JPS5829922Y2 - Insole for shoes - Google Patents

Insole for shoes

Info

Publication number
JPS5829922Y2
JPS5829922Y2 JP2985880U JP2985880U JPS5829922Y2 JP S5829922 Y2 JPS5829922 Y2 JP S5829922Y2 JP 2985880 U JP2985880 U JP 2985880U JP 2985880 U JP2985880 U JP 2985880U JP S5829922 Y2 JPS5829922 Y2 JP S5829922Y2
Authority
JP
Japan
Prior art keywords
insole
compressive strength
shoe
foam board
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2985880U
Other languages
Japanese (ja)
Other versions
JPS56132908U (en
Inventor
康 上田
紘史 殿川
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2985880U priority Critical patent/JPS5829922Y2/en
Publication of JPS56132908U publication Critical patent/JPS56132908U/ja
Application granted granted Critical
Publication of JPS5829922Y2 publication Critical patent/JPS5829922Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Description

【考案の詳細な説明】 本考案は合成樹脂発泡体でつくられた靴中底の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in shoe insole made of synthetic resin foam.

更に詳しくは、軽量で、はき心地の良い靴中底を提供す
ることにある。
More specifically, the object is to provide a shoe insole that is lightweight and comfortable to wear.

従来、合成樹脂発泡体でつくられている一般的な靴中底
には、靴の形状にあわせただけのものがある。
Conventionally, some common shoe insoles made of synthetic resin foam are simply made to fit the shape of the shoe.

この中底はどの部分にも圧縮強さが同じであるため爪先
や踵や土平踏部など荷重のかかる度合に対応したクッシ
ョン性が得られないため、踵の部分では柔わかすぎて底
付きしたり爪先部分では硬すぎたりするなどはき心地の
悪い欠点を有していた。
Since the compressive strength of this insole is the same in all parts, it cannot provide cushioning that corresponds to the degree of load applied to the toes, heel, and tread area. It had the drawbacks of being uncomfortable to wear, such as being too stiff at the tip of the toe.

この欠点を改善するため、圧縮特性の異なる素材を複合
した中底がある。
To overcome this drawback, there are insoles made of composite materials with different compression properties.

この複合中底は貼着などの加工を伴なうため作業性が著
しく悪く、また貼着剤によるコストアップや貼着剤によ
る中底の重量アップなどの不都合が生じていた。
This composite insole has extremely poor workability because it involves processing such as adhesion, and also has disadvantages such as increased costs due to the adhesive and increased weight of the insole due to the adhesive.

また、実公昭54−142033に開示されたポリウレ
タン及びゴム気泡体の靴中底は、足の形にあうように一
体戊形されたもので使用に際しての力のかかり具合に応
じた中底に仕上げられているが、残念なことに素材とし
て使用しているポリウレタンやゴムの気泡体はもともと
圧縮強度が小さいために底付きを起こし、踵部や前部踏
付部のような強い圧縮強度を必要とする部分は、成形特
に相当量の圧縮が要求されることになるが、これらの素
材でこのように圧縮率を大きくとることは技術的に難か
しい。
In addition, the polyurethane and rubber foam shoe insole disclosed in Japanese Utility Model Publication No. 142033/1977 is integrally shaped to fit the shape of the foot, and the insole is finished to match the amount of force applied during use. However, unfortunately, the polyurethane and rubber foams used as materials originally have low compressive strength, which causes them to bottom out, and strong compressive strength is required in areas such as the heel and front stepping areas. This requires a considerable amount of compression during molding, but it is technically difficult to achieve such a large compression rate with these materials.

このような点を改善した中底は、一体成形された一部の
成形品の上に、別工程で成形された他の一部の成形品を
足の形にあうように貼合するような工夫がとられている
が、貼着するために加ニスピードの低下や接着剤のコス
トアップや接着剤による重量アップなどの欠点が生じて
いた。
Insoles that have improved on these points are made by laminating some molded parts molded in a separate process on top of some molded parts molded in a separate process to fit the shape of the foot. Although efforts have been made to do so, there have been disadvantages such as a reduction in cutting speed, increased cost of the adhesive, and increased weight due to the adhesive.

また、ウレタンやゴム等の発泡体は、架橋剤、発泡剤、
その他の化学添加剤を使用したりするので、これらの薬
剤の分解物や残渣が成形された中底に残留するため、臭
いによる不快感を与えたり、あるいはまた、人によって
は皮膚の災症を起こしたりして使用者が嫌う欠点がある
In addition, foams such as urethane and rubber require crosslinking agents, foaming agents,
Since other chemical additives are used, the decomposition products and residues of these agents remain on the molded insole, causing discomfort due to odor, and may even cause skin problems for some people. There is a drawback that users dislike it because it causes problems.

また、これとは別に、ウレタンなどの連続気泡体を使用
した中底は、吸水性があるため汗などがしみこんで、む
れたり黴の発生をまねいたり不快感を生ずるなどの欠点
が生じている。
Separately, insoles made of open-cell materials such as urethane have water-absorbing properties, so sweat can soak in, leading to stuffiness, mold, and discomfort. .

さらにウレタンなどは酸化劣化がはやいので耐久性にも
問題がある。
Furthermore, since urethane and the like deteriorate quickly through oxidation, there is also a problem in durability.

このような欠点にかんがみ、靴中底に求められる特性す
なわち足の形状や足の応力に対応した各部分の圧縮強さ
並びに回復性のよいこと、軽量であること、臭気などの
不快感のないこと、皮膚への刺激がないことなどの特性
をバランスよく確保できるものを一枚の発泡板より簡単
に成形される靴中底が強く要求されていた。
In consideration of these shortcomings, we have developed the characteristics required for shoe insoles, such as compressive strength and recovery properties of each part that corresponds to the shape of the foot and stress on the foot, lightweight, and no unpleasant sensations such as odor. There was a strong demand for a shoe insole that could be more easily molded than a single piece of foam board and that could ensure a well-balanced combination of properties such as compatibility and non-irritation to the skin.

本考案の靴中底はこれらの従来の欠点を改良したもので
、前記の要求特性を十分に満足しうる靴中底を提供する
ものである。
The insole of the present invention improves these conventional drawbacks and provides an insole that fully satisfies the above-mentioned required characteristics.

以下本考案の内容を図面等を用いて詳述する。The content of the present invention will be explained in detail below using drawings and the like.

第1図は、右足用靴中底を下面から見た平面図で、第5
図より第8図は、第1図のA−A、B−B。
Figure 1 is a plan view of the insole for the right foot, viewed from below.
From the figure, FIG. 8 shows AA and BB in FIG.

C−C,D−D線のそれぞれの断面図を示す。Each cross-sectional view taken along line CC and line D-D is shown.

第4図は靴中底上面から見た第2図のE−E線断面図を
示し、断面は全体として平面でないことを示している。
FIG. 4 shows a cross-sectional view taken along the line E--E of FIG. 2 as seen from the upper surface of the shoe midsole, and shows that the cross section is not flat as a whole.

第3図は靴中底の側面から見た斜視図を表わしている。FIG. 3 shows a side perspective view of the shoe insole.

1,2,3.4は踵部、土不踏隆起部、前記踏付部、つ
ま先部を各々示し、5,6は外周壁部、7は外周壁部の
頂上縁部、8,9は頂上縁部7が前部踏付部3の近傍で
梢滅している場所を示し、前記踏付部層縁部8’、9’
とほぼ同じ高さに形成されている。
Reference numerals 1, 2, and 3.4 indicate the heel part, the treading part, and the toe part, respectively, 5 and 6 indicate the outer peripheral wall part, 7 indicates the top edge of the outer peripheral wall part, and 8 and 9 indicate the top edge of the outer peripheral wall part. It shows a place where the top edge 7 is cut off near the front treading part 3, and the treading part layer edges 8', 9'
are formed at approximately the same height.

また、頂上縁部7は土不踏部側g// 、9//でつな
がっていても支障はない。
Further, there is no problem even if the top edge 7 is connected at the earth-shaft side g// and 9//.

本考案の内容は、 (イ)発泡板素材に無架橋のPE系が選択されているこ
と、 (ロ)靴中底部の各部分の各々には、圧縮比の異なる押
圧後に生じる無架橋PEの特性を一枚の発泡板上に形成
させて利用すること、 (ハ)靴中底部の各部分の特性値の各々は、軽量ではき
心地の良い靴中底の条件を満たすものであること、 の以上(イ)、(ロ)、(ハ)の組合せによって完成さ
れている。
The content of the present invention is that (a) a non-crosslinked PE system is selected as the foam board material, and (b) each part of the midsole of the shoe is made of non-crosslinked PE that occurs after pressing at different compression ratios. (c) Each of the characteristic values of each part of the shoe midsole satisfies the conditions for a lightweight and comfortable shoe midsole; It is completed by the combination of (a), (b), and (c) above.

以下、その理由内容を順をおって詳述する。The reasons for this will be explained in detail below.

先ず、上部(イ)を第1表にもとづいて説明する。First, the upper part (a) will be explained based on Table 1.

第1表は各種発泡板の密度と、発泡板を圧縮(25%歪
、50%歪、75%歪)したときに示す圧縮強さくkg
/cm2)との関係を示す実験結果表である。
Table 1 shows the density of various foam boards and the compressive strength (kg) when the foam board is compressed (25% strain, 50% strain, 75% strain).
/cm2) is an experimental result table showing the relationship between

No、は発泡板の種類で■〜■は無架橋発泡ポリエチレ
ン板、■〜■は架橋発泡ポリエチレン板、■はラバーフ
オーム、[相]、◎は軟質ウレタンフオーム2種、Oは
塩ビフオームである。
No. is the type of foam board, ■~■ is a non-crosslinked foamed polyethylene board, ■~■ is a crosslinked foamed polyethylene board, ■ is rubber foam, [phase], ◎ is two types of soft urethane foam, and O is vinyl chloride foam. .

又、■〜■及び■′、■の各々は、■及び■の発泡板を
圧縮して(密度を高めて)作成した発泡板である。
Moreover, each of ■ to ■, ■', and ■ is a foam board made by compressing (increasing the density) the foam boards of ■ and ■.

第1表の示す意味は、例えば25%歪時の圧縮強さをみ
るとき、無架橋発泡ポリエチレン板は■から■への圧縮
変化(即ち5倍の密度変化)で生じる圧縮強さの向上は
、0.7から5.2(即ち、7.4倍)にも達している
のに対し、架橋発泡ポリエチレン板の方は、■から■へ
の圧縮変化(即ち4倍の密度変化)で生じる圧縮強さの
向上は、0.6から1.8(即ち3倍)にしかすぎず、
絶対値としても、200kg/m3の密度で、無架橋品
のキ以下の圧縮強さしか得られないことを意味している
The meaning of Table 1 is that, for example, when looking at the compressive strength at 25% strain, the improvement in compressive strength of non-crosslinked foamed polyethylene plates that occurs when the compression changes from ■ to ■ (i.e., a 5-fold change in density) is , from 0.7 to 5.2 (i.e., 7.4 times), whereas in the case of the cross-linked foamed polyethylene board, this occurs due to the compression change from ■ to ■ (i.e., a 4 times density change). The improvement in compressive strength is only 0.6 to 1.8 (i.e. 3 times);
Even as an absolute value, this means that at a density of 200 kg/m3, a compressive strength that is less than that of a non-crosslinked product can be obtained.

又、他Gト■の発泡板にあっては、元の密度及びその圧
縮強さの値からみて、これを圧縮変化させて圧縮強さの
向上は図れそうにないことを意味している。
Furthermore, in the case of the other foamed boards (G) and (3), considering the original density and its compressive strength values, this means that it is unlikely that the compressive strength can be improved by changing the compression.

即ち、第1表の結果からすると圧縮比の違う部分を持つ
本考案の靴中底に採用する発泡板素材の望ましくは、無
架橋の発泡ポリエチレン板であり、このものの採用は密
度の低い素材を採用しうる点で、結果的に軽量の靴中底
になり得ることを示している。
In other words, according to the results in Table 1, the preferred foam board material to be used in the insole of the present invention, which has sections with different compression ratios, is a non-crosslinked foamed polyethylene board; This shows that it can be adopted as a lightweight shoe insole.

次に上記(ロ)を第14図にもとづいて説明する。Next, the above (b) will be explained based on FIG. 14.

第14図は、第1表で説明した■〜■の圧縮強さと圧縮
歪の関係を表わすグラフであり、たて軸に圧縮強さを、
よこ軸に材料の圧縮歪量をそれぞれとっている。
Fig. 14 is a graph showing the relationship between compressive strength and compressive strain of ■ to ■ explained in Table 1, with compressive strength on the vertical axis,
The amount of compressive strain of the material is plotted on the horizontal axis.

また、説明しやすくするために、横軸の25%、50%
、75%の歪の位置のところにたて線を入れである。
Also, for ease of explanation, 25% and 50% of the horizontal axis
, insert a vertical line at the position of 75% strain.

ここで25%の圧縮歪のもつ意味は材料に加えられる変
形が25%生じていることを表わすもので、この程度の
変形を与える範囲で使用されるのが最も良いとされ、ま
た、50%の圧縮歪はより多くの応力が加わったとして
も底付きしないでクッション性が得られる範囲を意味し
ており、75%の圧縮歪は庇付現象がおきはじめる危険
な圧縮歪を表わしている。
Here, the meaning of 25% compressive strain is that 25% of the deformation applied to the material has occurred, and it is said that it is best used within the range that gives this degree of deformation, and 50% A compressive strain of 75% means a range in which cushioning properties can be obtained without bottoming out even if more stress is applied, and a compressive strain of 75% represents a dangerous compressive strain where the eaves phenomenon begins to occur.

そして一方、本考案の構成要件として記載されている靴
中底の各部分の発泡板密度と、25%圧縮強度の意味の
一つは、素材をなす発泡板が各々の部分で異なった圧縮
変化が与えられているということを意味している。
On the other hand, one of the meanings of the foam board density and 25% compressive strength of each part of the shoe insole, which are described as the constituent requirements of the present invention, is that the foam board that makes up the material has different compression changes in each part. This means that it is given.

即ち例えば、最も圧縮変化している踵部と最も圧縮変化
の少ない土平踏部の例で説明すると、第14図の■、■
、■、■の曲線の25%歪において踵部のいう密度、圧
縮強度(約135〜2’OOkg/m3.約3.8〜5
.2 kg/cm2)及び同じ上下踏部(約40〜65
kg/m3.約0.7 1.3kg/crn2)の意味
は、40kg/m3の密度の発泡板が、踵部は約3.4
〜5倍の密度(■〜■)に押圧成形され、土平踏部は約
1〜1.6倍の密度(■〜■)に押圧成形されているこ
とを示している。
That is, for example, if we take an example of the heel part where the compression changes the most and the foot tread part where the compression change the least, then ■ and ■ in Figure 14.
The density and compressive strength of the heel at 25% strain of the curves ,■,■ are approximately 135 to 2'OOkg/m3.
.. 2 kg/cm2) and the same upper and lower treads (approximately 40 to 65
kg/m3. Approximately 0.7 1.3 kg/crn2) means that a foam board with a density of 40 kg/m3 has a heel area of approximately 3.4 kg/m3.
It is shown that it is press-molded to ~5 times the density (■~■), and the soil tread part is press-molded to a density that is about 1 to 1.6 times (■~■).

次に上記(ロ)、(ハ)の必要性について述べる。Next, we will discuss the necessity of (b) and (c) above.

即ち、本考案の靴中底の各部分のほとんどは、無架橋発
泡ポリエチレン板が圧縮変形した後の状態で示す特性が
利用される。
That is, most of the parts of the insole of the present invention utilize the characteristics that the non-crosslinked foamed polyethylene board exhibits after being compressed and deformed.

第14図との関係において、先ず本考案踵部底中心部の
25%圧縮強度(kg/cm2)約3.8〜5.2の必
要性は、最も大きくかかる体重負荷(運動負荷を含む)
を支持するに充分な圧縮強度を保持していることを示す
In relation to Figure 14, firstly, the need for a 25% compressive strength (kg/cm2) of approximately 3.8 to 5.2 at the center of the heel bottom of the present invention is the highest weight load (including exercise load).
Indicates that it has sufficient compressive strength to support.

即ち、第14図曲線■、■の25%歪のたて線との交点
で示される踵部底中心部の特性は曲線■、■にそって変
化するから最大体重負荷時でも、底づきが生じる75%
圧縮ラインに到達することはない。
In other words, the characteristics of the center of the heel bottom shown by the intersection of the curves ■ and ■ with the vertical line of 25% strain in Figure 14 change along the curves ■ and ■, so even when the maximum weight is loaded, the bottom will not reach the bottom. 75% generated
It never reaches the compression line.

同様に前部踏付部の約2.4〜3.8の必要性は前記踵
部底中心部に比べて支持面積が約1.4〜1.6倍にな
ることで同じ最大体重負荷時にあっても、圧縮強度はそ
の約6〜7割の値で上記踵部に匹敵するクッション性が
保持されることを意味する。
Similarly, the need for the front stepping area to be approximately 2.4 to 3.8 mm is due to the support area being approximately 1.4 to 1.6 times that of the center of the heel bottom, which means that when bearing the same maximum weight, Even if there is, the compressive strength is about 60 to 70% of that value, which means that cushioning properties comparable to those of the heel region are maintained.

同様、土不踏隆起部の約0.7〜1.3の圧縮強度の必
要性は、足の土平踏部に接触しても痛さを感じないクッ
ション性が発揮できる意味で、隆起していることと相俟
って靴の中での足の移動を防ぐ役割もなす。
Similarly, the need for a compressive strength of approximately 0.7 to 1.3 for the ridged part of the foot means that the ridged part can provide cushioning that does not cause pain even when it comes into contact with the pedestal part of the foot. Along with this, it also serves to prevent the foot from moving inside the shoe.

又、外周部の約0.7〜1.3の圧縮強度は、足底周縁
を軟かいクッションで包み同様に足の移動を防ぐための
ものである。
Further, the compressive strength of the outer circumferential portion is about 0.7 to 1.3, which is used to wrap the sole periphery with a soft cushion and similarly prevent the foot from moving.

以上の特性が具備されることで本考案の靴中底は、軽量
で耐久性に優れたクッション感覚の良い靴中底性能が発
揮されることになる。
By having the above-mentioned characteristics, the insole of the present invention exhibits insole performance that is lightweight, has excellent durability, and has a good cushioning sensation.

本考案による靴中底の製造方法について一例を挙げて説
明する。
A method for manufacturing a shoe insole according to the present invention will be explained by giving an example.

第11図のIIに示された30 cm X30 cm、
12〜200mmのテーパー厚さの密度40 kg/m
3の均質で独立気泡の無架橋ポリエチレン系発泡板Bを
130℃の循環式エヤー加熱オーブン(図示せず)中に
約6分量大れて芯部まで軟化し、次いで第12図で示す
如き冷却した雄型金型10、雌型金型11の間におき、
該加熱された発泡板Bをモールド間で第13図の如く、
靴中底各部分をそれぞれ異なる圧縮比になるように押圧
成形し、約2分間加圧保持下に芯部が約50℃以下とな
るまで冷却した後、該モールドから取出し、実質上非発
泡状態の樹脂層12と靴中底外周縁部7を境にして付着
部分13をトリミングすることによって靴中底が得られ
る。
30 cm x 30 cm, shown in II of Figure 11;
Density 40 kg/m with taper thickness from 12 to 200 mm
Approximately 6 portions of the homogeneous closed-cell non-crosslinked polyethylene foam board B of No. 3 were placed in a circulating air heating oven (not shown) at 130° C. to soften the core, and then cooled as shown in FIG. Placed between the male mold 10 and the female mold 11,
The heated foam board B is placed between molds as shown in FIG.
Each part of the shoe insole is press molded to have a different compression ratio, and after cooling the core part under pressure for about 2 minutes until it reaches about 50°C or less, it is taken out from the mold and is in a substantially non-foamed state. The insole is obtained by trimming the attached portion 13 along the resin layer 12 and the outer peripheral edge 7 of the insole.

本考案に用いる発泡板Bは第11図工及び同IIの如く
、全体が同一厚みのもの、または厚みの異なるものが用
いられてもよく、靴中底の形状と圧縮強度の選択が容易
になる。
The foam board B used in the present invention may have the same thickness or different thicknesses, as shown in Figure 11 and Figure II, making it easy to select the shape and compressive strength of the shoe insole. .

例えば、第11図11のように厚みの異なるものは厚い
方を圧縮硬さを要求される踵とし、爪先にかけて勾配を
つけてうずくする使い方ができる。
For example, if the thickness is different as shown in Fig. 11, the thicker side can be used as the heel, which requires compressive hardness, and the toe can be used to create a slope for tingling.

また、発泡体板Bの上に布等の表装材16をおき、第1
3図のように一体に貼着成形された中底を得ることもで
きる。
Further, a covering material 16 such as cloth is placed on the foam board B, and the first
It is also possible to obtain an insole that is integrally bonded and molded as shown in Figure 3.

また、成形金型雌型11に波形又は格子状突起部を設け
ると第10図に示すような靴底面に波形の線状溝15又
は格子状溝15′を成形したりできる。
Furthermore, if the female die 11 of the molding die is provided with wavy or lattice-like protrusions, it is possible to form wavy linear grooves 15 or lattice-shaped grooves 15' on the sole surface of the shoe as shown in FIG.

また成形されたものをとり出して第9図に示すような多
数に貫通する通気用小孔14を穿設することもできる。
It is also possible to take out the molded product and drill a large number of small ventilation holes 14 therethrough as shown in FIG. 9.

本考案でいうポリエチレンの無架橋の独立気泡の発泡体
とは、ポリエチレンのホモポリマーであることが望まし
いが、その本質を大幅に変えない範囲で他の樹脂成分が
内在した樹脂の発泡体をさす。
In the present invention, the non-crosslinked closed-cell polyethylene foam is preferably a polyethylene homopolymer, but it also refers to a resin foam that contains other resin components within the scope of not significantly changing its essence. .

これらの発泡体は化学的に不活性であるために劣化や皮
膚への刺激がなく無臭のために不快感を与えるようなこ
とはない。
These foams are chemically inert so they do not deteriorate or irritate the skin, and are odorless so they do not cause discomfort.

また独立気泡体であるために回復性があり長時□間使用
に耐えることと、吸湿性がないので衛生的である。
In addition, since it is a closed-cell foam, it has recovery properties and can be used for long periods of time, and it is hygienic because it does not absorb moisture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の右足用靴中底の下面平面図、第2図は
同じく右足用上面平面図、第3図は右足用靴中底斜視図
、第4図は第2図のE−E線断面図、第5図〜第8図は
第1図下面平面図を上面を上にした各々A−A、B−B
、C−C及びD−D線による横断面図、第9図は貫通し
た小孔を有する靴中底を示す下面図、第10図は波状の
線状溝又は格子状溝を有する靴中底を示す下面図、第1
1図I及びIIは本考案靴中底用独立気泡発泡板の均一
厚さのもの及びテーパー厚さのものを各々示す。 第12図は本靴中底の加圧成形加工機のモールド及び材
料の挿入状態を示す斜視図、第13図は被成形発泡板が
第12図の上下モールドに加圧された状態を示す断面図
、第14図は各種発泡体の圧縮強さと歪の関係を示すグ
ラフである。 1・・・・・・踵部、2・・・・・・土平踏部、3・・
・・・・前部踏付部、4・・・・・・つま先部、5・・
・・・・踵部外周壁部、6・・・・・・土平踏部外周壁
部、7・・・・・・頂上縁部、8,8′、8″・・・・
・・頂上縁部と前部踏付部の交点、9 、g/、9//
、・・・・・頂上縁部と前記踏付部の交点、10・・・
・・・成形金型雌型、11・・・パ・・成形金型雌型、
12・・・・・・実質上非発泡状態の樹脂層、13・・
・・・・付着部分、14・・・・・・貫通する通気用小
孔、15・・・・・・波状の線状溝、15′・・・・・
・格子状溝、16・・・・・・表装材。
Fig. 1 is a bottom plan view of the insole of the right shoe according to the present invention, Fig. 2 is a top plan view of the right shoe insole, Fig. 3 is a perspective view of the insole of the right shoe, and Fig. 4 is E-- of Fig. 2. E-line sectional views, Figures 5 to 8 are A-A and B-B, respectively, with the bottom plan view of Figure 1 facing upward.
, a cross-sectional view taken along lines C-C and D-D, FIG. 9 is a bottom view showing a shoe midsole with a small hole passing through it, and FIG. 10 is a shoe midsole with wavy linear grooves or lattice grooves. Bottom view showing 1st
Figures I and II show the closed-cell foam board for the insole of the present invention having a uniform thickness and a tapered thickness, respectively. Figure 12 is a perspective view showing the state of insertion of the mold and material in the pressure molding machine for the insole of this shoe, and Figure 13 is a cross section showing the state where the foam board to be molded is pressed against the upper and lower molds shown in Figure 12. 14 are graphs showing the relationship between compressive strength and strain of various foams. 1...Heel part, 2...Touchi tread part, 3...
...Front stepping part, 4...Toe part, 5...
... Heel part outer peripheral wall part, 6 ... Terrain tread part outer peripheral wall part, 7 ... Top edge part, 8, 8', 8''...
・Intersection of top edge and front tread, 9, g/, 9//
,... Intersection of the top edge and the treading part, 10...
...Molding mold female mold, 11...Pa...Molding mold female mold,
12...Resin layer in substantially non-foamed state, 13...
... Adhesive part, 14 ... Small ventilation hole passing through, 15 ... Wavy linear groove, 15' ...
- Lattice groove, 16... Surface material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1枚の実質的に独立気泡の無架橋ポリエチレン系発泡板
でなる靴中底であって、該中底の各構成部分における発
泡板密度kg/m3と25%圧縮強度kg/cm2とが
各々、踵部底中心部で約135〜200kg/m3、約
3.8〜5.2kg/cm2、前記踏付部で約90〜1
35kg/m3、約2.4〜3.8 kg/Cm2、土
不踏隆起部で約40〜65kg/m3、約0.7〜1.
3 kg/cm2、外周部で約40〜65kg/m3、
約0.7〜1.3 kg/cm2の値の関係を満たすよ
うに圧縮比の異なる部分を持つ金形で押圧成形されてな
る靴用中底。
An insole made of a single substantially closed-cell non-crosslinked polyethylene foam board, wherein each component of the insole has a foam board density kg/m3 and a 25% compressive strength kg/cm2, respectively. About 135 to 200 kg/m3 at the center of the heel bottom, about 3.8 to 5.2 kg/cm2, about 90 to 1 at the stepping part
35kg/m3, about 2.4-3.8 kg/Cm2, about 40-65kg/m3, about 0.7-1.
3 kg/cm2, approximately 40 to 65 kg/m3 at the outer periphery,
An insole for shoes which is press-molded with a mold having parts with different compression ratios so as to satisfy a value relationship of about 0.7 to 1.3 kg/cm2.
JP2985880U 1980-03-10 1980-03-10 Insole for shoes Expired JPS5829922Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2985880U JPS5829922Y2 (en) 1980-03-10 1980-03-10 Insole for shoes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2985880U JPS5829922Y2 (en) 1980-03-10 1980-03-10 Insole for shoes

Publications (2)

Publication Number Publication Date
JPS56132908U JPS56132908U (en) 1981-10-08
JPS5829922Y2 true JPS5829922Y2 (en) 1983-07-01

Family

ID=29625761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2985880U Expired JPS5829922Y2 (en) 1980-03-10 1980-03-10 Insole for shoes

Country Status (1)

Country Link
JP (1) JPS5829922Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175502A (en) * 1982-04-09 1983-10-14 タキロン株式会社 Insole material of shoe and production thereof

Also Published As

Publication number Publication date
JPS56132908U (en) 1981-10-08

Similar Documents

Publication Publication Date Title
US4674204A (en) Shock absorbing innersole and method for preparing same
US4910886A (en) Shock-absorbing innersole
US4694589A (en) Elastomeric shoe innersole
US4627178A (en) Molded shoe innersole
US4187621A (en) Shoe innersole
US4581187A (en) Method of manufacturing a molded composite elastomeric foam sheet innersole
US4831750A (en) Shoe-construction shoe-construction product and method of fabricating the product
US4346525A (en) Cushion pad for sport shoes and the like and method for fabricating same
US4823483A (en) Shoe insert and laminating method
US5282326A (en) Removeable innersole for footwear
US20020071946A1 (en) Composite footwear upper and method of manufacturing a composite footwear upper
JPS5977803A (en) Sole unit
GB2358121A (en) Foam insole having areas of different density
JPS5829922Y2 (en) Insole for shoes
CA1108396A (en) Cushion pad for sport shoes and the like and method for fabricating same
CN111225579A (en) Outsole and shoe
GB2088776A (en) Understructure members for footwear
KR100824277B1 (en) The method of making the middl sole of ashoe and it's sole of ashoe
EP0042138A2 (en) Simplified cold insulating insole
GB2072486A (en) Laminates and their use as shoe soles
JPH0576402A (en) Flexible sole-like boot stabilizing element
JP2879546B2 (en) Insoles for shoes
CN212814736U (en) Natural solid wood grain polyurethane insole
JPS6228163Y2 (en)
US10244816B2 (en) Sports shoe innerboot