルカリ水溶液で中和する際、該溶液のpH
を3.0以下に保持した状態で、アセトン等の溶媒類を
蒸留により留去し、残留水溶液をベンゼン等の有機溶剤
で抽出し、ハイドロキノンを抽出残留水溶液として取得
することにより、上記用途を含めた、いづれの分野に於
いても使用可能な、純白、針状ハイドロキノン結晶を容
易に製造出来るハイドロキノン水溶液の製造方法を確立
した。
As a result of repeated detailed studies on the acid decomposition solution containing hydroquinone obtained by acid decomposition of peroxide, the present inventors found that organic impurities coexisting in the solution are insoluble in water at low pH. However, we discovered the surprising fact that when the pH is high, this becomes an aqueous solution, and when the acid decomposition solution is neutralized with an alkaline aqueous solution, the pH of the solution
3.0 or less, remove solvents such as acetone by distillation, extract the residual aqueous solution with an organic solvent such as benzene, and obtain hydroquinone as the extracted residual aqueous solution. In addition, we have established a method for producing an aqueous hydroquinone solution that can easily produce pure white, acicular hydroquinone crystals that can be used in any field.

本発明に於いて、パーオキサイドは、上述の如く、パラ
ジイソプロピルベンゼンを酸化して得たものを使用する
In the present invention, the peroxide used is one obtained by oxidizing paradiisopropylbenzene as described above.

本発明法の各工程は回分式でも可能であるが、工業的に
は、連続式にて行なうのが有利である。
Although each step of the method of the present invention can be carried out batchwise, it is industrially advantageous to carry out the process continuously.

酸分解反応に於ける溶媒はパーオキサイドを溶解するも
のであればどのような有機溶剤でもよいが、パーオキサ
イドの酸分解によってアセトンが生成するから、アセト
ンを用いるのが、工業的には有利な方法である。
The solvent in the acid decomposition reaction may be any organic solvent as long as it dissolves peroxide, but since acetone is produced by acid decomposition of peroxide, it is industrially advantageous to use acetone. It's a method.

パーオキサイドはアセトンに溶解し、濃度10〜30重
量パーセントの溶液として用いる。
Peroxide is dissolved in acetone and used as a solution with a concentration of 10 to 30 weight percent.

酸触媒は鉱酸、有機酸いづれでもよいが、硫酸が好適で
ある。
The acid catalyst may be either a mineral acid or an organic acid, but sulfuric acid is preferred.

触媒硫酸としては濃度70〜98重量パーセントの水を
多く含まないものをアセトンに溶解し、硫酸濃度0.5
〜20重量パーセントとしたアセトン溶液を用いる。
As the catalytic sulfuric acid, sulfuric acid with a concentration of 70 to 98% by weight that does not contain much water is dissolved in acetone, and the sulfuric acid concentration is 0.5.
An acetone solution of ~20 weight percent is used.

酸分解反応温度は70℃以下の所定温度に一定に保つの
がよい。
The acid decomposition reaction temperature is preferably kept constant at a predetermined temperature of 70° C. or lower.

パーオキサイド及び触媒硫酸の両溶液は連続的に、一定
割合で酸分解槽に供給する。
Both peroxide and catalytic sulfuric acid solutions are continuously fed to the acid decomposition tank at a constant rate.

酸分解槽にあってパーオキサイドの濃度は、これが酸分
解しないと仮定して、10〜30重量パーセントに、触
媒硫酸濃度は0.1〜1.5重量パーセントにあること
が望ましい。
Preferably, the peroxide concentration in the acid decomposition tank is 10 to 30 weight percent, and the catalytic sulfuric acid concentration is 0.1 to 1.5 weight percent, assuming that it is not acid-decomposed.

酸分解反応終了後、酸分解液は中和槽に導き、苛性ソー
ダ、炭酸ソーダ、アンモニア等のアルカリ水溶液で中和
するが、この中和の際、中和の終点はpHを3.0以下
の不完全な中和状態にとどめる。
After the acid decomposition reaction is completed, the acid decomposition solution is led to a neutralization tank and neutralized with an alkaline aqueous solution such as caustic soda, soda carbonate, or ammonia. remain in an incompletely neutralized state.

中和に用いるアルカリ水溶液の濃度は0.5〜5.OX
重量パーセントあるのが好適である。
The concentration of the alkaline aqueous solution used for neutralization is 0.5 to 5. OX
Preferably, the weight percent.

中和生成塩を分離する場合はアルカリ水溶液濃度は1.
20重量パーセント以上であることが望ましいが、あと
の蒸留工程でハイドロキノンの結晶析出を防ぐにはアル
カリ濃度が低い方が望ましい。
When separating the neutralized salt, the alkaline aqueous solution concentration is 1.
Although it is desirable that the alkali concentration be 20% by weight or more, a lower alkali concentration is desirable in order to prevent crystal precipitation of hydroquinone in the subsequent distillation step.

従って、高濃度のアルカリ水溶液を使用する場合は、中
和生成塩を流過等の手段で分離除去後、蒸留工程でハイ
ドロキノン結晶の析出を防止するに十分な水を此処で補
給しておく。
Therefore, when using a highly concentrated alkaline aqueous solution, after separating and removing the neutralized salt by means such as filtration, sufficient water is replenished here to prevent the precipitation of hydroquinone crystals in the distillation process.

酸分解液の中和終点はpH3,0以下であれば、最終的
に得られるハイドロキノンの品質に何ら支障はないが、
工業的には、装置材料の腐蝕をさける目的で、pHの範
囲が2.0〜3.0にあるのが好適である。
As long as the neutralization end point of the acid decomposition solution is below pH 3.0, there will be no problem with the quality of the hydroquinone finally obtained.
Industrially, it is preferable that the pH range is from 2.0 to 3.0 in order to avoid corrosion of equipment materials.

中和を終えた酸分解液はpHをそのま\の低い状態に維
持したまS蒸留によりアセトンを留去せしめる。
After neutralization, the acid decomposed solution is subjected to S distillation to remove acetone while maintaining its pH at a low level.

ハイドロキノンは蒸留残留水溶液として取得されるが、
この水溶液は、いまだ有機性高沸点不純分を含んでいる
ので、これらを水に不溶性、又は難溶性のベンゼン等の
有機溶剤を用い抽出除去する。
Hydroquinone is obtained as a distillation residual aqueous solution,
Since this aqueous solution still contains organic high-boiling point impurities, these are extracted and removed using an organic solvent such as benzene that is insoluble or sparingly soluble in water.

ハイドロキノンは抽出水層、つまり水溶液として得られ
る。
Hydroquinone is obtained as an extracted aqueous layer, that is, an aqueous solution.

このようにして得られたハイドロキノン水溶液の着色程
度の判断は、ハイドロキノン濃度を約15重量パーセン
トとして、光電比色計を用い、波長3500mの光透過
率をもって行った。
The degree of coloring of the hydroquinone aqueous solution thus obtained was determined by setting the hydroquinone concentration to about 15% by weight and using a photoelectric colorimeter based on the light transmittance at a wavelength of 3500 m.

以下実施例をもって、更に詳細に本発明を説明する。The present invention will be explained in more detail with reference to Examples below.

もとよりこれらの実施例は何ら本発明を拘束するもので
はない。
Of course, these Examples do not restrict the present invention in any way.

実施例 1 バラジイソプロピルベンゼンを酸化して得たパーオキサ
イドを含水率1.0重量パーセントのアセトンに溶解し
、19重量パーセントとしたアセトン溶液と、濃度98
重量パーセントの濃硫酸を上記含水率のアセトンに溶解
し、硫酸濃度を2.7重量パーセントとしたアセトン溶
液をそれぞれ、流速、2100重量部/時間、及び、4
85重量部/時間の割合で酸分解槽に供給し、均一にな
るよう混合攪拌し、反応温度を50±1℃に保持した。
Example 1 Acetone solution obtained by oxidizing baradiisopropylbenzene was dissolved in acetone with a moisture content of 1.0% by weight to make an acetone solution of 19% by weight, and an acetone solution with a concentration of 98% by weight was prepared.
Concentrated sulfuric acid of weight percent was dissolved in acetone of the above water content, and an acetone solution with a sulfuric acid concentration of 2.7 weight percent was prepared at a flow rate of 2100 parts by weight/hour and 4.
The mixture was supplied to the acid decomposition tank at a rate of 85 parts by weight/hour, mixed and stirred uniformly, and the reaction temperature was maintained at 50±1°C.

滞留時間を1.5時間とし、溢流する酸分解液を中和槽
に導き、濃度1.26重量パーセントの炭酸ソーダ水溶
液を952重量部/時間の流速で中和槽に供給し、酸分
解液を中和した。
The residence time was set to 1.5 hours, and the overflowing acid decomposition liquid was led to the neutralization tank, and a sodium carbonate aqueous solution with a concentration of 1.26 weight percent was supplied to the neutralization tank at a flow rate of 952 parts by weight/hour. The liquid was neutralized.

中和液は更に少量の上記炭酸ソーダ水溶液でpH2,5
に微調整した後、該中和液を回分式蒸留装置でアセトン
を完全に留去せしめ、得られた残留水溶液に、その約1
73重量部のベンゼンを加え、液温を65℃とし、30
分間激しく攪拌混合した後、5分間静止し、下層の水相
を分離した。
The neutralization solution is further adjusted to pH 2.5 with a small amount of the above sodium carbonate aqueous solution.
After finely adjusting the acetone, the acetone is completely distilled off from the neutralized solution using a batch distillation apparatus, and about 1% of the acetone is added to the resulting residual aqueous solution.
73 parts by weight of benzene was added, the liquid temperature was adjusted to 65°C, and 30 parts by weight was added.
After stirring and mixing vigorously for a minute, the mixture was allowed to stand still for 5 minutes, and the lower aqueous phase was separated.

該1層水相にベンゼンを加え、同様の操作を2回繰り返
し、ベンゼン抽出分離水溶液を取得した。
Benzene was added to the single aqueous phase, and the same operation was repeated twice to obtain a benzene extracted and separated aqueous solution.

この水溶液のハイドロキノンをJIS−8738の方法
で化学分析し、ハイドロキノン濃度14.83重量パー
セントの値を得た。
Hydroquinone in this aqueous solution was chemically analyzed by the method of JIS-8738, and a hydroquinone concentration of 14.83 weight percent was obtained.

又、島津−ボシュロム製光電比色計゛エレクトロニクス
−20′”による波長350 nmに於ける、この水溶
液の光透過率は13.5%であった。
The light transmittance of this aqueous solution at a wavelength of 350 nm measured by a photoelectric colorimeter "Electronics-20'" manufactured by Shimadzu-Bausch & Lomb was 13.5%.

この光透過率は着色度の高い水溶液はど小さな値を示し
、着色度の低い、つまり精製度の良い水溶液はど大きな
値を示すものであり、透過率20%以下のものは赤褐色
である。
This light transmittance shows a very small value for an aqueous solution with a high degree of coloring, and a high value for an aqueous solution with a low degree of coloring, that is, a highly purified aqueous solution, and those with a transmittance of 20% or less are reddish brown.

尚、波長320〜800 nmの可視光の範囲で、蒸留
水を比較サンプルとして実施例と同一の方法によって得
たハイドロキノン水溶液の各波長の光透過率を測定した
ところ、光吸収が最大となる波長は350 nm近辺で
あった。
In addition, when measuring the light transmittance of each wavelength of a hydroquinone aqueous solution obtained by the same method as in the example using distilled water as a comparison sample in the visible light range of wavelengths 320 to 800 nm, the wavelength at which the light absorption is maximum was determined. was around 350 nm.

(図−1)実施例 2 実施例1と同様の方法で酸分解して得た酸分解液に、濃
度290重量パーセントの苛性ソーダ水溶液を350重
量部/時間の割合で供給し、中和液をpH20に微調し
、生成芒硝を濾過分離した後、この溶液100重量部に
対し、蒸留水約20重量部の比率で、水を補給し、実施
例1と同様にして、アセトンを蒸留々去、ベンゼン抽出
を行い、ハイドロキノン濃度14.85重量パーセント
の水溶液を取得した。
(Figure-1) Example 2 A caustic soda aqueous solution with a concentration of 290% by weight was supplied at a rate of 350 parts by weight/hour to the acid decomposed liquid obtained by acid decomposition in the same manner as in Example 1, and the neutralized liquid was After finely adjusting the pH to 20 and separating the produced Glauber's salt by filtration, water was replenished at a ratio of about 20 parts by weight of distilled water to 100 parts by weight of this solution, and in the same manner as in Example 1, acetone was distilled off. Benzene extraction was performed to obtain an aqueous solution having a hydroquinone concentration of 14.85% by weight.

光電比色計による波長350 nmに於ける透過率は1
6.2%であった。
The transmittance at a wavelength of 350 nm measured by a photoelectric colorimeter is 1
It was 6.2%.

以下実施例1及び2と同様の方法で、酸分解中和液のp
Hを種々変えた実験を行い、それぞれの水溶液を得た。
Hereinafter, in the same manner as in Examples 1 and 2, p
Experiments were conducted with various amounts of H, and aqueous solutions were obtained for each.

それら水溶液の波長350 nmに於ける光透過率とp
Hの関係は図−2に示す通りであった。
The light transmittance of these aqueous solutions at a wavelength of 350 nm and p
The relationship of H was as shown in Figure 2.

尚、pH3,0以上のものは比較例として記載したもの
である。
In addition, those having a pH of 3.0 or more are described as comparative examples.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は実施例と同様な方法によって得た、ハイドロキ
ノン濃度が15±0.3重量パーセントの水溶液の光透
過を可視光の範囲(320〜800nm )で測定した
光透過曲線図である。 図−2は実施例と同様の方法で得たベンゼン抽出分離水
溶液の波長350 nmに於ける光透過率を縦軸に、横
軸に酸分解中和液のpHをとったものである。
FIG. 1 is a light transmission curve diagram obtained by measuring the light transmission of an aqueous solution having a hydroquinone concentration of 15±0.3 weight percent in the visible light range (320 to 800 nm) obtained by the same method as in Examples. In Figure 2, the vertical axis represents the light transmittance at a wavelength of 350 nm of a benzene extracted and separated aqueous solution obtained in the same manner as in the example, and the horizontal axis represents the pH of the acid-decomposed and neutralized solution.

Claims (1)

【特許請求の範囲】[Claims] 1 バラジイソプロピルベンゼンを酸化して得たパラジ
イソプロピルベンゼンハイドロパーオキサイドの酸分解
反応液をアルカリ水溶液で中和し、ついで、蒸留により
、アセトンを留去し、その残留水溶液から有機溶剤で有
機性不純分を抽出除去して、ハイドロキノン水溶液を製
造するにあたり、前記中和の終点を、pH3,0以下に
保持することを特徴とするハイドロキノン水溶液の製造
方法。
1 The acid decomposition reaction solution of para-di-isopropylbenzene hydroperoxide obtained by oxidizing para-di-isopropylbenzene is neutralized with an alkaline aqueous solution, then acetone is distilled off, and organic impurities are removed from the remaining aqueous solution with an organic solvent. 1. A method for producing a hydroquinone aqueous solution, which comprises maintaining the end point of the neutralization at pH 3.0 or lower in producing the hydroquinone aqueous solution by extracting and removing components.
JP5326075A 1975-05-06 1975-05-06 hydroquinone water Expired JPS5830287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5326075A JPS5830287B2 (en) 1975-05-06 1975-05-06 hydroquinone water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326075A JPS5830287B2 (en) 1975-05-06 1975-05-06 hydroquinone water

Publications (2)

Publication Number Publication Date
JPS51128924A JPS51128924A (en) 1976-11-10
JPS5830287B2 true JPS5830287B2 (en) 1983-06-28

Family

ID=12937799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326075A Expired JPS5830287B2 (en) 1975-05-06 1975-05-06 hydroquinone water

Country Status (1)

Country Link
JP (1) JPS5830287B2 (en)

Also Published As

Publication number Publication date
JPS51128924A (en) 1976-11-10

Similar Documents

Publication Publication Date Title
US2715646A (en) Manufacture of dhsopropylbenzene hydroperoxides
US3840591A (en) Process for the production of p-nitrotoluene-2-sulfonic acid
Vogt et al. THE ROLE OF MERCURY SALTS IN THE CATALYTIC TRANSFORMATION OF ACETYLENE INTO ACETALYDEHYDE, AND A NEW COMMERCIAL PROCESS FOR THE MANUFACTURE OF PARALDEHYDE.
JPS5830287B2 (en) hydroquinone water
US1401937A (en) Purification of maleic acid by reducing agents
EP0411209B1 (en) Decolorization of alkanesulfonic and arenesulfonic acids
US4557873A (en) Process for isolating paraffinsulfonates and sulfuric acid of low alkali metal sulfate content from parafinsulfoxidation reaction mixtures
US3927124A (en) Process for the neutralization of alkyl aromatic hydroperoxide rearrangement reaction products
EP0000464B1 (en) Process for the purification of mercapto benzothiazole
US4324665A (en) Process for recovering bromine from waste liquid
US2898350A (en) Ozonolysis of coal-tar products
JP2013540703A (en) Method for producing dicyclohexyl disulfide
US3994942A (en) Method for purifying 11-cyano-undecanoic acid
JPH0225449A (en) Production of allyl acetate
GB1583117A (en) Purifying paraffins by the selective oxidation of non-paraffinic impurities
US2101998A (en) Purification of lactic acid
KR0138245B1 (en) Preparation process of caprolactam
JPS5822109B2 (en) Production method of thiourea dioxide
JPH03188057A (en) Decoloring purification of alkali metal salt of aminoethylsulfonic acid
JPS5896035A (en) Purification of phloroglucin
JPS583754B2 (en) Phenol Ruiofukumu High Suino Shiyorihouhou
JPH0561257B2 (en)
US3849452A (en) Process for producing alpha-anthraquinone-sulfonates with low mercury content
US2210268A (en) Process for the conversion of chlorine dioxide into a solid form
US3849488A (en) Isolation and purification of 3,4-dihydroxy phenylalanine