JPS5829215B2 - Multilayer hollow molding method - Google Patents

Multilayer hollow molding method

Info

Publication number
JPS5829215B2
JPS5829215B2 JP49100847A JP10084774A JPS5829215B2 JP S5829215 B2 JPS5829215 B2 JP S5829215B2 JP 49100847 A JP49100847 A JP 49100847A JP 10084774 A JP10084774 A JP 10084774A JP S5829215 B2 JPS5829215 B2 JP S5829215B2
Authority
JP
Japan
Prior art keywords
resin
molding
die
multilayer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49100847A
Other languages
Japanese (ja)
Other versions
JPS5128158A (en
Inventor
澄雄 長井
友益 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOORAKU KK
Original Assignee
KYOORAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOORAKU KK filed Critical KYOORAKU KK
Priority to JP49100847A priority Critical patent/JPS5829215B2/en
Publication of JPS5128158A publication Critical patent/JPS5128158A/ja
Publication of JPS5829215B2 publication Critical patent/JPS5829215B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • B29C48/336Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die
    • B29C48/3363Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die using a layered die, e.g. stacked discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 本発明は、多層の樹脂層が接合してなる多層樹脂ボルト
等の中空成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for blow molding multilayer resin bolts and the like formed by bonding multiple resin layers.

多層樹脂ボルトを製造するための多層中空成形方法は従
来から柚々考案されているが、接合しようとする各層が
同種の樹脂か、または押出力ロエ温度が近似しているも
のであって、溶融または半溶融状態でそれらがたがいに
充分に接合するような樹脂を材料とする場合には特に欠
点は見られないが、これが例えばナイロンとポリエチレ
ンのように、その押出し加工温度が大きく異なり、かっ
たがいに接合困難な材料を接合して各層とする多層樹脂
ボルトの製造に応用した場合lこはそれぞれの材料は接
合不完全となって剥離しやすいという問題があった。
A number of multilayer blow molding methods have been devised in the past for producing multilayer resin bolts. Or, if the material is a resin that fully bonds to each other in a semi-molten state, there are no particular disadvantages, but this is difficult because the extrusion temperature of nylon and polyethylene is very different, for example. When applied to the production of multilayer resin bolts in which materials that are difficult to bond are bonded together to form each layer, there is a problem in that the respective materials are not fully bonded and easily peel off.

すなわち、画素材の成形加工温度範囲は異なり、例えば
低@妾ポlJエチレンは140〜180℃、高密瓜ポリ
エチレンは160〜200℃であるのに対して6−ナイ
ロンは235〜250℃でありこれらの共押出しにおけ
る多層形成段階では、押出ダイ温度は当然6−ナイロン
の成形温度に準拠して設定されることになる。
That is, the molding temperature range of the image materials is different, for example, low @concubine polyethylene is 140 to 180 °C, high density melon polyethylene is 160 to 200 °C, while 6-nylon is 235 to 250 °C. In the multilayer forming stage of coextrusion, the extrusion die temperature will naturally be set in accordance with the forming temperature of 6-nylon.

こ\において、一方の素材であるポリエチレンは、その
妥当な成形温度を超えたパリスン温度をもって押出され
ることになる。
In this case, one material, polyethylene, will be extruded at a parison temperature that exceeds its reasonable forming temperature.

このため、(1)高温度で溶融した樹脂の粘変低下に因
り、過変の流動性が顕れ、押出しヘッド内の樹脂圧低下
をきたし、必ずしも良好な多層管状樹脂流は形成されず
、したがって望ましい多層パリスンを押出すことにはな
らない。
For this reason, (1) excessive fluidity appears due to the decrease in viscosity of the resin melted at high temperature, resulting in a decrease in resin pressure in the extrusion head, and a good multilayer tubular resin flow is not necessarily formed. It does not result in the extrusion of the desired multilayer parison.

また押出しダイ内の樹脂圧が低下することになり、各層
間の接着性も低下し易い。
Furthermore, the resin pressure within the extrusion die is reduced, and the adhesion between each layer is also likely to be reduced.

(2)押出し後のパリスンは当然ドローダウンが増大し
、製品の各部分膜厚調整の障害となる。
(2) The parison after extrusion naturally has increased drawdown, which becomes an obstacle to adjusting the thickness of each part of the product.

(3)パリスンの保持する熱量と、成形完了時の製品熱
量との差は冷却熱量となるがパリスン温iが高いことに
より金型の冷却媒体流量ならびに冷却時間も増加する。
(3) The difference between the amount of heat retained by the parison and the amount of heat of the product at the time of completion of molding is the amount of cooling heat, and as the parison temperature i increases, the flow rate of the cooling medium in the mold and the cooling time also increase.

(4)ポリエチレンは熱劣化を生じやすくなり、酸化防
止剤の添加を必要となるが、食品、医薬品等の容器には
この添加剤の添加は好ましくない。
(4) Polyethylene is susceptible to thermal deterioration and requires the addition of an antioxidant, but it is not preferable to add this additive to containers for foods, medicines, etc.

(5)6−ナイロン層は、ポリエチレン層と共に金型内
で、高温溶融状態のパリスンから急激な延引冷却に移行
するので膜厚分布の不平均化、耐気体透過性等の特性低
下が発生しやすい。
(5) The 6-nylon layer, together with the polyethylene layer, transitions from a high-temperature molten parison to rapid cooling by extension in the mold, resulting in uneven film thickness distribution and deterioration of properties such as gas permeability. Cheap.

このように従来の成形方法で得られた多層中空成形品は
、構成樹脂の成形加工温度が大きく、例えば35℃以上
異なる2榴以上の樹脂である場合、各層の接着性および
各層を構成するそれぞれの樹脂の特性、例えば耐気体透
過性が低下する欠点があり、また従来の成形方法では樹
脂の劣化が生じやすく、各層の肉厚も不均一になり、さ
らに成形時間も長くなるという欠点があった。
In this way, the multilayer hollow molded product obtained by the conventional molding method has a high molding temperature of the constituent resins, for example, when two or more resins differ by 35°C or more, the adhesiveness of each layer and the In addition, conventional molding methods tend to cause resin deterioration, the thickness of each layer becomes uneven, and the molding time becomes longer. Ta.

本発明は上述した多くの問題点を解決せんがためになさ
れたもので、その目的とするところは、成形加工温度が
大きく異なる2種以上の樹脂からなる多層中空成形体を
、各層間の接着性が良好で、しかも各層を構成する樹脂
のそれぞれの特性を十分活かすことができると共に、成
形加工温度が低い方の樹脂の劣化がなく、各層の肉厚が
均一になり、さらに成形サイクルを短軸できるようにし
た多層中空成形方法を提供することにある。
The present invention has been made to solve many of the problems mentioned above, and its purpose is to form a multilayer hollow molded body made of two or more types of resins with greatly different molding temperatures, by bonding the layers between each layer. In addition, the properties of the resins that make up each layer can be fully utilized, and there is no deterioration of the resin at lower molding temperatures, the thickness of each layer is uniform, and the molding cycle is shortened. It is an object of the present invention to provide a multilayer hollow molding method that allows the shaft to be formed.

以下本発明の実施態様を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

図中1は3層容器の成形に利用する3層パリスン押出し
ダイであり、ダイ本体部2と、ダイノズル部3とから構
成されている。
In the figure, 1 is a three-layer parison extrusion die used for molding a three-layer container, and is composed of a die body part 2 and a die nozzle part 3.

ダイ本体部2には3個の溶融樹脂供給口4,5.6が軸
方向に位置をずらせて設けてあり、これらはそれぞれ環
状溝4a 、5a 、6aを経て管状樹脂流路7に相次
いで管状のま5合流するように構成されている。
Three molten resin supply ports 4, 5.6 are provided in the die main body 2 at positions shifted in the axial direction, and these are successively connected to the tubular resin channel 7 via annular grooves 4a, 5a, 6a, respectively. It is configured such that five tubular tubes join together.

この管状樹脂流路7には環状の絞り部7bが設けである
This tubular resin flow path 7 is provided with an annular constriction portion 7b.

管状樹脂流路7はダイノズル部3内部の管状樹脂冷却流
路7aを経てダイフェースに開口したパリスン押出口8
に連通している。
The tubular resin flow path 7 passes through the tubular resin cooling flow path 7a inside the die nozzle part 3 and is connected to a parison extrusion port 8 that opens to the die face.
is connected to.

ダイノズル部3の外周部には冷却室9が設けられており
、10はその冷却媒体の送入口で、これが冷却媒体源(
図示せず)に連通されている。
A cooling chamber 9 is provided on the outer periphery of the die nozzle part 3, and 10 is a cooling medium inlet port, which is a cooling medium source (
(not shown).

11は冷却媒体の環状をなす噴出口で、ダイノズル部3
の先端部であるダイフェースに開口されている。
Reference numeral 11 denotes an annular jet nozzle for cooling medium, which is connected to the die nozzle portion 3.
The die face is the tip of the die.

この噴出口11の開口間隔は円筒状をなす螺着筒蓋12
の緊定加減によって調整あるいは閉鎖自在となっている
The spacing between the openings of this spout 11 is determined by the screw-on cylinder lid 12 having a cylindrical shape.
It can be adjusted or closed by adjusting the tension.

13は開閉自在とした排出口である。14は冷却媒体流
量を冷却室全体に平均的に流れるようにするための塞流
リングである。
13 is a discharge port which can be opened and closed freely. Reference numeral 14 denotes a blockage ring for making the cooling medium flow evenly throughout the cooling chamber.

押出しダイ1の軸心部には孔15が貫通穿設してあり、
この孔15の上部は下部の冷却室9がある位置の部分に
比して大径となっている。
A hole 15 is bored through the axial center of the extrusion die 1.
The upper part of this hole 15 has a larger diameter than the lower part where the cooling chamber 9 is located.

そしてこの孔15に、小径部には密に嵌合し、大径部で
は孔の内面との間に間隙を有する管16が貫設してあり
、さらにこの管16内にこの管16より小径で半径方向
に隙間を翁する細管17が貫設しである。
A tube 16 that fits tightly in the small diameter part and has a gap with the inner surface of the hole in the large diameter part is penetrated through this hole 15, and a pipe 16 with a diameter smaller than that of this tube 16 is inserted through the hole 15. A thin tube 17 is installed through the gap in the radial direction.

上記管16および細管17の下端は共にダイフェースよ
り下方へ開放され、また管16の上端は大気中に開放さ
れ、細管17の上端は適当な加圧空気源に連通しである
The lower ends of the tube 16 and capillary tube 17 are both open below the die face, the upper end of tube 16 is open to the atmosphere, and the upper end of capillary tube 17 is in communication with a suitable source of pressurized air.

そしてこの細管17の上端からの圧縮空気はこの細管1
7の先端からダイフェースの下方へ放出されるが、ダイ
フェースからパリスンが押出されているときには、こ\
から管16との間の隙間を通って逆流し、ダイノズル部
3の中心部を冷却しながら上方へ排出される。
The compressed air from the upper end of this thin tube 17 is
It is ejected from the tip of 7 to the bottom of the die face, but when the parison is being extruded from the die face, this
It flows backward through the gap between the die nozzle part 3 and the pipe 16, and is discharged upward while cooling the center of the die nozzle part 3.

このとき管16とダイ本体部2との間に間隙があるので
ダイ本体部2は冷却されない。
At this time, since there is a gap between the tube 16 and the die body 2, the die body 2 is not cooled.

上記構成の押出しダイ1を使用して、内外層をポリエチ
レン、中間層を6−ナイロンをもって構成される3層容
器を中空成形する過程を説明する。
The process of blow-molding a three-layer container having the inner and outer layers made of polyethylene and the middle layer made of 6-nylon using the extrusion die 1 having the above configuration will be described.

ポリエチレン樹脂と6−ナイロン樹脂とはそれぞれ押出
機(図示せず)で溶融加圧され、ポリエチレンは2分流
して供給口4,6を経て環状溝4a、6aへ、6−ナイ
ロンは供給口5を経て環状溝5aへそれぞれ供給され、
これらが相次いで管状樹脂流路7で合流し、中間層が6
−ナイロン、内外層がポリエチレンとなった3層管状流
となる。
The polyethylene resin and the 6-nylon resin are each melted and pressurized by an extruder (not shown), and the polyethylene is divided into two parts and flows through the supply ports 4 and 6 to the annular grooves 4a and 6a, and the 6-nylon resin is flowed through the supply port 5. are respectively supplied to the annular groove 5a through
These are successively merged in the tubular resin channel 7, and the intermediate layer 6 is formed.
- A three-layer tubular flow with nylon and inner and outer polyethylene layers.

このときダイ本体部2は6−ナイロンの押出し適温まで
加熱しておく。
At this time, the die main body 2 is heated to an appropriate temperature for extruding 6-nylon.

このように管状樹脂流路7で合流した各層の樹脂はその
ま\ダイノズル部3の冷却流路7aに流下するが、その
前に絞り7bを通ることにより、この部分で厚さ方向に
カロ圧される。
The resin of each layer that has merged in the tubular resin flow path 7 flows directly down to the cooling flow path 7a of the die nozzle part 3, but before that, it passes through the throttle 7b, so that the Calorie pressure is applied in the thickness direction in this part. be done.

ついで上記3層管状流がダイノズル部3の冷却流路7a
に至ると、ここで内外層のポリエチレンは内、外側から
冷却され、これと共に中間層の6−ナイロンも間接的に
冷却される。
Then, the three-layer tubular flow flows into the cooling channel 7a of the die nozzle section 3.
At this point, the polyethylene of the inner and outer layers are cooled from the inside and the outside, and at the same time, the 6-nylon of the middle layer is also indirectly cooled.

従ってダイノズル部3で各樹脂は粘晩が増し、6−ナイ
ロン層は硬化温妾付近まで温度降下される。
Therefore, the viscosity of each resin increases in the die nozzle section 3, and the temperature of the 6-nylon layer is lowered to near the hardening temperature.

またこのとき、上記ダイノズル部3を通る際に各樹脂は
冷却されて粘変が上昇することにより、押出圧力が上昇
し、この部分を通る樹脂はこの部分で加圧される。
Further, at this time, each resin is cooled while passing through the die nozzle portion 3 and its viscosity increases, so that the extrusion pressure increases, and the resin passing through this portion is pressurized at this portion.

このように温度降下された3層環状流はダイフェースに
開口したパリスン押出口8より多層パリスンとして押出
される。
The three-layer annular flow whose temperature has been lowered in this manner is extruded as a multilayer parison from the parison extrusion port 8 opened in the die face.

そしてこの多層パリスンは図示しない分割形式の金型に
て閉鎖し、圧縮空気等の加圧流をパリスン内に導入して
中空成形することにより、中間層が6−ナイロン、中外
層がポリエチレンとした3層構造の多層樹脂ボトルが得
られる。
This multilayer parison is then closed with a split-type mold (not shown), and a pressurized flow such as compressed air is introduced into the parison for blow molding, so that the middle layer is 6-nylon and the middle and outer layers are polyethylene. A multilayer resin bottle with a layered structure is obtained.

なお上述した押出しダイ本体部2の構造は、ダイノズル
部3と共に、その設計に多様性があり第1図に示した構
造に限定されるものではなく、第2図に示すように、パ
リスンの外周から冷却空気を吹きつけるため、空気吹付
は用のスリット21を設けた管状管22を独立してパリ
スンの外周にのぞませて設けてもよい。
The structure of the extrusion die main body 2 described above, together with the die nozzle 3, has a variety of designs, and is not limited to the structure shown in FIG. 1. As shown in FIG. In order to blow cooling air from the parison, a tubular tube 22 provided with a slit 21 for air blowing may be provided independently so as to look over the outer periphery of the parison.

なおこの実施例は2層用の押出しダイ1aを示す。Note that this example shows a two-layer extrusion die 1a.

本発明に係る多層中空成形方法は上記詳述したようにな
り、成形加工温度が大きく異なる2種以上の樹脂を積層
してなる多層中空成形体を成形する多層中空成形方法に
おいて、成形力ロエ温度が高い方の樹脂の成形加工温度
に設定されたダイ本体の合流部にてそれぞれの樹脂を多
層管状に合流し、その後絞り部7bで厚さ方向に加圧し
、さらに上記合流部より低い温度に冷却された管状樹脂
冷却流路7aで冷却による粘変上昇にて加圧状態とした
後ダイフェースより多層パリスンとして押出し、その後
中空成形するようにしたから、各層を構成する成形加工
温度が大きく異なる2種以上の樹脂は、ダイ本体で合流
する際に、成形加工温度が高い方の樹脂の成形加工温度
に設定されているので、それぞれの樹脂は均一に合流積
層される。
The multilayer blow molding method according to the present invention is as described in detail above, and in the multilayer blow molding method for molding a multilayer blow molded body formed by laminating two or more resins having significantly different molding temperatures, the molding force Loe temperature The respective resins are merged into a multilayered tube shape at the confluence section of the die body, which is set to the molding temperature of the resin with a higher temperature, and then pressurized in the thickness direction at the constriction section 7b, and further lowered to a temperature lower than that of the confluence section. Since the resin is pressurized in the cooled tubular resin cooling channel 7a by increasing viscosity due to cooling, it is extruded from the die face as a multilayer parison, and then blow molded, so the molding temperatures for forming each layer differ greatly. When two or more resins are combined in the die body, the molding temperature is set to the molding temperature of the higher resin, so each resin is uniformly merged and laminated.

またこのダイ本体で合流した多層管状樹脂は絞り部7b
にて厚さ方向に加圧されると共に、ダイノズルで冷却さ
れて加圧されることにより、合流した後の多層管状樹脂
はダイ内の通路を流下する間に2段階に厚み方向に加圧
することができ、成形加工温度が大きく異なる各層状の
樹脂は各層間で良好に接着され成形後剥離することがな
く、接着性が良好な多層中空体を得ることができる。
Also, the multilayer tubular resin that has merged in this die body is in the constricted part 7b.
The multilayer tubular resin is pressurized in the thickness direction in the die nozzle, and is then cooled and pressurized in the die nozzle, so that the multilayer tubular resin after merging is pressurized in the thickness direction in two stages while flowing down the passage in the die. The resins in the layers, which have significantly different molding temperatures, are well bonded between each layer and do not peel off after molding, making it possible to obtain a multilayer hollow body with good adhesion.

また上記2段階の加圧は合流後に、かつ内外両側から均
一になされるから、多層管状の樹脂の各層はそれぞれ同
一比率で絞られて所望の肉厚比を容易に得ることができ
る。
Furthermore, since the two-stage pressurization is performed uniformly from both the inside and outside sides after the merging, each layer of the multilayered tubular resin can be squeezed at the same ratio to easily obtain a desired wall thickness ratio.

さらに本発明に係る押出しダイから押出されたパリスン
は所定温+iまで冷却されることにより、中空成形時に
おける冷却熱量が少なくなって成形サイクルを大幅に短
縮することができる。
Furthermore, since the parison extruded from the extrusion die according to the present invention is cooled to a predetermined temperature +i, the amount of cooling heat during blow molding is reduced, and the molding cycle can be significantly shortened.

さらにまた管状流形成時に必要以上に昇温されたポリエ
チレンはその後直ちに冷却されるので、熱劣化の恐れが
なく、したがって酸化防止剤の添力口の必要がなくなる
Furthermore, since the polyethylene whose temperature has been raised more than necessary during the formation of the tubular flow is immediately cooled down, there is no risk of thermal deterioration, thus eliminating the need for an antioxidant addition port.

そしてさらにパリスンはダイフェースから押出されたと
きには相当に冷却されていることにより、ドローダウン
が生じることがなくなってこれのブロー成形において膜
厚分布が平均化すると共に、ナイロン等の耐気透過性等
の特性を充分発揮することができる。
Furthermore, since the parison is considerably cooled when it is extruded from the die face, drawdown does not occur, and the film thickness distribution is averaged during blow molding, and the air permeation resistance of nylon etc. can fully demonstrate its characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は縦断面図
、第2図は他の実施例を示す縦断面図である。 2はダイ本体部、3はダイノズル部、4,5゜6は溶融
樹脂供給口、7は環状樹脂流路、7aは絞り部、9は冷
却室、11は噴出口。
The drawings show an embodiment of the present invention, with FIG. 1 being a longitudinal sectional view and FIG. 2 being a longitudinal sectional view showing another embodiment. 2 is a die main body part, 3 is a die nozzle part, 4,5° 6 is a molten resin supply port, 7 is an annular resin flow path, 7a is a constriction part, 9 is a cooling chamber, and 11 is a jet port.

Claims (1)

【特許請求の範囲】[Claims] 1 成形加工温度が大きく異なる2裡以上の樹脂を積層
して成形する多層中空成形方法において、成形加工温度
が高い方の樹脂の成形加工温度に設定されたダイ本体の
合流部にてそれぞれの樹脂を多層管状に合流し、その後
絞り部7bで厚さ方向に加圧し、さらに上記合流部より
低い温度に冷却された管状樹脂冷却流路7aで冷却によ
る粘変上昇にて加圧状態とした後ダイフェースより多層
パリスンとして押し、その後中空成形するよう(こした
ことを特徴とする多層中空成形方法。
1 In a multilayer blow molding method in which two or more resins having significantly different molding temperatures are laminated and molded, each resin is mixed at the confluence part of the die body, which is set to the molding temperature of the resin with a higher molding temperature. are merged into a multi-layered tubular shape, and then pressurized in the thickness direction at the constriction section 7b, and further pressurized by increasing viscosity due to cooling in the tubular resin cooling channel 7a, which is cooled to a lower temperature than the merged section. A multilayer hollow molding method characterized by pressing a multilayer parison from the die face and then blow molding.
JP49100847A 1974-09-04 1974-09-04 Multilayer hollow molding method Expired JPS5829215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49100847A JPS5829215B2 (en) 1974-09-04 1974-09-04 Multilayer hollow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49100847A JPS5829215B2 (en) 1974-09-04 1974-09-04 Multilayer hollow molding method

Publications (2)

Publication Number Publication Date
JPS5128158A JPS5128158A (en) 1976-03-09
JPS5829215B2 true JPS5829215B2 (en) 1983-06-21

Family

ID=14284700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49100847A Expired JPS5829215B2 (en) 1974-09-04 1974-09-04 Multilayer hollow molding method

Country Status (1)

Country Link
JP (1) JPS5829215B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624133A (en) * 1979-08-07 1981-03-07 Asahi Chem Ind Co Ltd Molding die
US4548570A (en) * 1983-05-12 1985-10-22 Cosden Technology, Inc. Extrusion apparatus for producing thermoplastic pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843459A (en) * 1971-10-02 1973-06-23
JPS4926844U (en) * 1972-06-15 1974-03-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843459A (en) * 1971-10-02 1973-06-23
JPS4926844U (en) * 1972-06-15 1974-03-07

Also Published As

Publication number Publication date
JPS5128158A (en) 1976-03-09

Similar Documents

Publication Publication Date Title
EP0280066B1 (en) Apparatus and method for producing a multi-layered article such as a parison e.g. for making a blowmoulded container
US4149839A (en) Blow molding apparatus
JP4283541B2 (en) Injection molding of multilayer plastic products
US4781954A (en) Preform with internal barrier and products made from the same
CN104275790B (en) Three-layer co-extrusion plastic film blow molding machine head with combined type rotary core rod and layered two-channel temperature control device
US4297092A (en) Accumulator head used in the formation of a multi-layer parison
US4937035A (en) Method for manufacturing large-volume hollow bodies of plastics material having multiple-layer walls
JPS6299115A (en) Apparatus for extrusion molding of multi-layer parison
WO1989003756A1 (en) Multilayer forming nozzle
JPS6137404A (en) Method of injection molding multilayered parison with bottom
JPH0270405A (en) Method and device for manufacturing thermoplastic synthetic resin hollow body
CN113043571B (en) Ultra-high molecular weight polyethylene pipe co-extrusion die and method
CN106738757A (en) Double-layer composite pipe extruded mould improved structure
JPS5829215B2 (en) Multilayer hollow molding method
JP4224842B2 (en) Blow molded container, method for producing the same, and multilayer extrusion molding apparatus
JPS61134220A (en) Plastic multi-layer co-extrusion die
CN209176140U (en) The three-layer co-extruded spiral mould of PE tubing
US3423010A (en) Plastic laminated bag structure having curled edges
JP2003165524A (en) Blow molded container, production method therefor, and multilayer extrusion molding die
JP2800903B2 (en) Parison injection method for blow molding machine
JP3696997B2 (en) Spiral die
US5435964A (en) Parison forming method and apparatus therefor
JPS62104707A (en) Apparatus for extrusion molding of multi-layer parison
CN108973094B (en) Combined type superposition die head of film blowing machine
CN107364103A (en) One kind superposition sleeve coventry type die head coventry