JPS583013B2 - Continuous heating device for metal caps - Google Patents
Continuous heating device for metal capsInfo
- Publication number
- JPS583013B2 JPS583013B2 JP53087079A JP8707978A JPS583013B2 JP S583013 B2 JPS583013 B2 JP S583013B2 JP 53087079 A JP53087079 A JP 53087079A JP 8707978 A JP8707978 A JP 8707978A JP S583013 B2 JPS583013 B2 JP S583013B2
- Authority
- JP
- Japan
- Prior art keywords
- cap
- heating device
- heating
- conductor
- guide plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 title claims description 57
- 229910052751 metal Inorganic materials 0.000 title claims description 39
- 239000002184 metal Substances 0.000 title claims description 39
- 239000004020 conductor Substances 0.000 claims description 43
- 238000012546 transfer Methods 0.000 claims description 6
- 238000005339 levitation Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 3
- 230000005291 magnetic effect Effects 0.000 description 12
- 238000003825 pressing Methods 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- -1 polyethylene Polymers 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 230000006698 induction Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920001342 Bakelite® Polymers 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- 239000004637 bakelite Substances 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000005341 toughened glass Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Heat Treatment Of Articles (AREA)
Description
【発明の詳細な説明】
本発明は金属キャップの連続的な加熱装置に関し、さら
に詳しくは、特にアルミニウムのような非磁性金属のキ
ャップの加熱に好適に使用される連続高周波加熱装置に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous heating device for metal caps, and more particularly to a continuous high-frequency heating device that is particularly suitable for heating caps made of non-magnetic metals such as aluminum.
ここに金属キャップとは、金属板の浅絞り又は深絞り加
工によって製造され、さらに必要に応じてねじ付け等の
加工が施されたカップ又はキャップ、あるいは王冠類等
をいい、ピルファー・プルーフ・キャップ(pilfe
r proof cap)類等をも含むものである。Here, the metal cap refers to a cup or cap, or a crown, etc., manufactured by shallow drawing or deep drawing of a metal plate, and which is further processed with screws as necessary, and includes a pilfer-proof cap. (pilfe
This also includes products such as r proof caps.
加熱前の金属キャップは無塗装のもの、印刷・塗装を施
こしたもの、底部内面に接着剤を塗布したもの、あるい
は熱可塑性樹脂ライニングを施したもの等を含む。The metal cap before heating may be unpainted, printed or painted, coated with adhesive on the inner surface of the bottom, or lined with thermoplastic resin.
本発明に好適に使用されるキャップ素材はアルミニウム
又はアルミニウム合金薄板あるいは銅、真鍮のような非
磁性金属板であるが、低炭素鋼板の如き磁性金属板も後
述のように条件によっては使用することができる。The cap material preferably used in the present invention is an aluminum or aluminum alloy thin plate, or a non-magnetic metal plate such as copper or brass, but a magnetic metal plate such as a low carbon steel plate may also be used depending on the conditions as described below. I can do it.
金属キャップのうち、特にボルトや広口瓶等の容器の開
口部の密封用に使用されるものは、バッキング材として
、キャップの内底面にコルク又は塩化ビニールやポリエ
チレン、ポリプロピレン等の熱可塑性樹脂シート(ライ
ナー)がライニングされている。Among metal caps, those used especially for sealing the openings of containers such as bolts and wide-mouthed bottles have cork or a thermoplastic resin sheet (such as vinyl chloride, polyethylene, or polypropylene) on the inner bottom surface of the cap as a backing material. liner) is lined.
特に最近は後者の使用が増えているが、この場合キャッ
プ内底面にライナーを固着させるために、一般に内底面
に接着性プライマーが塗布されたキャップにライナー材
を装入し、その装入の前工程又は後工程においてキャッ
プ底面を約100〜200℃に加熱する手段が採用され
ている。In particular, the use of the latter has been increasing recently, but in this case, in order to fix the liner to the inner bottom of the cap, the liner material is generally inserted into the cap whose inner bottom has been coated with an adhesive primer. Means for heating the bottom surface of the cap to approximately 100 to 200° C. in the process or post-process is employed.
従来、金属キャップのうち王冠(一般にブリキやテイン
フリースチールのような強磁性体よりなっている)の連
続加熱装置としては、特公昭41−5588号に開示さ
れているような加熱空気による加熱装置が知られている
。Conventionally, as a continuous heating device for the crown of a metal cap (generally made of ferromagnetic material such as tin plate or stainless steel), a heating device using heated air as disclosed in Japanese Patent Publication No. 41-5588 has been used. It has been known.
この場合王冠は、ターンテーブルの周縁部に隔離して設
けられた多数の切欠部の上部に形成された皿穴状内側突
出部に王冠フレア部が着座せしめられて移送されながら
約160℃に加熱される。In this case, the crown is heated to approximately 160°C while being transferred with the crown flared portion seated on the countersink-shaped inner protrusion formed at the top of a number of notches provided separately on the periphery of the turntable. be done.
この種の加熱方式では加熱に長時間を要するため、例え
ば毎分約1000個のような高速加熱を行なうためには
、長大な加熱部を必要として、設備がコンパクトに纏め
られない欠点がある。This type of heating method requires a long time for heating, so in order to perform high-speed heating of about 1,000 pieces per minute, for example, a long heating section is required, which has the disadvantage that the equipment cannot be made compact.
また必らずしも加熱を必要としない胴壁部までをも加熱
するという問題点がある。There is also the problem that even the trunk wall portion, which does not necessarily require heating, is heated.
以上のような欠点を解消する手段として、特公昭47−
41398号に提案されているような高周波加熱装置が
ある。As a means to eliminate the above-mentioned drawbacks,
There is a high frequency heating device as proposed in No. 41398.
これはコンベヤー上に載置されて送られる王冠を、コン
ベヤーの下部に設けられたヘアピン状の高周波加熱コイ
ルによって急速加熱する装置であるが、本発明者等の実
験によれば、このような装置によっては、磁束を集中で
きる強磁性体よりなる王冠に対しては有効に加熱するこ
とができるが、アルミニウムキャップのような非磁性金
属キャップの場合は加熱が全く不可能なことが判明した
。This is a device that rapidly heats the crown placed on a conveyor and sent by a hairpin-shaped high-frequency heating coil installed at the bottom of the conveyor.According to experiments conducted by the inventors, such a device In some cases, it has been found that although it is possible to effectively heat a crown made of a ferromagnetic material capable of concentrating magnetic flux, heating is not possible at all in the case of a non-magnetic metal cap such as an aluminum cap.
すなわち加熱コイルとキャップの間にはある厚みを有す
るコンベアが介在しているので、両者間の相互誘導係数
が非常に小さくてキャップの温度が殆んど上らない。That is, since a conveyor having a certain thickness is interposed between the heating coil and the cap, the mutual induction coefficient between the two is very small, and the temperature of the cap hardly rises.
又相互誘導係数を高めるために実用的でない程度までコ
ンベアを薄くして両者を接近せしめた場合は、キャップ
がコンベア上を浮上、跳躍して、やはり加熱が全く不可
能であった。In addition, when the conveyor was made to be impractically thin to increase the mutual induction coefficient and the two were brought close to each other, the cap floated and jumped on the conveyor, making heating completely impossible.
跳躍の原因は、アルミニウムキャップ底部及びその近傍
に誘起された誘導電流と高周波コイル磁界とによって形
成される反発作用によるものである。The cause of the jump is the repulsion effect formed by the induced current induced at and near the bottom of the aluminum cap and the high-frequency coil magnetic field.
王冠のような強磁性金属キャップの場合は、一般には高
周波電流によって生ずる磁界によってキャップ自体が磁
界されて、高周波電流導体の方向に作用する吸引力が生
成し、この吸引力が誘導電流にもとづく反発力より大き
いので上記のような跳躍は通常は起らない。In the case of a ferromagnetic metal cap such as a crown, the cap itself is generally magnetically fielded by the magnetic field generated by the high-frequency current, creating an attractive force acting in the direction of the high-frequency current conductor, which in turn creates a repulsion based on the induced current. Since the force is greater than the force, a jump like the one described above usually does not occur.
本発明者等は上記従来技術の問題点を解消するため種々
研究の結果、高周波加熱コイルと対向して金属キャップ
がその中間に入るように、上下方向に移動可能な案内盤
を設け、高周波電流により浮上しようとする金属キャッ
プをスプリング圧を介して案内盤によって押圧しながら
移送し、このようにして金属キャップの高さの若干の変
動に拘らず、金属キャップ底部と高周波コイル間の距離
を可及的小さくかつ一定にすることによって、加熱効率
を高め、また底部の比較的均一な加熱が可能となること
を見出した。In order to solve the above-mentioned problems of the prior art, the inventors of the present invention have carried out various studies, and have provided a guide plate that is movable in the vertical direction so that it faces the high-frequency heating coil and the metal cap is placed between them. The metal cap that is about to float is transferred while being pressed by the guide plate using spring pressure, and in this way, the distance between the bottom of the metal cap and the high-frequency coil can be maintained regardless of slight fluctuations in the height of the metal cap. It has been found that heating efficiency can be increased and relatively uniform heating of the bottom can be achieved by keeping the temperature as small and constant as possible.
本発明の主たる目的は、特に非磁性金属キャップ底部の
高速、連続、多量加熱に適した加熱装置を提供すること
である。The main object of the present invention is to provide a heating device particularly suitable for high-speed, continuous, large-volume heating of the bottom of a non-magnetic metal cap.
本発明の次の目的は、特に非磁性金属キャップの高周波
加熱に適した連続加熱装置を提供することである。Another object of the present invention is to provide a continuous heating device particularly suitable for high-frequency heating of non-magnetic metal caps.
本発明の他の目的は、金属キャップの高さの若干の変動
に拘らず、金属キャップ底部の可及的均一な加熱が可能
な高周波連続加熱装置を提供することである。Another object of the present invention is to provide a high frequency continuous heating device capable of heating the bottom of a metal cap as uniformly as possible, regardless of slight variations in the height of the metal cap.
本発明の特殊の目的は、熱可塑性樹脂ライナーの密着性
賦与のためのアルミニウムキャップの高速・連続加熱装
置を提供することである。A particular object of the present invention is to provide a high-speed, continuous heating device for aluminum caps to impart adhesion to thermoplastic liners.
本発明によれば、間隔が金属キャップ底部の直径より小
であって、かつ電流の方向が互に逆である高周波電流導
体の少なくとも1対と、前記高周波電流導体に対向して
設けられ、かつ高周波電流の作用により浮上力を有する
前記金属キャップの開口端部を対向面においてスプリン
グ圧を介して押圧する案内盤、ならびに前記金属キャッ
プを前記対向面上を滑動せしめる移送装置を具備するこ
とを特徴とする金属キャップの連続加熱装置が提供され
る。According to the present invention, at least one pair of high frequency current conductors having a distance smaller than the diameter of the bottom of the metal cap and having current directions opposite to each other are provided opposite to the high frequency current conductors, and It is characterized by comprising a guide plate that presses the open end of the metal cap, which has a levitation force due to the action of a high-frequency current, on the opposing surface via spring pressure, and a transfer device that slides the metal cap on the opposing surface. A continuous heating device for a metal cap is provided.
以下本発明について、実施例を示す図面を参照しながら
詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to drawings showing examples.
第1図はアルミニウムキャップ(以下キャップとよぶ)
の連続加熱装置1及びその前後附帯設備の概略を示す平
面図である。Figure 1 shows an aluminum cap (hereinafter referred to as the cap)
1 is a plan view schematically showing a continuous heating device 1 and ancillary equipment before and after the same.
キャップの移送装置である回転テーブル2の周縁部には
多数の半円形切欠部3が間隔をおいて設けられており、
シュート4からキャップ5が底部が下側となって、切欠
部3に装入される。A large number of semicircular notches 3 are provided at intervals on the periphery of the rotary table 2, which is a cap transfer device.
The cap 5 is loaded from the chute 4 into the notch 3 with the bottom facing downward.
装入されたキャップ5は回転テーブル2の回転方向(図
の矢印方向)に移送されて、加熱装置1に装入される。The loaded cap 5 is transferred in the rotational direction of the rotary table 2 (in the direction of the arrow in the figure) and loaded into the heating device 1.
なお加熱装置1に入る前、及び出た後のキャップは図示
されていないガイド上を滑動する。Note that the cap slides on a guide (not shown) before entering the heating device 1 and after leaving the heating device 1.
加熱装置1は高周波電源6から電流を供袷される高周波
電流導体7及び複数個の案内盤8及び案内盤支持装置9
ならびにガイド10より構成されている。The heating device 1 includes a high-frequency current conductor 7 to which current is supplied from a high-frequency power source 6, a plurality of guide plates 8, and a guide plate support device 9.
and a guide 10.
第2図は1組の案内盤及びその支持装置を回転テーブル
側からみた正面図であり、第3図は第2図のA−A線に
沿って切断した垂直断面図を示す。FIG. 2 is a front view of a set of guide plates and their support device as seen from the rotary table side, and FIG. 3 is a vertical sectional view taken along line A--A in FIG. 2.
第1図及び第3図において、高周波電流導体7(以下導
体とよぶ)は2本(1対)よりなっているが、各導体の
電流の方向は互に逆であることが重要である。In FIGS. 1 and 3, there are two high-frequency current conductors 7 (hereinafter referred to as conductors) (a pair), but it is important that the current direction of each conductor is opposite to each other.
これは第4図に示すように電流の方向が互に逆の場合は
、非磁性体であるアルミニウム底部及び胴壁部下部に誘
起された誘導電流が閉回路13を形成して多量に流れる
のでジュール熱による温度上昇も効率よく行なわれるが
、電流の方向が同じ場合は第4図のような閉回路を形成
せず誘導電流誘起の効率が低いため温度上昇が殆んど認
められないからである。This is because when the current directions are opposite to each other as shown in Fig. 4, the induced current induced in the non-magnetic aluminum bottom and the lower part of the body wall forms a closed circuit 13 and flows in large quantities. Temperature rise due to Joule heat is also carried out efficiently, but when the current direction is the same, a closed circuit as shown in Figure 4 is not formed and the efficiency of induced current induction is low, so almost no temperature rise is observed. be.
同じ理由で導体が1本のみの場合も殆んど温度上昇は認
められない。For the same reason, almost no temperature rise is observed when there is only one conductor.
図では1対の導体のみを示したが、キャップ径が大きい
場合等には1対以上の導体を使用した方が、キャップ底
部の温度上昇速度及び温度分布の均一性の点から好まし
い。Although only one pair of conductors is shown in the figure, if the cap diameter is large, it is preferable to use one or more pairs of conductors from the viewpoint of temperature rise rate and uniformity of temperature distribution at the bottom of the cap.
また導体の間隔(導体中心線間の間隔をいう)は金属キ
ャップ底部の直径(円でない場合は最短部の長さ)より
小であることが重要である。It is also important that the spacing between the conductors (meaning the spacing between the center lines of the conductors) is smaller than the diameter of the bottom of the metal cap (if it is not circular, the length of the shortest part).
一方の導体が無効辺となると、加熱効率が著るしく低下
して、キャップの加熱が不可能となるからである。This is because if one of the conductors becomes an ineffective side, the heating efficiency will drop significantly, making it impossible to heat the cap.
さらに前記導体の間隔は、キャップ底部の半径と略等し
いか、稍太であって、かつキャップ底部の中心が導体間
のほぼ中央線を通ることが、加熱効率を高く、温度分布
を均一にする上で好ましい。Further, the spacing between the conductors is approximately equal to or slightly thicker than the radius of the bottom of the cap, and the center of the bottom of the cap passes approximately through the center line between the conductors, which increases heating efficiency and makes temperature distribution uniform. preferred above.
導体7の内部は水冷されている。The inside of the conductor 7 is water-cooled.
導体の直径は加熱されるべきキャップの直径と共に大き
くなる例えば、キャップ直径が15〜25mm、26〜
40mm、及び41〜60mmの場合の好ましい導体直
径は、夫々約4mm、約6mg及び約8mmである。The diameter of the conductor increases with the diameter of the cap to be heated, e.g. when the cap diameter is 15-25 mm, 26-25 mm.
Preferred conductor diameters for 40 mm and 41-60 mm are about 4 mm, about 6 mg, and about 8 mm, respectively.
これはキャップ直径が大きくなるほど、導体に大電流を
流す必要があること、そして導体の直径が小さいと、導
体でのジュール損失が大きくなり、一方導体直径が大き
くなると導体とキャップ間の電磁結合が小さくなって加
熱効率が低下するからである。This is because the larger the cap diameter, the larger the current that needs to flow through the conductor, and the smaller the conductor diameter, the greater the Joule loss in the conductor, while the larger the conductor diameter, the greater the electromagnetic coupling between the conductor and the cap. This is because the heating efficiency decreases as the size becomes smaller.
導体とキャップ底部間の距離の僅かの差によって両者間
の相互誘導係数が敏感に影響されて、キャップ底部の誘
導電流量、従って加熱温度に変化を生ずること、ならび
にキャップ底部と導体間の短絡を防止するため、導体は
第3図に示すようにベークライトのような合成樹脂(真
空管式発振器を用いる場合)、あるいはフエライトのよ
うな絶縁性高透磁率材料(トランジスタ一式発振器を用
いる場合)の固定体11に、エポキシ樹脂のような接着
剤12によって固定して、加熱処理中に導体が不安定に
動くことがないようにすることが好ましい。A slight difference in the distance between the conductor and the bottom of the cap will sensitively affect the mutual induction coefficient between them, causing a change in the amount of induced current at the bottom of the cap, and therefore the heating temperature, as well as short circuits between the bottom of the cap and the conductor. To prevent this, the conductor is a fixed body made of synthetic resin such as Bakelite (when using a vacuum tube oscillator) or an insulating high permeability material such as ferrite (when using a transistor set oscillator), as shown in Figure 3. It is preferable to fix the conductor to 11 with an adhesive 12 such as epoxy resin to prevent the conductor from moving unstably during the heat treatment.
高周波電源6としては、任意の型式のものが使用される
が、100kH2〜10MHz程度の高い周波数の場合
は真空管方式のもの、10kHz〜80kHz程度の周
波数の場合はトランジスタ一方式のものが好適に使用さ
れる。Any type of high-frequency power source 6 can be used, but a vacuum tube type is preferably used for high frequencies of about 100kHz to 10MHz, and a single transistor type is preferably used for frequencies of about 10kHz to 80kHz. be done.
トランジスタ一式発振器の場合は、固定体11に絶縁性
高透磁率材料を用いることによって、導体(コイル)と
キャップ底部の電磁結合度を増して、加熱効率を上げる
とともに、底部加熱の均一性をも上げることができる。In the case of a transistor set oscillator, by using an insulating high permeability material for the fixed body 11, the degree of electromagnetic coupling between the conductor (coil) and the bottom of the cap is increased, increasing heating efficiency and uniformity of bottom heating. can be raised.
しかし真空管式発振器の場合は、使用周波数が高いので
、導体のキャツプ同士の間隙に相当する部分のインピー
ダンスが、絶縁性高透磁率材料を用いることによって高
くなり、電流の流れが妨げられるので、固定体11に絶
縁性高透磁率材料を使用しても効果は少ない。However, in the case of a vacuum tube oscillator, since the operating frequency is high, the impedance of the part corresponding to the gap between the caps of the conductor is increased by using an insulating high permeability material, and current flow is obstructed. Even if an insulating high permeability material is used for the body 11, there is little effect.
またトランジスタ一方式発振器は、動作電圧が低いので
、発生した高周波電力をそのまま導体(加熱コイル)に
供給できるので、出力インピーダンス調整用の出力変流
器を必要とせず、従って効率が高く、かつ装置を小型化
できるという利点を有する。In addition, since the operating voltage of a transistor one-way oscillator is low, the generated high-frequency power can be directly supplied to the conductor (heating coil), so there is no need for an output current transformer to adjust the output impedance, and therefore the efficiency is high and the device It has the advantage that it can be made smaller.
ガイド10は回転テーブルの周縁部を包囲するように円
環状に、かつその下側内径10aと半円形切欠部3の回
転テーブル2の中心に最も近い部分3aとの距離がキャ
ップの外径より僅かに大きくなるように設けられる。The guide 10 is annular so as to surround the peripheral edge of the rotary table, and the distance between its lower inner diameter 10a and the portion 3a of the semicircular notch 3 closest to the center of the rotary table 2 is smaller than the outer diameter of the cap. It is set so that it becomes larger.
前述のように、非磁性体であるキャップが高周波電流導
体上にくると、反発力によってキャップは上方に浮上・
跳躍せしめられる。As mentioned above, when the cap, which is a non-magnetic material, comes on top of a high-frequency current conductor, the cap floats upward due to the repulsive force.
Forced to jump.
案内盤8はこの跳躍・現象のためキャップの加熱が不可
能となるのを防止し、かつその下面8aをキャップ5の
開口端部5aが、移送装置により駆動されて滑動すると
いう機能を有する。The guide plate 8 has the function of preventing the heating of the cap from becoming impossible due to this jumping phenomenon, and that the open end 5a of the cap 5 slides on the lower surface 8a of the guide plate 8 by being driven by the transfer device.
同時に案内盤8は、キャップ底面5bと導体7間の距離
を調節して、キャップ底部の有効な加熱を確保し、かつ
、該底部の温度分布を可及的均一に保持する機能を有す
る。At the same time, the guide plate 8 has the function of adjusting the distance between the cap bottom surface 5b and the conductor 7 to ensure effective heating of the bottom of the cap and to keep the temperature distribution of the bottom as uniform as possible.
案内盤8は幅(短辺)がキャップの外径より稍大きい短
冊状の板であって、短辺の下端部にはテーパがつけられ
ており、キャップの開口端が移送中に引っかからないよ
うになっており、かつ導体7に対向して設けられる。The guide plate 8 is a rectangular plate whose width (short side) is slightly larger than the outer diameter of the cap, and the lower end of the short side is tapered to prevent the open end of the cap from getting caught during transfer. and is provided facing the conductor 7.
なお第3図では、案内盤8の幅はキャップの外径より稍
大きくなっているが、該外径と略等しいか、あるいは若
干小さくても差支えない。In FIG. 3, the width of the guide plate 8 is slightly larger than the outer diameter of the cap, but it may be approximately equal to or slightly smaller than the outer diameter.
案内盤の長辺は長さ方向に曲率を有するか、又は直線で
あって、案内盤を複数個の場合であっても、回転テーブ
ルの中心を中心とする同一円弧上にほぼ載るように配置
されている3案内盤8の長さに特に制限はないが、金属
キャップが同時に数個通過しうる程度の長さであること
が、作業のさいの高さ調節の容易さ等の上から好ましい
。The long side of the guide plate has a curvature in the length direction or is a straight line, and even if there are multiple guide plates, they are arranged so that they almost lie on the same arc centered on the center of the rotary table. There is no particular limit to the length of the three guide plates 8, but it is preferable that the length be long enough to allow several metal caps to pass through at the same time, from the viewpoint of ease of height adjustment during work. .
またこのようにすることによって、途中から高さの異な
るロットのキャップが入ってきた場合、加熱不良品の発
生を最小限に押えることができる。In addition, by doing this, when caps from lots with different heights arrive in the middle, the occurrence of defective products can be minimized.
従って後述の例示のように加熱装置1の全長が80cm
程度に長い場合は、案内盤は複数個よりなることが好ま
しい。Therefore, as shown in the example below, the total length of the heating device 1 is 80 cm.
If the guide plate is relatively long, it is preferable that the guide plate consists of a plurality of pieces.
この場合、隣接する案内盤の間隔が大きすぎると、金属
キャップの案内盤の下にない部分のみが浮上して、キャ
ップが傾いて次の案内盤の入口で引っかかって、作業を
中断したり、極端の場合は、キャップが加熱装置から飛
び出すおそれがある。In this case, if the distance between adjacent guide plates is too large, only the part of the metal cap that is not under the guide plate will float up, causing the cap to tilt and get caught at the entrance of the next guide plate, causing work to be interrupted, or In extreme cases, the cap may fly out of the heating device.
従って、各案内盤は、キャップの移行が円滑に行われる
程度に互に近接していることが必要である。It is therefore necessary that the guide discs be close enough to each other to ensure smooth transition of the cap.
案内盤8は、跳躍したキャップによる衝撃力によって変
形又は損傷を起さないこと、またその下面にはキャップ
開口端部の滑動を妨げるような凹凸がないこと、さらに
上記滑動による摩耗・損傷の起らないこと等の条件を満
たす限り、特に制限はないが、これらの条件を満たす上
で、セラミック板、特に約5〜10mm厚の強化ガラス
板を使用することが好ましい。The guide plate 8 should not be deformed or damaged by the impact force of the jumped cap, should not have any unevenness on its lower surface that would prevent the opening end of the cap from sliding, and should not be subject to wear or damage due to the above-mentioned sliding. Although there are no particular limitations as long as conditions such as not being present are satisfied, it is preferable to use a ceramic plate, particularly a tempered glass plate with a thickness of about 5 to 10 mm, in order to satisfy these conditions.
その中でも、作業の監視が容易であるという点で透明強
化ガラス板が好ましい。Among these, a transparent tempered glass plate is preferred because it allows easy monitoring of work.
第1図は透明ガラスを使用した場合を示す。案内盤8は
、押圧スプリングを有する案内盤支持装置9によって支
持される。FIG. 1 shows the case where transparent glass is used. The guide plate 8 is supported by a guide plate support device 9 having a pressing spring.
案内盤支持装置9は次のように構成されている。The guide plate support device 9 is constructed as follows.
底部がガイド10に止着された略乙字形のブラケット9
aの上方水平部の上に固定水平杆9bの中央部が固着さ
れている。A substantially O-shaped bracket 9 whose bottom part is fixed to the guide 10
The center part of the fixed horizontal rod 9b is fixed onto the upper horizontal part of the horizontal part a.
水平杆9bの両端近傍に穿設された垂直透孔を垂直ボル
ト9cが上下動可能に挿通している。A vertical bolt 9c is vertically movably inserted through a vertical hole bored near both ends of the horizontal rod 9b.
垂直ボルト9cの下端には中央辺が水平なコ字形支持枠
9dの水平中央部が固着されており、垂直ボルト9cの
上部ねし部に螺合され、かつ固定水平杆9bの上部に位
置する調節ダブルナット9eの回動によって、支持枠9
dの上下動調節が可能となるように構成されている3支
持枠9dの上面と固定水平杆9bの下面の間に、押圧ス
プリング9fが設けられ、その中を垂直ボルト9cが挿
通しており、支持枠9dを押し上げると、スプリング圧
による抵抗が加わるようになつている。The horizontal center part of a U-shaped support frame 9d whose center side is horizontal is fixed to the lower end of the vertical bolt 9c, and is screwed into the upper threaded part of the vertical bolt 9c and located at the upper part of the fixed horizontal rod 9b. By rotating the adjusting double nut 9e, the support frame 9
A pressing spring 9f is provided between the upper surface of the 3-support frame 9d and the lower surface of the fixed horizontal rod 9b, which are configured to enable vertical movement adjustment of the vertical movement of d, and a vertical bolt 9c is inserted through the pressing spring 9f. , when the support frame 9d is pushed up, resistance is applied due to spring pressure.
案内盤8は長さ方向両端部近傍において、支持枠9dの
内部にとがり先止めねじ9gによって水平に固定されて
いる。The guide plate 8 is horizontally fixed in the vicinity of both ends in the longitudinal direction inside the support frame 9d by sharp end setscrews 9g.
案内盤支持装置9を構成する部材は押圧スプリングを除
いて、真鍮のような非磁性体によって構成されることが
望ましい。It is preferable that the members constituting the guide plate support device 9 are made of non-magnetic material such as brass, except for the pressing spring.
金属キャップは通常、絞り成形後、胴壁部が一定高さに
なるように、エッジをトリムした後、ビード加工、ロー
レット加工等を施される。After the metal cap is drawn, the edges are usually trimmed so that the body wall has a constant height, and then bead processing, knurling processing, etc. are performed.
そして実際作業の場合、同一種類のキャップであって、
トリム後のキャップ胴壁部高さは一定であっても、ビー
ド加工、ローレット加工後のキャップ高さは、作業ロッ
トにより±0.2mm程度の差が生ずる。In the case of actual work, the same type of cap is used,
Even if the height of the cap body wall after trimming is constant, the height of the cap after beading and knurling varies by about ±0.2 mm depending on the work lot.
従って案内盤8の高さを固定した場合はキャップ底面5
bと導体上端部7a間の距離即ちギャップに最大約0.
4mmの差がロットの間で生ずることになる。Therefore, if the height of the guide plate 8 is fixed, the bottom surface of the cap 5
The distance, ie, the gap, between the upper end portion 7a and the upper end portion 7a of the conductor is approximately 0.
A difference of 4 mm will occur between lots.
上記0.4mmの差は、第5図から明らかのように、キ
ャップ底部の温度上昇に数10度の変化を齎らす。As is clear from FIG. 5, the above-mentioned difference of 0.4 mm causes a change in the temperature rise at the bottom of the cap by several tens of degrees.
しかしながら以下に述べるように、本発明の案内盤支持
装置を使用することにより、ロット間に於る上記ギャッ
プの差を実質的に解消せしめることができ、従って、キ
ャップ底部の温度を各ロットを通して、所定の温度に実
質的に一定に保つことができる。However, as described below, by using the guide plate support device of the present invention, the difference in the gap between lots can be substantially eliminated, and therefore the temperature at the bottom of the cap can be adjusted throughout each lot. The predetermined temperature can be kept substantially constant.
先づ作業開始前に、各案内盤下面と固定体上面間の距離
がキャップの最小高さに等しくなるように、調節ダブル
ナット9eによって調節しておく。First, before starting work, adjust the distance between the lower surface of each guide plate and the upper surface of the fixed body using the adjusting double nut 9e so that it is equal to the minimum height of the cap.
作業中は、キャップは導体との電磁結合によって生ずる
浮上力が加わった状態で移動するのであるが、浮上力に
対して案内盤の重量と押圧スプリングの押圧力の和が大
きい場合は、キャップはその胴壁部高さに拘らず浮上す
ることなく、キャップの開口端部が案内盤下面を、キャ
ップ底面が固定体上を滑動するので、前記ギャップは一
定で、キャップ底部の温度上昇は一定に保たれる。During work, the cap moves with a levitation force generated by electromagnetic coupling with the conductor, but if the sum of the weight of the guide plate and the pressing force of the pressing spring is greater than the levitation force, the cap will move. Regardless of the height of the body wall, the open end of the cap slides on the lower surface of the guide plate and the bottom surface of the cap slides on the fixed body, so the gap remains constant and the temperature rise at the bottom of the cap remains constant. It is maintained.
この場合、最小高さより高いロットのキャップが入って
きた場合は、案内盤8従って垂直ボルト9cが最小高さ
との差だけ上昇する。In this case, if a cap of a lot higher than the minimum height is received, the guide plate 8 and hence the vertical bolt 9c are raised by the difference from the minimum height.
第2図はこの状態を示す。FIG. 2 shows this state.
一方浮上力の方が案内盤の重量と初期設定の押圧スプリ
ングの押圧力の和よりも大きい場合は、キャップの浮上
が起る。On the other hand, if the floating force is greater than the sum of the weight of the guide plate and the initially set pressing force of the pressing spring, the cap will float.
しかし浮上力はキャップ胴壁部の高さに無関係であり、
しかも押圧スプリングが十分に長い場合は、案内盤の上
下位置が±0.2mm程度変化しても、スプリングによ
る押圧力は実質的に変化しないので、浮上量はキャップ
胴壁部の高さによって変化しない。However, the levitation force is unrelated to the height of the cap body wall.
Moreover, if the pressing spring is sufficiently long, the pressing force from the spring will not substantially change even if the vertical position of the guide plate changes by about ±0.2 mm, so the floating amount will change depending on the height of the cap body wall. do not.
従って前記ギャップは一定に保たれ、キャップ底部の温
度上昇がロットによって変らない。Therefore, the gap is kept constant and the temperature rise at the bottom of the cap does not vary from lot to lot.
この場合は、キャップの開口端部が案内盤下面に沿って
滑動するが、キャップの底面は固体上面と接触しない。In this case, the open end of the cap slides along the lower surface of the guide plate, but the bottom surface of the cap does not contact the solid upper surface.
導体とキャップ底部の相互誘導係数を高め、キャップ底
部が所定の温度に達するようにするためには、第5図a
曲線に示されるように、高透磁率材料を使用しない場合
は、導体上端部7aとキャップ底面5bとの距離が1m
m以下、好ましくは0.5mm以下であることが必要で
ある。In order to increase the mutual induction coefficient between the conductor and the bottom of the cap so that the bottom of the cap reaches a predetermined temperature,
As shown in the curve, when a high permeability material is not used, the distance between the conductor upper end 7a and the cap bottom surface 5b is 1 m.
m or less, preferably 0.5 mm or less.
なお約0.1mm以下に接近することは短絡のおそれが
あるので望ましくない。It should be noted that it is undesirable to get closer than about 0.1 mm because there is a risk of short circuit.
また固定体10に絶縁性高透磁率材料を使用する場合は
、第5図b曲線に示されるように、固定体上面10aと
キャップ底面5b間の距離は2mm以下、好ましくは1
mm以下にすることが必要である。Further, when an insulating high permeability material is used for the fixed body 10, the distance between the fixed body top surface 10a and the cap bottom surface 5b is 2 mm or less, preferably 1 mm, as shown in the curve b in FIG.
It is necessary to make it less than mm.
この場合一般に絶縁性高透磁率材料として用いられるフ
エライトは脆弱なので、固定体上面10aを略0.4m
m厚のベークライトのような絶縁性シートで保護する必
要があるので、固定体上面とキャップ底部間の距離を約
0.4mm以下にすることは困難である。In this case, since ferrite, which is generally used as an insulating high permeability material, is fragile, the upper surface 10a of the fixed body is approximately 0.4 m
Since it is necessary to protect the cap with an insulating sheet such as Bakelite having a thickness of m, it is difficult to reduce the distance between the top surface of the fixed body and the bottom of the cap to about 0.4 mm or less.
次にアルミニウムキャップ内底面にポリエチレンライナ
ーを接着させるのに本発明の加熱装置を使用する場合の
具体例について説明する。Next, a specific example in which the heating device of the present invention is used to bond a polyethylene liner to the inner bottom surface of an aluminum cap will be described.
外径28mm、高さ16mmの内底面に接着プライマー
(例えばエポキシフェノール系塗料に酸化ホリエチレン
又は無水マレイン酸変性ポリエチレンを分散したもの)
を塗布、焼付したアルミニウムキャップ(厚0.2mm
)5をシュート4から回転テーブル2の切欠部3に供給
する。Adhesive primer (e.g. polyethylene oxide or maleic anhydride modified polyethylene dispersed in epoxy phenol paint) on the inner bottom surface with an outer diameter of 28 mm and a height of 16 mm.
Aluminum cap (thickness 0.2mm) coated and baked with
) 5 is supplied from the chute 4 to the notch 3 of the rotary table 2.
キャップは長さ80cmの加熱装置1に送られ、主とし
て底部を高周波誘導加熱される。The cap is sent to a heating device 1 with a length of 80 cm, and the bottom portion is mainly heated by high frequency induction.
トランジスター発振器の周波数25kHz、出力10k
W,キャップ底面と固定体上面との距離0.7mm、加
熱装置に同時に装入されているキャップ数20個、加熱
装置通過時間1秒、キャップ底部は最低温度部140℃
、最高温度部160℃に加熱されて(温度はサーモペイ
ントによって測定した)、加熱装置より出て来る。Transistor oscillator frequency 25kHz, output 10k
W, the distance between the bottom of the cap and the top of the fixed body is 0.7 mm, the number of caps loaded into the heating device at the same time is 20, the time to pass through the heating device is 1 second, and the bottom of the cap is at the lowest temperature of 140°C.
, heated to a maximum temperature of 160° C. (temperature was measured by thermopaint) and exits from the heating device.
この温度は、後述のプレスステーションで接着プライマ
ーとポリエチレンとが完全接着するのに十分な温度であ
る。This temperature is sufficient for complete adhesion of the adhesive primer and polyethylene at the press station described below.
以上のように加熱されたキャップは、ガイドを通って、
溶融ポリエチレン粒供給装置14に入り、ここでその底
面のほぼ中央に溶融ポリエチレン粒を供給される。The heated cap passes through the guide,
It enters a molten polyethylene grain feeder 14 where it is fed with molten polyethylene grains approximately in the center of its bottom surface.
次にキャップは図示されないプレスステーションに送ら
れ、ここで冷却されたポンチによって溶融ポリエチレン
粒は圧縮されてシート状となり、固化してキャップ内底
面に密着したライナーを形成する。The cap is then sent to a press station (not shown) where a cooled punch compresses the molten polyethylene particles into a sheet and solidifies to form a liner that adheres to the inner bottom surface of the cap.
この場合胴壁部は殆んど加熱されていないので、その余
熱によって固化が遅延されるおそれがない。In this case, since the barrel wall is hardly heated, there is no risk of solidification being delayed by residual heat.
以上は主としてアルミニウムキャップのような非磁性金
属のキャップについて述べたが、ブリキキャップのよう
に強磁性体を素材とするキャップでも、キャップ重量、
サイズ、形状等及び導体を流れる電流の強さ、周波数、
キャップ底面と導体間の距離等によって決まる条件によ
って、キャップが跳曜、浮上する場合がある。The above has mainly been about caps made of non-magnetic metals such as aluminum caps, but caps made of ferromagnetic materials such as tin caps also have cap weight,
size, shape, etc., as well as the strength and frequency of the current flowing through the conductor,
Depending on conditions determined by the distance between the bottom of the cap and the conductor, the cap may float up.
このような場合にも本発明が適用しうることはいうまで
もない。It goes without saying that the present invention can be applied to such cases as well.
本発明によれば、金属キャップ、特に非磁性金属キャッ
プ底部をコンパクトな装置で毎分1000個以上の高速
、大量加熱が可能である。According to the present invention, it is possible to heat the bottom of a metal cap, particularly a non-magnetic metal cap, at high speed and in large quantities at a rate of 1000 caps or more per minute using a compact device.
さらに金属キャップの高さが若干変動しても、押圧スプ
リングの作用によりその浮上量は一定に調整されるので
、キャップ底部の加熱温度を所望の一定値に保つことが
できる。Furthermore, even if the height of the metal cap changes slightly, its floating height is adjusted to a constant level by the action of the pressing spring, so that the heating temperature at the bottom of the cap can be maintained at a desired constant value.
また、加熱を必要としない胴壁部は殆んど加熱されない
ので、製品の品質低下が防止でき、さらに電力のロスも
少ないという効果を有する。In addition, since the barrel wall portion that does not require heating is hardly heated, it is possible to prevent product quality from deteriorating, and furthermore, there is an effect that there is less power loss.
第1図は本発明の1実施例を示す概略平面図、第2図は
加熱装置の一部分の拡大正面図、第3図は第2図のA−
A線に沿う縦断面図、第4図は金属キャップ底部及びそ
の近傍の誘導電流回路を示す斜視図、第5図は、キャッ
プ底面と導体間の間隙とキャップ底部温度上昇(相対値
)との関係を示す線図を示す。
1・・・加熱装置、2・・・回転テーブル(移送装置)
、5・・・金属キャップ、7・・・高周波電流導体、8
・・・案内盤、9・・・案内盤支持装置、9f・・・押
圧スプリング。FIG. 1 is a schematic plan view showing one embodiment of the present invention, FIG. 2 is an enlarged front view of a part of the heating device, and FIG.
4 is a perspective view showing the induced current circuit at the bottom of the metal cap and its vicinity. FIG. A diagram showing the relationship is shown. 1... Heating device, 2... Rotating table (transfer device)
, 5... Metal cap, 7... High frequency current conductor, 8
... Guide board, 9... Guide board support device, 9f... Pressing spring.
Claims (1)
つ電流の方向が互に逆である高周波電流導体の少なくと
も1対と、前記高周波電流導体に対向して設けられ、か
つ高周波電流の作用により浮上力を有する前記金属キャ
ップの開口端部を対向面においてスプリング圧を介して
押圧する案内盤と、前記金属キャップを前記対向面上を
滑動せしめる移送装置とを具備することを特徴とする金
属キャップの連続的な加熱装置。 2 案内盤が複数個あり、かつ互に近接している特許請
求の範囲第1項記載の金属キャップの連続的な加熱装置
。[Scope of Claims] 1. at least one pair of high-frequency current conductors whose spacing is smaller than the diameter of the bottom of the metal camp and whose current directions are opposite to each other, and which are provided opposite to the high-frequency current conductors; and a guide plate that presses the opening end of the metal cap, which has a levitation force due to the action of a high-frequency current, on the opposing surface via spring pressure, and a transfer device that slides the metal cap on the opposing surface. A continuous heating device with a metal cap featuring: 2. The continuous heating device for a metal cap according to claim 1, which includes a plurality of guide plates and is adjacent to each other.
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53087079A JPS583013B2 (en) | 1978-07-19 | 1978-07-19 | Continuous heating device for metal caps |
CA000326874A CA1136719A (en) | 1978-05-26 | 1979-05-03 | Continuous heating apparatus for metal caps |
AU47217/79A AU510533B1 (en) | 1978-05-26 | 1979-05-21 | Metal cap |
FR7913012A FR2426507B1 (en) | 1978-05-26 | 1979-05-22 | METHOD AND APPARATUS FOR MANUFACTURING METAL CAPSULES AND CAPSULES THUS PRODUCED |
DE2920982A DE2920982C2 (en) | 1978-05-26 | 1979-05-23 | Device for inserting the seal in the metal cap |
IL57383A IL57383A (en) | 1978-05-26 | 1979-05-23 | Method and apparatus for making metal caps lined with packing material |
BE0/195344A BE876490A (en) | 1978-05-26 | 1979-05-23 | METHOD AND APPARATUS FOR MANUFACTURING METAL CAPSULES AND IMPROVEMENT THEREOF |
PH22551A PH16765A (en) | 1978-05-26 | 1979-05-23 | Continuous heating apparatus for metal caps |
LU81310A LU81310A1 (en) | 1978-05-26 | 1979-05-23 | METHOD AND APPARATUS FOR MANUFACTURING METAL CAPSULES AND PERFECTIONED CAPSULES THUS PRODUCED |
GB7918092A GB2025297B (en) | 1978-05-26 | 1979-05-24 | Method and apparatus for making a metal cap and an improved metal cap |
MX177787A MX149307A (en) | 1978-05-26 | 1979-05-24 | IMPROVEMENTS IN THE APPLIANCE TO HEAT METAL COVERS IN ORDER TO SET SEALS |
BR7903246A BR7903246A (en) | 1978-05-26 | 1979-05-24 | IMPROVEMENT IN CONTINUOUS HEATING APPLIANCE FOR METAL COVERS |
NZ190543A NZ190543A (en) | 1978-05-26 | 1979-05-24 | Method and apparatus for lining crown caps |
CH506179A CH630863A5 (en) | 1978-05-26 | 1979-05-25 | METHOD FOR MANUFACTURING A METAL CAPSULE, APPARATUS FOR IMPLEMENTING SAME AND CAPSULE OBTAINED BY THIS PROCESS. |
FI791674A FI791674A (en) | 1978-05-26 | 1979-05-25 | FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV EN METALLKAPSELL SAMT FOERBAETTRAD METALLKAPSEL |
NLAANVRAGE7904128,A NL182127C (en) | 1978-05-26 | 1979-05-25 | Apparatus for heating the bottom of metal sleeves to make a cap. |
IT23007/79A IT1120759B (en) | 1978-05-26 | 1979-05-25 | PROCEDURE AND EQUIPMENT TO PRODUCE A METALLIC HOOD AND PERFECTED METALLIC HOOD |
NO791733A NO151732C (en) | 1978-05-26 | 1979-05-25 | DEVICE FOR FITTING A LINING TO METAL CAPS |
AR276685A AR218379A1 (en) | 1978-05-26 | 1979-05-28 | AN APPARATUS FOR CONTINUOUS HEATING OF METAL COVERS |
US06/223,822 US4340801A (en) | 1978-05-26 | 1981-01-09 | Continuous heating apparatus for metal caps |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53087079A JPS583013B2 (en) | 1978-07-19 | 1978-07-19 | Continuous heating device for metal caps |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5514861A JPS5514861A (en) | 1980-02-01 |
JPS583013B2 true JPS583013B2 (en) | 1983-01-19 |
Family
ID=13904929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53087079A Expired JPS583013B2 (en) | 1978-05-26 | 1978-07-19 | Continuous heating device for metal caps |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS583013B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54153712A (en) * | 1978-05-26 | 1979-12-04 | Toyo Seikan Kaisha Ltd | Continuous metal cap heater |
-
1978
- 1978-07-19 JP JP53087079A patent/JPS583013B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54153712A (en) * | 1978-05-26 | 1979-12-04 | Toyo Seikan Kaisha Ltd | Continuous metal cap heater |
Also Published As
Publication number | Publication date |
---|---|
JPS5514861A (en) | 1980-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4340801A (en) | Continuous heating apparatus for metal caps | |
US4650954A (en) | Process for the butt-welding of especially deep-drawable steel sheets or steel strips galvanized at least on one side | |
US3815395A (en) | Method and device for heating and flanging circular discs | |
EP0749267B1 (en) | Can coating and curing system having focused induction heater using thin lamination cores | |
KR101720501B1 (en) | High-frequency heating method for hot stamping | |
CA1117475A (en) | Metal cap and its method of manufacture | |
CA1126345A (en) | High frequency induction heating circuit | |
US4352001A (en) | Method and apparatus for producing welded metallic can body | |
US4298320A (en) | Apparatus for dispensing and molding lining material into metallic cap shells | |
JPS583013B2 (en) | Continuous heating device for metal caps | |
KR102027168B1 (en) | Extruder for metal material and 3d printer using the same | |
US2535836A (en) | Method of and apparatus for soldering the side seams of can bodies | |
JPH02500658A (en) | Metal wire manufacturing method and apparatus for carrying out the method | |
JPS58735B2 (en) | Continuous heating device for metal caps | |
US4373891A (en) | Apparatus for cooling a transfer mandrel | |
KR820001822B1 (en) | Apparatus for continue heating of metal caps | |
GB2025297A (en) | A method and apparatus for making a metal cap, and an improved metal cap | |
JPS6132787B2 (en) | ||
JPS5826798B2 (en) | High frequency induction heating device | |
JPS5831720B2 (en) | High frequency induction heating device | |
IE48338B1 (en) | A method and apparatus for making a metal cap and an improved metal cap | |
US2390971A (en) | Welding method | |
US3377417A (en) | Centrifugal furnace | |
CN116004951B (en) | Annealing platform and method for magnetic alloy ring | |
CN218697261U (en) | Quick surface treatment equipment for reciprocating feeding chaplet |