JPS5829739A - Preparation of glyoxylic acid - Google Patents
Preparation of glyoxylic acidInfo
- Publication number
- JPS5829739A JPS5829739A JP12614681A JP12614681A JPS5829739A JP S5829739 A JPS5829739 A JP S5829739A JP 12614681 A JP12614681 A JP 12614681A JP 12614681 A JP12614681 A JP 12614681A JP S5829739 A JPS5829739 A JP S5829739A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- glyoxal
- chlorine
- glyoxylic acid
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
この発明はグリオキザールの酸化法によるグリオキシル
酸の製造法KtAする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing glyoxylic acid by the oxidation method of glyoxal.
グリオキシル酸の製法としてはシェラ酸の電解還元法が
古くから知られているが、シェラ酸の水への溶解度が低
い丸め高濃度の反応ができないこと、設備費の高いこと
、高電流書度又は高賓化率になると選択率の低下や電流
効率の低下をも九らすヒとなど工業生童法としては問題
点が多い。As a method for producing glyoxylic acid, the electrolytic reduction method of Scherer's acid has been known for a long time. There are many problems with the industrial production method, such as a decrease in selectivity and a decrease in current efficiency when the rate of use increases.
グリオキザールの酸化によるグリオキシル酸の製法とし
ては硝酸酸化法が最もよく癲られていゐ。この反応では
、グリオキザールの変化率が低い閏は選択性がよいが、
変化率を上げると逐次反応によってシェラ酸を生じ、グ
リオキシル酸の得られる選択率は着るしく低下する。例
えばグリオ+f−ルの変化率をyesから90饅に上げ
るとグリオキシル酸選択率は9011gから70−へと
歇滅するO
また硝酸酸化法では添加した硝酸が反応完了する迄にか
な〕の時間を必要とし、系内に硝酸が蓄積した状態で反
応が進む。どの丸め硝酸仕込遣度による反応の制御性が
わるい。その上硝酸酸化は途中で中断すると再開始後の
成H1特に選択率がきわめてわるくなる。それ故、選択
率低下のおそト心い(1mの反応率で第1段反応をおこ
なったのち、追加硝酸によル所望の変化率に微調整する
方、法をとることができないし、一時的不都合による中
断再開411ならない0このような不都合はy応中断液
だけでなく、着量のグリオキシル酸を含むグリオキザー
ル水溶液の硝酸酸化全般について認められる。The nitric acid oxidation method is the most commonly used method for producing glyoxylic acid by oxidizing glyoxal. In this reaction, a funnel with a low conversion rate of glyoxal has good selectivity, but
When the rate of conversion is increased, Schereric acid is produced by sequential reactions, and the selectivity obtained for glyoxylic acid is dramatically reduced. For example, if the rate of change of glyol+f-ol is increased from yes to 90g, the glyoxylic acid selectivity will drop from 9011g to 70-.Also, in the nitric acid oxidation method, it will take some time for the added nitric acid to complete the reaction. The reaction proceeds with nitric acid accumulating in the system. The controllability of the reaction depending on the amount of nitric acid charged is poor. Moreover, if nitric acid oxidation is interrupted midway, the selectivity, especially H1, after restarting becomes extremely poor. Therefore, it is difficult to reduce the selectivity (after performing the first stage reaction at a reaction rate of 1 m, it is impossible to fine-tune the rate of change to the desired rate with additional nitric acid; Interruption/resumption due to technical inconvenience 411/0 Such inconvenience is observed not only in the y-reaction suspension solution, but also in the nitric acid oxidation of glyoxal aqueous solutions containing glyoxylic acid in general.
更にグリオキザールの電解酸化によるグリオキシル酸の
製法も知られている(特開昭55−79884号)0こ
の方法は変化率を95%程度に上げて屯選択率80%程
度を維持しておシ、高変化率Ksi−いて高選択率が得
られない硝酸酸化法の欠点をある程度解決している反面
、高濃度での反応が難しく、また大きな固定設備を必要
とする。Furthermore, a method for producing glyoxylic acid by electrolytic oxidation of glyoxal is also known (Japanese Unexamined Patent Publication No. 79884/1984). This method increases the conversion rate to about 95% and maintains the selectivity of about 80%. Although this method solves to some extent the drawbacks of the nitric acid oxidation method, in which a high rate of change Ksi and high selectivity cannot be obtained, it is difficult to react at high concentrations and requires large fixed equipment.
本発明者は従来法のこのような問題点をふまえ、グリオ
キザールの変化率の高い場合にも高選択率でグリオキシ
ル酸を製造でき、反応の制御が容1で、大きな固定設備
のいらない酸化法を求めて鋭意検討をおこなった。その
結果、世に知られている多くの酸化剤のうちで塩素を酸
化剤として選ぶことKよ如、上記の目的をきわめて満足
に達成できることがわかシ本発明を完成した。即ち本発
明は、グリオキザール水溶液と塩素とを度応盲せること
を特徴とするグリオキシル酸0Ill造法であ)、これ
を反応式で表わせば次の通勤である。In view of these problems of the conventional method, the present inventor has developed an oxidation method that can produce glyoxylic acid with high selectivity even when the conversion rate of glyoxal is high, has easy reaction control, and does not require large fixed equipment. We conducted a thorough study to find out. As a result, it has been found that by selecting chlorine as the oxidizing agent among the many oxidizing agents known in the world, the above objects can be achieved very satisfactorily, and the present invention has been completed. That is, the present invention is a method for producing glyoxylic acid, which is characterized in that an aqueous glyoxal solution and chlorine are mixed together several times.This reaction formula can be expressed as follows.
本発明で用いられる酸化剤の塩素は単体の塩素であ〉、
電解ソーダの併童物として多量に生童され1市履畜れ゛
ていゐのできわめて容JIK入手できる。単体塩素は本
発−01的よシ、きわめて轡異的に効果のある酸化剤で
あ〕、グリオキザールを塩素で酸化するととによJ)9
091以上の高変化率においても80−以上の選択率で
グリオキシル酸が得られる。The oxidizing agent chlorine used in the present invention is simple chlorine,
It is produced in large quantities as a companion product to electrolytic soda, and it is available in large quantities in just one city. Elemental chlorine is an extremely effective oxidizing agent, and oxidizing glyoxal with chlorine is effective J)9.
Even at a high conversion rate of 091 or higher, glyoxylic acid can be obtained with a selectivity of 80 or higher.
グリオキず一ルは過電水和され丸形O水siiで得られ
、本斃−でも過電5〜401!0水SmO形で用い得る
・市販品のグリオキず−ルよ)も晶質O劣るグリオキず
−ル水椿筐、例えばグリオキず−ル謳造工1で副生する
グリオキシル酸を多量に含んだダリオキデール水S波を
用い丸場舎に4硝酸酸化OS舎Oようを不部会紘起らず
、よ〕高い収車でグリオキシル酸が得られるO
本発明の方法は、グリオキザール水IIl波中に塩素を
吹きζむことkよって実施できるが、気泡塔、充填塔そ
の他会知の気11ff応方法をとることもでき、バッチ
式、連続式いずれも可能である。本発−における反応の
制御は塩素の併給速度の調節によって可能であ)、反応
温度を一定に保ったシ、所望の変化率になるよう酸化剤
の量を微調整したルすることは硝酸酸化の場合に比べて
自わめて容易である。反応は発熱で通常状水冷など適轟
な除熱手段によ〕反応温度を保つ。液温は41Kll定
されないが、通常0〜100Cで、11温以下でも十分
に進行するが、常圧。Glyokizuru is obtained in the form of round O-water hydrated with overcharge, and can also be used in the form of overcharged 5~401!0 water SmO (commercially available glyokizuru) as well. Inferior glyokizuru water camellia case, for example, Dariokider water S wave containing a large amount of glyoxylic acid, which is a by-product in glyokizuru potion 1, is used to inject 4 nitric acid oxidation OS into Marubasha. The method of the present invention can be carried out by blowing chlorine into the glyoxal water, but it can be carried out by blowing chlorine into the glyoxal water. A 11ff reaction method can also be used, and either a batch method or a continuous method is possible. The reaction in this reactor can be controlled by adjusting the co-supply rate of chlorine), and by keeping the reaction temperature constant and finely adjusting the amount of oxidizing agent to achieve the desired rate of change, it is possible to oxidize nitric acid. This is much easier than in the case of The reaction is exothermic, and the reaction temperature is maintained by appropriate heat removal means such as water cooling. Although the liquid temperature is not fixed, it is usually between 0 and 100C, and the process will proceed satisfactorily even at temperatures below 11Kll, but at normal pressure.
舞温屓応では塩素の徴収速度が比較的小さく、1jL導
を完結するのKJE時間を要すゐ。反応時間短縮の九今
二手段は反応i++vi!の選択で5例えば80tl’
というような温度で反応することもできるが高反応率K
eると選択率が下る傾向があるので1例えば10〜5O
t=というような中程度の温JI!がよ)好tしい反応
温度である。The rate of collection of chlorine in the thermal reaction is relatively low, and it takes KJE time to complete 1JL conduction. The second way to shorten reaction time is reaction i++vi! For example, 80tl' with the selection of 5
Although it is possible to react at temperatures such as
e, the selectivity tends to decrease, so 1, for example, 10 to 5O
Moderate warm JI like t=! ) is the preferred reaction temperature.
反応時HIIiJ11oえめKlに有効な手段は加圧反
応であ)、グリオキず一ル水5illと塩素とを加圧下
で反応畜せることによ)反応成績を、低下すゐことなく
反応速度を上けることができる。An effective means for HIIiJ11oEKl during the reaction is pressurized reaction), and by reacting 5 liters of water with chlorine under pressure), the reaction rate can be increased without reducing the reaction performance. can be used.
例えば後出の実施例5は雪圧反応で、58時間を要して
グリオキず−ルの変化率y1.4−に1つ九が、わずか
に加圧した実−例4ではs6時間−!−4ゲージの加圧
である実施例7では14時間で、それぞれ9s−以上の
変化率が得られてシ〉、グリオキシル酸への選択率も高
い◇反応圧力を更に上ければ反応速度は更に大きくな)
、所]1[Kよシ例えば5 kl/aj e又は1o4
/dGでll!施することもで龜るが、高圧設備が必要
と1珈1除熱負荷も増す。2砺/、J 3でも、01時
間11JIKtで値細で暑るOで(実施例9)、Toま
)大暑な圧力は必要としない。For example, in Example 5, which will be described later, the snow pressure reaction took 58 hours, and the rate of change in glyokyl was 1.4 times, whereas in Example 4, which was slightly pressurized, it took s6 hours! In Example 7, which was pressurized at -4 gauge, a change rate of 9 s- or more was obtained in 14 hours, and the selectivity to glyoxylic acid was also high. ◇If the reaction pressure is further increased, the reaction rate is big)
, Place] 1 [Kyosi For example 5 kl/aj e or 1o4
/dG ll! However, it requires high-pressure equipment, which increases the heat removal load per unit. 2/, J3 is also low and hot at 01 hours 11JIKt (Example 9), Toma) does not require high pressure.
先に示した反応式から―らかなようk、本発明の方法で
は塩化水嵩が副生じ、水5iII中であるから反応系内
には塩酸として共存し、そOII度は反応の進行と共に
増加すゐ。反応速度はこの塩酸―度にも関係し、例えば
Iocでの反応では反応系中の塩酸濃度が1s〜15v
t−以上になると急激に遍くなる。従って反応で副生す
る塩酸によゐ到達塩酸濃度が1s〜15−以下Keるよ
うに原料濃度を調節すれば常圧ないしわずかな加圧反応
でも20時間程度の反応時間でグリオキず一ルの変化率
を90〜?5Istで上げることができる(実施例1.
8)。更に反応圧力を201Q/al G fiで上げ
れば反応時間は9〜10時間一度まで短縮できる(実施
例?)。From the reaction formula shown above, it is clear that in the method of the present invention, water chloride is produced as a by-product, and since it is in water, it coexists as hydrochloric acid in the reaction system, and its OII degree increases as the reaction progresses. Wow. The reaction rate is also related to the degree of hydrochloric acid; for example, in the Ioc reaction, the hydrochloric acid concentration in the reaction system is 1 s to 15 V.
When it exceeds t-, it becomes uneven rapidly. Therefore, if the raw material concentration is adjusted so that the hydrochloric acid concentration reached by the hydrochloric acid by-produced in the reaction is 1 s to 15 or less Ke, even in normal pressure or slightly pressurized reactions, it is possible to reduce the amount of glyoxide in a reaction time of about 20 hours. Change rate from 90? 5 Ist (Example 1.
8). If the reaction pressure is further increased to 201Q/al G fi, the reaction time can be shortened to 9 to 10 hours (Example?).
tえ、同時KI[科グリオキザール員度を下げ反応系の
塩酸濃度を抑えゐと反応選択率も良くなるという予想外
の事実を見出しえ(11111例8゜9参照)0
反応波中の塩酸濃度を11s−以下に保つ九めには、と
の傭に抽出、電気透析、イオン交換樹脂部層、蒸発など
の手段を用いた塩酸除去をおζなうこともあ〕うるが、
原料グリオキザール機変によるものが最も簡単で実用的
価値が高い。Discover the unexpected fact that the reaction selectivity improves when the simultaneous KI [family glyoxal membership level is lowered and the hydrochloric acid concentration in the reaction system is suppressed (see Example 8 and 9 of 11111)0 Hydrochloric acid concentration in the reaction wave To keep the temperature below 11s-, it may be necessary to remove hydrochloric acid by means such as extraction, electrodialysis, ion-exchange resin layering, evaporation, etc.
The method based on mechanical modification of the raw material glyoxal is the simplest and has the highest practical value.
塩酸濃度は、まえ本発明法における対塩素収率にも影畳
を及ばす。即ち、本発明看は対塩素収率が1反応10@
@にシいて異常に低いことのあるOK気づ自1ζO1K
象を防ぐため酸化反応の機榔にりいて詳細に検討し九結
果、塩酸濃度が低い場合1式
%式%
Kよ)生成する次!塩嵩駿によル、原料グリオキザール
Km1人してくる蓚酸あるいはギ酸の副酸化厚応がmζ
)、対塩素収率を墨くすることをつきとめえ。そして、
反応に供されるグリオキソール水濤筐中の塩酸濃度を確
保すれば、こO■屓応を抑制できることを見出し九0反
応の後030段階ではグリオキシル酸を生ずる反応で生
じえ塩酸が存在すゐので問題なく、結局反応のはじめに
供給するグリオキザール水5ill中に少量0.*駿を
添加してやるなどの方法で塩酸初期濃度を確保すればよ
い。添加する塩酸濃度としては1〜2嚢が好ましい。塩
酸濃度が高す「ると先に記しえように反応速度の面での
書があるので、結局グリオキザール水溶液中の塩酸濃度
が1〜159Gの範囲を保つ状態で塩素と反応させるの
がよい。実施例10に記すように塩酸を添加し九場合、
ll収塩素に対するグリオキザールの収率が向上し、8
M応による無駄な塩酸副生がおさえられる。その結果、
グリオキザール変化本釣9596というような同じ水準
で比較し九場合、到達塩酸湊f#i塩酸濃度ゼロからは
じめ九場合と変らない12.8%にとどまシ、1〜2饅
の塩酸添加には反応速度面からの悪影響がない。The hydrochloric acid concentration also affects the chlorine yield in the method of the present invention. That is, in the present invention, the yield relative to chlorine is 10@
OK noticed that it may be abnormally low due to @
In order to prevent this problem, we have carefully examined the oxidation reaction and found that when the concentration of hydrochloric acid is low, the following is produced: According to Shun Shion, the raw material glyoxal Km1 is the secondary oxidation rate of oxalic acid or formic acid.
), find out that the yield against chlorine is black. and,
It was discovered that this O2 reaction could be suppressed by ensuring the concentration of hydrochloric acid in the glyoxol aqueous container used for the reaction. There was no problem, and in the end a small amount of 0.0. *The initial concentration of hydrochloric acid can be maintained by adding Shun or other methods. The concentration of hydrochloric acid to be added is preferably 1 to 2 sachets. If the concentration of hydrochloric acid is high, the reaction rate will be affected as mentioned earlier, so it is best to maintain the concentration of hydrochloric acid in the glyoxal aqueous solution in the range of 1 to 159 G when reacting with chlorine. When adding hydrochloric acid as described in Example 10,
The yield of glyoxal based on the chlorine yield is improved, and 8
Wasteful hydrochloric acid by-products due to M reaction can be suppressed. the result,
When compared at the same level as glyoxal change 9596, the reached hydrochloric acid concentration f#i started from zero and remained at 12.8%, which is the same as in the nine case, but it reacts to the addition of 1 to 2 times of hydrochloric acid. There is no adverse effect on speed.
また、ギ酸やシュウ駿を不純物として含むグリオキず一
ルを原料として用いた場合、塩酸濃度ゼ冒かも塩素酸化
をはじめると反応初期の排ガス中には不活性成分である
炭酸ガスが約80’vo’l−と非常に多く含まれ、従
って反応圧力を艙持すゐためにぬきとる排ガス量と、そ
れに伴なう塩素冒スも多かったが、塩酸初期濃度1−と
して反応させた場合、反応初期排ガス中の炭酸ガスはS
Ovol %以下と少なくなシ、塩素のロスも非常に
少なくなる。In addition, when using glyokizil containing formic acid and sulfur as impurities as a raw material, when chlorine oxidation begins even if the concentration of hydrochloric acid is low, approximately 80'vo of carbon dioxide, an inert component, is present in the exhaust gas at the initial stage of the reaction. 'l-, and therefore the amount of exhaust gas removed in order to sustain the reaction pressure and the accompanying chlorine pollution were large. However, when the reaction was carried out with an initial concentration of Carbon dioxide in the initial exhaust gas is S
Ovol % or less, the loss of chlorine is also very small.
このように塩酸の添加は初期談度を1−11度にすれば
十分であ〕、必Il!以上に塩酸を添加することはl)
反応が高変化率に遍しぇ時Km駿鎖度が高くなルす一度
応速度が遅くなる1M)反応酸lIIが悪くなる、■)
塩酸の浪費となる等の理由から好ましく*い◎
グリオキシル酸は1例えばフェノール鋼との反応などに
用いられるが、硝酸酸化によって揚圧グリオキシル駿は
、反応混合物中の硝酸分が有害な丸め硝酸の除去、分離
精製が必要である。In this way, it is sufficient to add hydrochloric acid to bring the initial temperature to 1-11 degrees. Adding hydrochloric acid to above l)
When the reaction has a high rate of change, the reaction rate becomes slower once the Km chain degree becomes high. 1M) The reaction acid lII becomes worse, ■)
This is preferable for reasons such as wasting hydrochloric acid. Glyoxylic acid is used for reactions with phenolic steel, for example, but pressurized glyoxylic acid is produced by nitric acid oxidation. Removal, separation and purification are necessary.
本発明で得られるグリオキシル酸は、副生する塩酸と混
った水**として得られるが、支障ない@)そのtオで
機工1iK用いることができる。Glyoxylic acid obtained in the present invention is obtained as water** mixed with hydrochloric acid as a by-product, but there is no problem@) It can be used in Kikou 1iK.
もちろん用途によって嬬、必!NK応じ、イオン交換樹
脂旭鳳、電気透析、アンン抽出などの方法でm箇m12
#&履をして用いることもできる@得られるグリオキシ
ル酸のa度は、第1にグリオキザール水IFIIIII
!に依存するが、硝酸酸化の場合は硝酸に伴なう水によ
〕更に稀釈され石。塩素は水を伴なわない点、有利であ
る。反応液の濃度として直meるのが困me高濃度グリ
オキシル駿水溶筐を得る九めkは、本発明で得た反応液
を必IIK応じ公知の技術で濃縮すればよい。Of course, it depends on the purpose! According to NK, ion exchange resin Asahiho, electrodialysis, Ann extraction, etc.
#& can also be used @The degree of glyoxylic acid obtained is firstly glyoxal water IFIII
! However, in the case of nitric acid oxidation, the stone is further diluted by the water accompanying the nitric acid. Chlorine is advantageous in that it does not involve water. To obtain a high-concentration glyoxyl aqueous solution which is difficult to directly measure as the concentration of the reaction solution, the reaction solution obtained in the present invention may be concentrated using known techniques as required.
以下実施例によp本発明を説明する。例中の−はIPI
Kことわらない隈シ重量基準である〇実施例1
グリオキザールS、OS慢およびグリオキシル酸0.4
511を含むグリ# dF f −ル水溶111850
.2fに15〜111rで塩素ガスを19時間吹込みグ
リオキシル酸5.08fkbグリオキザール0.54饅
および塩酸7.24饅を含む水溶t19stsrを得え
。The present invention will be explained below with reference to Examples. - in the example is IPI
Example 1 Glyoxal S, OS Chronic and Glyoxylic Acid 0.4
Glycocontaining # dF f -ol aqueous solution containing 511 111850
.. Chlorine gas was blown into 2f at 15 to 111r for 19 hours to obtain a water-soluble t19stsr containing 5.08fkb glyoxylic acid, 0.54 mounds of glyoxal, and 7.24 mounds of hydrochloric acid.
グリオキザールの変化率は92.8%sグリオキシル酸
の選択率は8s、4−であった。The conversion rate of glyoxal was 92.8%, and the selectivity of glyoxylic acid was 8s, 4-.
実施例2
グリオキザール14.0011およびグリオキシル酸1
.15−を含むグリオキず一ル水溶@8295fK15
〜20Cで塩素ガスを1s時間吹込みグリオキシル駿9
2?li、グリオキザール5.43饅および塩酸10.
57−を含む水溶液? 12.7 Fを揚圧〇グリオキ
ず一ルの変化率は57.55k。Example 2 Glyoxal 14.0011 and Glyoxylic Acid 1
.. Glyokizil aqueous solution containing 15-@8295fK15
Glyoxyl Shun 9 by blowing chlorine gas for 1 s at ~20C
2? li, glyoxal 5.43 and hydrochloric acid 10.
Aqueous solution containing 57-? The rate of change of the 12.7 F lift pressure is 57.55 k.
グリオキシル酸の選択率は88.4嘩であった〇実施例
3
グリオキザール!10411iおよびグリオキシル酸2
.68饅を含むグリオキザール水$ 1I11850.
0PK15Gで塩素ガスを46時間吹込み、グリオキシ
ル酸14.4・−、グリオキザール14.IS−および
塩酸14.19sを含む反応液2114.52を得た。The selectivity of glyoxylic acid was 88.4% Example 3 Glyoxal! 10411i and glyoxylic acid 2
.. Glyoxal water containing 68 steamed rice $ 111850.
Blowing chlorine gas at 0PK15G for 46 hours, glyoxylic acid 14.4.-, glyoxal 14. A reaction solution 2114.52 containing IS- and 14.19 s of hydrochloric acid was obtained.
この時tでに変化し九グリオキザール5.81モルに対
して!2.4−のグリオキシル酸が得られ九ことに&る
。At this time, it changes to 5.81 moles of glyoxal at t! 2.4-glyoxylic acid was obtained, and the result was 90%.
実施例4
グリオキザール14.2易−およびグリオキシル酸0.
4G−を含むグリオキず−ル水$11H4os、1rK
塩素ガスをearで24時間吹込み、グリオキyル駿8
.02Is1グリオキザール4.07%、および塩酸9
.65−を含む反応@2400.9fを揚圧〇この時の
グリオキザールの変化率は53,9−、グリオキシル酸
の選択率は84.4%であつfI−0
塩素の吹込を再開すれば中断の影譬なく、更に高い変化
率を得ることができた。即ち、はじめから!2,40.
48時間後にはグリオキザール濃度はそれぞれ4.64
%、245%、047嘔と減少し、変化率9511に達
した。この間グリオキシル酸の濃度はそれぞれ?、2?
11,10.04%、jO,51%にな〕、塩酸も11
.4 ’lk + 12.856116、O饅と増加し
た。Example 4 Glyoxal 14.2- and glyoxylic acid 0.
Glyokizur water containing 4G- $11H4os, 1rK
Blow in chlorine gas with an ear for 24 hours, glyoxyl 8
.. 02Is1 glyoxal 4.07%, and hydrochloric acid 9
.. The reaction containing 65- @ 2400.9f was pumped up. At this time, the change rate of glyoxal was 53,9-, the selectivity of glyoxylic acid was 84.4%, and fI-0. If the chlorine injection was restarted, the interruption would be completed. Without a doubt, we were able to obtain a higher rate of change. That is, from the beginning! 2,40.
After 48 hours, the glyoxal concentration was 4.64.
%, decreased by 245%, 047%, reaching a change rate of 9511. What is the concentration of glyoxylic acid during this time? , 2?
11, 10.04%, jO, 51%], hydrochloric acid is also 11
.. 4'lk + 12.856116, increased with Ofun.
実施例5
グリオキザール13.01111およびグリオキシル酸
5,18−を含むグリオキザール水溶液2250.6f
tlc常圧で塩素をSaCで58時間吹込み、グリオキ
ザール0.945kbグリオキシルlR14,02−お
よび塩酸14.02−を含む反応f/g2594.4f
を得た0この一時のグリオキザール変化率は?1.4−
、グリオキシル酸選択率は7 S 456、グリオキシ
ル化合物(W料中のグリオキザールとグリオキシル酸の
合計モル数)に対する収率は74.9−であった。Example 5 Glyoxal aqueous solution 2250.6f containing glyoxal 13.01111 and glyoxylic acid 5,18-
Reaction f/g 2594.4f containing glyoxal 0.945kb glyoxyl 14,02- and hydrochloric acid 14,02- by bubbling chlorine with SaC at normal pressure for 58 hours.
Obtained 0 What is the rate of change in glyoxal at this moment? 1.4-
The glyoxylic acid selectivity was 7S 456, and the yield based on the glyoxyl compound (total number of moles of glyoxal and glyoxylic acid in the W material) was 74.9.
実施例6
グリオキザール11.851%およびグリオキシル酸6
.12−を含むグリオキザール水溶1lKk0.2砺4
Gの圧力下墨OCで塩素を54時間吹込み、グリオキザ
ール0.7011bグリオキシル酸14.1i5−およ
び塩酸14.2011を含む反応92BS4.8fを得
た。仁の時のグリオキザール変化率は?1.111.グ
リオキシル駿選択率は71.7%、グリオキシル化合物
に対する収率は77.6饅であつ九〇
実施例7
グリオキず一ルlL1211sグリオキシル酸2.61
1Gを含むグリ#*f−に水11i[K2.o1q/−
・Gの圧力下で塩素をsOCで14時間吹込みグリオキ
ず一ル0.4?ll、グリオキシル酸L2.41、饅お
よび塩酸、、1、.4.44−を含む反応液995.4
2を得た0この時のグリオキザーク変化率は91.51
1.グリオキシル酸選択率は111,411゜グリオキ
シル化合物に対する収率は79.5−であった。Example 6 Glyoxal 11.851% and Glyoxylic Acid 6
.. Glyoxal aqueous solution containing 12-11 Kk0.2 4
Chlorine was bubbled with black OC under pressure of G for 54 hours to obtain reaction 92BS4.8f containing glyoxal 0.7011b glyoxylic acid 14.1i5- and hydrochloric acid 14.2011. What is the rate of change in glyoxal during Jin? 1.111. The glyoxyl selectivity was 71.7%, and the yield relative to the glyoxyl compound was 77.6%.
Guri #*f- containing 1G and 11i of water [K2. o1q/-
・Blow chlorine with sOC under the pressure of G for 14 hours. ll, glyoxylic acid L2.41, steamed rice and hydrochloric acid, 1,. Reaction solution containing 4.44-995.4
I got 2.0 The glyoxark change rate at this time is 91.51
1. The glyoxylic acid selectivity was 111,411°, and the yield based on the glyoxyl compound was 79.5-.
実施例8
グリオキザール!、11−およびグリオキシル酸5.6
0俤を含むグリオキザール水1111!22B4.1t
K O,2絨督Gの圧力下、50Cで塩素を21時間
吹込み、グリオキザール05416.グリオキシル酸1
1.2?−および塩酸12.48−を含む反応*2sz
x、1tを得え。この時のグリ1キザール変化率は95
15ksグリオキシル酸選択率は84.5%、グリオキ
シル化合物に対する収率は857%であつ九。Example 8 Glyoxal! , 11- and glyoxylic acid 5.6
Glyoxal water 1111!22B4.1t containing 0t
Glyoxal 05416 by blowing chlorine at 50C for 21 hours under the pressure of K O, 2 gas director G. glyoxylic acid 1
1.2? - and hydrochloric acid 12.48- reaction *2sz
Get x, 1t. At this time, the change rate of Gri1kizar is 95
The 15ks glyoxylic acid selectivity was 84.5%, and the yield to glyoxylic compound was 857%.
実施例!
グリオキず−ル9.52%およびグリオキシル酸3.4
6−を含むグリオキザール水溶*848.9f11c2
.0輪、4・Gの圧力下、SOCで塩素を10時間吹込
み、グリオキず−ル0.65’fk1グリオキシル酸1
1.459Iおよび塩酸12.47饅を含む反応液97
5.4fを得た。この時のグリオキザール変化率は?2
,211、グリオキシル酸選択率は11511gIおよ
びグリオキシル化合物に対する収率は85.8−で6つ
九。Example! Glyoxylic acid 9.52% and glyoxylic acid 3.4%
Glyoxal water solution containing 6-*848.9f11c2
.. 0 wheel, under pressure of 4 G, blowing chlorine at SOC for 10 hours, glyoxylic acid 0.65'fk1 glyoxylic acid 1
Reaction solution 97 containing 1.459 I and 12.47 pieces of hydrochloric acid
5.4f was obtained. What is the glyoxal change rate at this time? 2
, 211, the glyoxylic acid selectivity was 11,511 gI, and the yield to glyoxyl compound was 85.8-69.
実施例10
グリオキず−ル9.141s% グリオキシル酸1.9
3−および塩酸1.0011を含むグリオキザール水@
il@48.0 f K 2.01#/af・Gの圧力
下、30Ll’で塩素を8時間炊込み、グリオキザール
0.4411.グリオキシル酸10.54嘩、および塩
酸12.18−を會む反応@969.4tを揚圧〇この
時のグリオキザール変化率は94.7%、グリオキシル
酸選択率は87.1−、グリオキシル化合物に対する収
率は@5.O嚢であった。途中6時間迄の変化率は90
.!チ、選択率89.25iであつ九。口時間O反応前
後の塩酸の増分から求めた吸収塩素量に対するグリオキ
シル酸の収車F182.1 % テhツ’k。Example 10 Glyoxylic acid 9.141s% Glyoxylic acid 1.9
Glyoxal water containing 3- and hydrochloric acid 1.0011 @
Under the pressure of il @ 48.0 f K 2.01#/af・G, chlorine was cooked in 30 Ll' for 8 hours, and glyoxal 0.4411. The reaction involving 10.54 glyoxylic acid and 12.18 glyoxylic acid and 12.18 glyoxylic acid was pumped up at 969.4 t.At this time, the glyoxal conversion rate was 94.7%, the glyoxylic acid selectivity was 87.1%, and the glyoxylic acid selectivity was 87.1%, with respect to the glyoxyl compound. The yield is @5. It was an O-sac. The change rate up to 6 hours in the middle is 90
.. ! 9 with a selectivity of 89.25i. The amount of glyoxylic acid absorbed relative to the amount of absorbed chlorine determined from the increment of hydrochloric acid before and after the O reaction was 182.1%.
比較のため、塩酸初期湊fO−としてほぼ同様KS O
r、 2.01ap/dの加圧下で塩素と反応させたと
ころ1反応時間に対する塩酸濃度の増加−一は約2時間
違れて同様の傾向を示し、10時間11にはグリオキザ
ール変化率、[1118度共に前記のものとほぼ同じ値
になった。対塩素収率は80.0−であ)、塩酸濃度の
低い反応初期の悪影響があった。For comparison, almost the same KSO as the initial Minato fO-
r, When reacted with chlorine under a pressure of 2.01 ap/d, the increase in hydrochloric acid concentration for 1 reaction time showed a similar trend at about 2 hours, and at 10 hours 11 the glyoxal change rate, [ Both values of 1118 degrees were almost the same as those above. The yield relative to chlorine was 80.0-), and there was an adverse effect at the early stage of the reaction due to the low concentration of hydrochloric acid.
塩酸初期後直1.5%及び2g/Iの場合、対塩素収車
はそれぞれ85.411及び82.491であった。In the case of 1.5% and 2 g/I immediately after initial hydrochloric acid, the chlorine collection was 85.411 and 82.491, respectively.
比較例
グリオキザール17.8411およびグリオキシル酸1
0.s O*を含むグリオキザール水溶液1s o o
、o tKa 516@1IJ742.4 tを40C
で4時間かけて滴下し、更に40C’で6時間熟成して
グリオキシル酸17.44%およびグリオキザール1.
10%を含む反応液2052.1fを得た。グリオキザ
ールの変化率91.6−で、グリオキシル酸選択率4i
5.116であった。Comparative Examples Glyoxal 17.8411 and Glyoxylic Acid 1
0. Glyoxal aqueous solution containing s O* 1s o o
, o tKa 516@1IJ742.4 t 40C
It was added dropwise over 4 hours at 40C' and further aged for 6 hours to give 17.44% glyoxylic acid and 1% glyoxal.
A reaction solution 2052.1f containing 10% was obtained. Glyoxal conversion rate 91.6-, glyoxylic acid selectivity 4i
It was 5.116.
出原人代理人 古 谷 馨Original agent Kaoru Furutani
Claims (1)
とを特徴とするグリオキシル酸の製造法。 2 反応が加圧下で行なわれる特許請求の範囲第1項記
載の製造法。 3 反応がグリオキず−ル水S筐中の塩酸濃度1〜11
−の状態で行なわれる特許請求の範囲第1項記載の製造
法。[Claims] 1. A method for producing glyoxylic acid, which comprises reacting 5ill of glyoxal water with chlorine. 2. The production method according to claim 1, wherein the reaction is carried out under pressure. 3 The reaction is at a hydrochloric acid concentration of 1 to 11 in the glyokizuru water S case.
- The manufacturing method according to claim 1, which is carried out under the following conditions.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12614681A JPS5829739A (en) | 1981-08-12 | 1981-08-12 | Preparation of glyoxylic acid |
GB8135802A GB2088374B (en) | 1980-12-01 | 1981-11-27 | Process for preparation of glyoxylic acid |
US06/326,296 US4503246A (en) | 1980-12-01 | 1981-12-01 | Process for preparation of glyoxylic acid |
FR8122504A FR2495138B1 (en) | 1980-12-01 | 1981-12-01 | PROCESS FOR THE PREPARATION OF GLOXYLIC ACID |
HU813603A HU188720B (en) | 1980-12-01 | 1981-12-01 | Process for preparing glyoxylic acid |
DE19813147533 DE3147533A1 (en) | 1980-12-01 | 1981-12-01 | METHOD FOR PRODUCING GLYOXYL ACID |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12614681A JPS5829739A (en) | 1981-08-12 | 1981-08-12 | Preparation of glyoxylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5829739A true JPS5829739A (en) | 1983-02-22 |
Family
ID=14927808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12614681A Pending JPS5829739A (en) | 1980-12-01 | 1981-08-12 | Preparation of glyoxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5829739A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6255452U (en) * | 1985-08-14 | 1987-04-06 |
-
1981
- 1981-08-12 JP JP12614681A patent/JPS5829739A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6255452U (en) * | 1985-08-14 | 1987-04-06 | ||
JPH059184Y2 (en) * | 1985-08-14 | 1993-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3617139B1 (en) | Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal | |
JPS5982350A (en) | Manufacture of para-nitrosodiphenylamine chlorate | |
WO2015149599A1 (en) | Method for preparing iminodisuccinate chelating agent | |
WO2020109720A1 (en) | Process for producing lithium bis(fluorosulfonyl)imide salt | |
JP2000154009A (en) | Method for purifying lithium hexafluorophosphate | |
JPS5829739A (en) | Preparation of glyoxylic acid | |
JPH10158238A (en) | Production of n-methyl-2-pyrrolidone | |
US4698441A (en) | Process for producing glyoxylic acid | |
JP2706454B2 (en) | Method for producing aromatic fluorine compound | |
JP3159614B2 (en) | Method for producing chloroalkylamine hydrochloride | |
JP3789749B2 (en) | Method for producing thiosalicylic acid | |
JPH06179644A (en) | Production of n-@(3754/24)alpha-alkoxyethyl)formamide | |
JPS5850926B2 (en) | Production method of calcium nitrite aqueous solution | |
JP3326867B2 (en) | Method for producing metal salt of iminodisuccinic acid | |
US4503246A (en) | Process for preparation of glyoxylic acid | |
JP2912444B2 (en) | Method for producing disodium trihydrogen periodate | |
JP3765969B2 (en) | Method for treating metal fluoride and synthetic catalyst comprising said metal fluoride | |
JPS6148817B2 (en) | ||
JP3394980B2 (en) | Method for producing free hydroxylamine aqueous solution | |
JP2000204065A (en) | Production of n-methylethanolamine | |
JPH03167144A (en) | Production of fluorobenzene | |
US6117408A (en) | Method of producing zinc bromide | |
JPH09176101A (en) | Production of p-nitrophenylhydrazine | |
CN116178129A (en) | Preparation method of 2,4, 5-trifluoro-benzoic acid | |
JPH06329606A (en) | Production of iminodisuccinic acid metal salt |