JPS5829211A - Thin film piezoelectric oscillator - Google Patents
Thin film piezoelectric oscillatorInfo
- Publication number
- JPS5829211A JPS5829211A JP12705781A JP12705781A JPS5829211A JP S5829211 A JPS5829211 A JP S5829211A JP 12705781 A JP12705781 A JP 12705781A JP 12705781 A JP12705781 A JP 12705781A JP S5829211 A JPS5829211 A JP S5829211A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- piezoelectric
- thickness
- thin
- order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 163
- 239000000463 material Substances 0.000 claims description 17
- 230000008878 coupling Effects 0.000 abstract description 38
- 238000010168 coupling process Methods 0.000 abstract description 38
- 238000005859 coupling reaction Methods 0.000 abstract description 38
- 239000000758 substrate Substances 0.000 abstract description 26
- 238000005530 etching Methods 0.000 abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 230000007423 decrease Effects 0.000 abstract description 7
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 abstract 2
- 229910052710 silicon Inorganic materials 0.000 description 20
- 239000010703 silicon Substances 0.000 description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 19
- 230000004044 response Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 229910004613 CdTe Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 electrode Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/171—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
- H03H9/172—Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
- H03H9/174—Membranes
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は圧電薄膜を用いたVHF、UHF用高周波圧電
振動子に関し、特に薄膜部材と、圧電薄膜どの組合せか
らなる複合構造の振動部位を有する薄膜圧電振動子に関
するものである。薄膜圧電振動子は、基本的に株圧電性
薄板の両側に電極を備えた構造をしており、電極形状を
変えることにより、フィルタや発振器等にも利用でき、
L用範囲の広い素子である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-frequency piezoelectric vibrator for VHF and UHF using a piezoelectric thin film, and more particularly to a thin film piezoelectric vibrator having a vibrating part of a composite structure consisting of a combination of a thin film member and a piezoelectric thin film. be. Thin film piezoelectric vibrators basically have a structure with electrodes on both sides of a thin piezoelectric plate, and by changing the shape of the electrodes, they can be used for filters, oscillators, etc.
It is an element with a wide range for L.
一般に数十MHz以上のような高い周波数で使用される
圧電振動子は、振動モードとして板面が厚さに比して十
分広い圧電性薄板の厚み振動を使用する。Generally, piezoelectric vibrators used at high frequencies, such as several tens of MHz or more, use thickness vibration of a piezoelectric thin plate whose plate surface is sufficiently wide compared to its thickness as a vibration mode.
厚み振動の共振周波数は圧電性薄板の厚さに反比例する
ので高い周波数で使用するためには厚さを薄くしなけれ
ばならない。しかし、厚さが40ミクロン程度以下にな
ると圧電材料であるバルク結晶やセラミックの平行平面
研磨加工が非常に犀しくなり、したがってこれらの材料
を用いて基本共振周波数で50M1lz以上の厚み振動
圧電振動子を蓋産することは困難である。これに対して
、バルク結晶或いはセラミック等の比較的厚い&向の厚
み振動の奇数次の高調波を使用すれば、同じ厚みで基本
波の3倍、5倍・・・・・・笠の共振周波数が得られ、
これはオーバートーン振動子として発振器などに使わn
ている。しかし第0次の高調波を用いた場合の電気機械
結合係数knは基本波の電気機械結合係数に□の/n2
倍となり、このとき共振ったのでは電気機械結合係数の
減少壷こ伴ってフィルタの比帯域幅及び発振器の制御範
囲が狭くなりすぎる結果を招き、これまた実用に適さな
いことが多くなる。Since the resonant frequency of thickness vibration is inversely proportional to the thickness of the piezoelectric thin plate, the thickness must be reduced in order to use it at a high frequency. However, when the thickness is less than about 40 microns, parallel plane polishing of piezoelectric materials such as bulk crystals and ceramics becomes extremely difficult. It is difficult to produce a cover. On the other hand, if we use odd-order harmonics of thickness vibrations of relatively thick materials such as bulk crystals or ceramics, the resonance of the shade will be 3 times or 5 times the fundamental wave at the same thickness. The frequency is obtained,
This is used as an overtone oscillator in oscillators, etc.
ing. However, when using the 0th harmonic, the electromechanical coupling coefficient kn is equal to the electromechanical coupling coefficient of the fundamental wave by /n2 of □.
If the frequency is doubled and resonance occurs at this time, the electromechanical coupling coefficient decreases, resulting in the filter's fractional bandwidth and the oscillator's control range becoming too narrow, which is often not suitable for practical use.
高調波を用いる他の方法は、基板の上に圧電薄膜を作成
し圧電薄膜の厚さが半波長であるような共振モードに於
いて基板を高次振動させるものであり、この場合基板の
厚さが基板内を伝播する音波の半波長の整数倍に等しい
ときに電気機械結合係数は最大値を持つが、この値は共
振モードが高次になるに従ってやはり減少する。この方
法蒼こ於いても基板を薄(することは非富に困難であり
、モードを用いることになり、電気機械結合係数が小さ
くなるため基板の厚さを音波の半波長の整数倍に一致さ
せたとしてもフィルタの比帯域幅及び発振器の制御範囲
は狭くなり実用に適さない。Another method using harmonics is to create a piezoelectric thin film on a substrate and cause the substrate to vibrate at a higher order in a resonant mode where the thickness of the piezoelectric thin film is half a wavelength. The electromechanical coupling coefficient has a maximum value when the wavelength is equal to an integer multiple of the half wavelength of the sound wave propagating in the substrate, but this value also decreases as the resonant mode becomes higher order. In this method, even if the substrate is thin, it is extremely difficult to make the substrate thin, and the electromechanical coupling coefficient is small because the electromechanical coupling coefficient is small. Even if it were, the fractional bandwidth of the filter and the control range of the oscillator would be narrow, making it unsuitable for practical use.
上記のような方法の欠点を改善した圧*ia子を得る方
法として、シリコン基板上に蒸着等によって電極(公、
アルミニウム等)圧電薄膜(CdS。As a method of obtaining an insulator that improves the drawbacks of the above methods, electrodes (public,
(Aluminum, etc.) Piezoelectric thin film (CdS.
又はCdTe)電極(金、アルミニウム等)のノーで形
成し、この振#IJ部分に対応する部分の基板をエツチ
ングによって除去することにより振動部分はその上下面
に電極を有する圧電W1.膜からなり、外縁部を基板に
よって支持された構造の薄膜圧電振動子が公知である。Or CdTe) electrodes (gold, aluminum, etc.) are formed by etching the substrate corresponding to the vibrating part #IJ, and the vibrating part becomes a piezoelectric W1. 2. Description of the Related Art A thin film piezoelectric vibrator is known which is made of a film and whose outer edge is supported by a substrate.
(特公昭45−25579)この振動子は振動部分が薄
いため50MHz以上の高い周波数においても基本振動
あるいは低次の高調波振動を使用することができ、した
、かって広い比帯域のフィルターをIIMすることがで
きる。しかしこの薄膜圧電振励子は圧電薄膜としてCd
SめるいはCdTeを用いているため音響的クォリティ
ファクター(Q)が小さく、温匿係数が大きく、また振
動部分が薄いため機械的強度が小さいという欠点を有し
ている。また現在圧電材料として薄膜化が可能なZnO
を用いても前記の欠点はあまり改善されない。上記の特
公昭45−25579においてはシリコン基板上に5i
Qz薄Mを形成しその上に電極、圧電薄膜、電極の順で
形成し、この振動部分に対応する部分の基板をエツチン
グによって除去し、振動部分が8i0z薄膜とその上下
面に電極を有する圧電薄膜からなり、外縁部を基板によ
って支持された構造の薄膜圧電振動子も開示されている
08iOz薄膜を形成した効果はこの8i02薄膜の部
分でエツチングを止める効果の他に、当核振動子の機械
的強度を高め、振動子特性の温度係数を小さくする効果
を有する。この振動子について第1図、第2図を用いて
さらに詳しく説明する。(Japanese Patent Publication No. 45-25579) Since the vibrating part of this vibrator is thin, it is possible to use fundamental vibration or low-order harmonic vibration even at high frequencies of 50 MHz or higher, and this made it possible to use IIM filters with a wide fractional band. be able to. However, this thin film piezoelectric exciter uses Cd as a piezoelectric thin film.
Since the S ring uses CdTe, it has the disadvantages of a small acoustic quality factor (Q), a large thermal protection coefficient, and a thin vibrating part, so it has low mechanical strength. In addition, ZnO, which can be made into a thin film as a piezoelectric material,
However, the above-mentioned drawbacks cannot be improved much. In the above-mentioned Japanese Patent Publication No. 45-25579, 5i on a silicon substrate
A Qz thin M is formed, and an electrode, a piezoelectric thin film, and an electrode are formed on it in this order, and the part of the substrate corresponding to the vibrating part is removed by etching. A thin-film piezoelectric vibrator is also disclosed, which is made of a thin film and has an outer edge supported by a substrate.The effect of forming the 08iOz thin film is to stop etching at the 8i02 thin film part, as well as to improve the mechanical strength of the piezoelectric vibrator. This has the effect of increasing the optical strength and reducing the temperature coefficient of the resonator characteristics. This vibrator will be explained in more detail using FIGS. 1 and 2.
この薄膜圧゛1振動子の構造を第1図に示す。第1図に
於いて11は基板、12はエツチングによって基板に形
成した空孔である。13は薄g、14は圧電薄膜、15
.16は圧電薄膜の両面に対間して設けた電極である。The structure of this thin film thickness single oscillator is shown in FIG. In FIG. 1, 11 is a substrate, and 12 is a hole formed in the substrate by etching. 13 is thin g, 14 is piezoelectric thin film, 15
.. Reference numeral 16 denotes a pair of electrodes provided on both sides of the piezoelectric thin film.
第1図の構造の薄膜圧電振動子の電気機械結合係数に2
は薄[13の厚さt′と圧電薄@14の厚さtの比によ
って変化する。The electromechanical coupling coefficient of the thin film piezoelectric vibrator with the structure shown in Figure 1 is 2.
varies depending on the ratio of the thickness t' of the thin film 13 and the thickness t of the piezoelectric thin film 14.
ら求めるとkは薄111i%13の厚さt と圧電薄[
14t′
の厚さの比べにしたがって第2図のように変化t′
する。第2図に於いて横軸は厚さの比4縦軸は電気機械
結合係数にであり、曲線に記した数字は振動の次数を示
す。第2図から予想されるように、第1図の構造の薄膜
圧延振動子では基本振動を用いる場合、圧電薄膜14に
対して薄膜13の寥 。Then, k is the thickness t of the thin 111i%13 and the piezoelectric thin [
According to the comparison of the thicknesses of 14t', t' changes as shown in FIG. In FIG. 2, the horizontal axis is the thickness ratio, the vertical axis is the electromechanical coupling coefficient, and the numbers written on the curve indicate the order of vibration. As expected from FIG. 2, when fundamental vibration is used in the thin film rolling vibrator having the structure shown in FIG.
厚さが十分薄いたとえば、/l< 0.2であるような
範囲で大きな一気懺械粘合係数が得られ、したかって比
帯域幅の広いフィルタ或いは制御範囲の広い発振器とじ
で利用できる。しかし第3次或いは第4次の尚調阪蛍動
も比較的大きな′畦気機械結合保数を有すにとが#42
図から予想され、したかって搗周IjL饋に第3次或い
は第4次の^―波共堀に伴う不要応答が生じるという欠
点がある。一方、動子部分の機械的強度を高める上で有
利であるが、第2図かられかるように薄膜13の厚さt
の増大に伴って基本振動の電気機械結合係数は減少し、
さらに第2次の高調波振励の電気機械結合係数が増大す
る。したがって、薄膜13の厚さが厚い場合には、フィ
ルタの比帯域鴨が狭くなる、或いは発振器の制御範囲が
狭くなるという欠点を有すると同時に、高周波側に第2
次の高調波共振に伴う不要応答が生じるという欠点を有
する。A large mechanical viscosity coefficient can be obtained when the thickness is sufficiently thin, for example, /l<0.2, and therefore it can be used in a filter with a wide fractional bandwidth or an oscillator with a wide control range. However, the 3rd or 4th order Shocho Hankyoru also has a relatively large ``furrow mechanical coupling constant''.
As can be expected from the figure, there is a drawback in that an unnecessary response occurs in the pulse IjL due to the 3rd or 4th order ^-wave co-moat. On the other hand, as can be seen from FIG. 2, the thickness t of the thin film 13 is advantageous in increasing the mechanical strength of the mover portion.
The electromechanical coupling coefficient of fundamental vibration decreases as
Furthermore, the electromechanical coupling coefficient of the second harmonic excitation increases. Therefore, when the thickness of the thin film 13 is thick, it has the disadvantage that the filter's specific band width becomes narrower or the control range of the oscillator becomes narrower.
This has the disadvantage that an unnecessary response occurs due to the next harmonic resonance.
本発明の目的は上記のような従来の薄膜圧電振動子の欠
点を除き、基本#i動の電気機械結合係数が大きく、高
次振動の電気機械結合係数が極めて小さい薄膜圧電振動
子を実現することであり、本発明の薄膜圧゛−振動子を
用いれば誦周波側齋こ不安応答がなく、広い比帯域幅を
有するフィルタ或いは制御範囲の広い発振器が実現でき
る。本発明の薄膜圧・−振動子の最たる特徴は振動部位
が薄FIJ&部材−電極−圧電薄膜一電極一薄膜部材か
ら成る多層構造を有する点にある。The purpose of the present invention is to eliminate the drawbacks of the conventional thin film piezoelectric vibrators as described above, and to realize a thin film piezoelectric vibrator that has a large electromechanical coupling coefficient for basic #i motion and an extremely small electromechanical coupling coefficient for higher order vibrations. Therefore, by using the thin-film pressure transducer of the present invention, a filter with a wide fractional bandwidth or an oscillator with a wide control range can be realized without an unstable response on the recording frequency side. The most distinctive feature of the thin film pressure vibrator of the present invention is that the vibrating portion has a multilayer structure consisting of a thin FIJ, member, electrode, piezoelectric thin film, electrode, and thin film member.
以下に本発明の詳細な説明する。8g3図は本発明の薄
膜圧電振動子の基本的な構造を示す図である。第3図に
おいて31はシリコン、水晶などからなる基板であり、
32はエツチングによって基板に形成した空孔である。The present invention will be explained in detail below. Figure 8g3 is a diagram showing the basic structure of the thin film piezoelectric vibrator of the present invention. In FIG. 3, 31 is a substrate made of silicon, crystal, etc.
32 is a hole formed in the substrate by etching.
33.34は薄膜部材。33 and 34 are thin film members.
35は圧′4##膜、36.37は圧電薄膜と上下の薄
膜部材との界面に設けた電極である。基板31に用いる
材料としてはエツチングで空孔を形成することが可能な
材料であればどのような材料でも良い。望ましい材料の
一つとして表面が(100)面であるようなシリコンが
ある。このようなシリコンは、たとえばKOH%エチレ
ンジアミンのようなエツテング液を使用すれば、(10
0)面のエツチング速度に比較して(111)而のエツ
チング速度が非常に小さいというエツチングの異方性を
不すことにより面方向へのエツチングの拡がりが極めて
小さく、シたがって精度良く空孔の寸法を制御できる利
点がある。圧電薄膜35としてはZnU。35 is a pressure '4## film, and 36.37 is an electrode provided at the interface between the piezoelectric thin film and the upper and lower thin film members. Any material may be used for the substrate 31 as long as it can form holes by etching. One of the desirable materials is silicon whose surface is a (100) plane. Such silicone can be prepared by using an etching solution such as KOH% ethylenediamine (10
By eliminating the anisotropy of etching, in which the etching speed of the (111) surface is extremely low compared to the etching speed of the (111) surface, the spread of etching in the surface direction is extremely small, and therefore holes can be formed with high precision. It has the advantage of being able to control the dimensions of The piezoelectric thin film 35 is ZnU.
CdS 、ルーなどの結晶系が六方晶系の圧電材料やP
bTiOs 、 PZT 、 BaTiOsなど種々ノ
圧電材料を使用することができる。なかでもZnOはス
パッタリング法、CV曜、イオン・ブレーティング法な
どによってC軸が基板面に対して垂直に配向し、かつ高
い抵抗率の薄膜を再現性良く作製でき、しかも厚みたて
振動モードのエネルギー閉じ込めが可能であるため最適
な材料といえよう。薄膜部材としては絶縁体、シリコン
などの半導体、あるいは金属の薄膜など、どのような材
料を使用しても、本発明の目的が達成される。中でも第
3図33 、34の薄膜部材として共に5i02薄膜を
使用すると一般に圧電薄膜の弾性定数が負の温度係数を
有するのに対し、8iQzの弾性定数は正の温度係数を
有することが知られており、したがって温度依存性の小
さい薄膜圧電振動子が実現できる。またシリコンは機械
的強度が高く、音響的クォリティ・ファクタ(Q)が大
きいところから、特に振動部位の厚さの薄いことが要求
される3 00 MHz以上のような高い周波数に於い
てもシリコン薄膜を薄膜部材として用いれば振動部位の
機械的強度を尚めることができる。また特に損失の小さ
いフィルタ或いは共振の尖鋭度の大きな共振子が要求さ
れる場合にも薄膜部材にシリコン薄膜を用いればその大
きな音響的クォリティ・ファクタ(Q)により要求を実
現することができる。この場合には第3図33の薄膜部
材としてシリコン薄膜を使用し、薄膜部材34としては
Si0g薄膜を使用するが温度特性の観点からも望まし
い。ただしこの薄膜部材の材料としてはSiO2やSk
に限らず他の絶縁材料や半導体材料、さらには金属材料
も使用可能である。Piezoelectric materials with hexagonal crystal systems such as CdS and Roux, and P
Various piezoelectric materials can be used, such as bTiOs, PZT, BaTiOs, etc. Among them, ZnO can be used to produce thin films with good reproducibility in which the C-axis is oriented perpendicular to the substrate surface and has high resistivity by sputtering, CV diode, ion blating, etc. It can be said to be an optimal material because it is capable of trapping energy. The object of the present invention can be achieved no matter what material is used as the thin film member, such as an insulator, a semiconductor such as silicon, or a metal thin film. Among them, it is known that when 5i02 thin films are used as the thin film members in FIGS. 33 and 34, the elastic constant of the piezoelectric thin film generally has a negative temperature coefficient, whereas the elastic constant of 8iQz has a positive temperature coefficient. Therefore, a thin film piezoelectric vibrator with low temperature dependence can be realized. In addition, silicon has high mechanical strength and a large acoustic quality factor (Q), so silicon thin films can be used even at high frequencies such as 300 MHz and above, which require a thin vibration area. If it is used as a thin film member, the mechanical strength of the vibrating part can be improved. Furthermore, even when a filter with particularly low loss or a resonator with high resonance sharpness is required, the requirements can be realized by using a silicon thin film as the thin film member due to its large acoustic quality factor (Q). In this case, a silicon thin film is used as the thin film member shown in FIG. 33, and a SiOg thin film is used as the thin film member 34, which is desirable from the viewpoint of temperature characteristics. However, the material of this thin film member is SiO2 or Sk.
However, other insulating materials, semiconductor materials, and even metal materials can be used.
次に圧電薄膜の上下に形成された薄膜を有する本発明の
薄膜圧電振動子において電気機械結合係数にと該薄膜の
厚さの関係を@4〜6図を用いて説明する〇
第4図は第3図の構造において圧電薄膜35が厚さtの
ZnO薄膜であり薄膜部材33.34が共にSiO!薄
膜であってこの2つの薄膜の合計の厚さが6に等しい場
合について、薄膜部材33の厚さt33と薄膜部材34
の厚さt34との比t3)’t33を変化させた場合の
電気機械結合係数にの変化を理論式から求めたものであ
る。第4図に於いて曲線に付した数字は振動の次数を示
す。1λ33=0は前述の従来例で片面だけに薄膜部材
を有する構造の場合に対応する。第4図から明らかなよ
うに薄膜部材34の厚さが増大するに伴って基本振動の
電気機械結合係数が急速に増大し、偶数次の高次振動の
一気機械結合係数は逆に急速に減少してゆく。Next, the relationship between the electromechanical coupling coefficient and the thickness of the thin film in the thin film piezoelectric vibrator of the present invention having thin films formed above and below the piezoelectric thin film will be explained using Figures 4 to 6. In the structure shown in FIG. 3, the piezoelectric thin film 35 is a ZnO thin film with a thickness t, and the thin film members 33 and 34 are both SiO! In the case of a thin film and the total thickness of these two thin films is equal to 6, the thickness t33 of the thin film member 33 and the thin film member 34
The change in the electromechanical coupling coefficient when changing the ratio t3)'t33 to the thickness t34 is obtained from a theoretical formula. The numbers attached to the curves in FIG. 4 indicate the order of vibration. 1λ33=0 corresponds to the case of the structure having a thin film member on only one side in the conventional example described above. As is clear from FIG. 4, as the thickness of the thin film member 34 increases, the electromechanical coupling coefficient of fundamental vibrations increases rapidly, and conversely, the mechanical coupling coefficient of even-order higher-order vibrations rapidly decreases. I will do it.
すなわち従来の構造に比べ圧電薄膜の上下に薄膜を形成
し、これらの薄膜の厚さをしだいに等しくなるように変
化させてゆくと振動子の特性は大きく改善されてゆく。That is, compared to the conventional structure, by forming thin films above and below the piezoelectric thin film and gradually changing the thickness of these thin films so that they are equal, the characteristics of the vibrator are greatly improved.
特に両面の薄膜部材の厚さが勢しくなったときに基本振
動の電気機械結合係数が最大となり、また偶数次の高次
振動は完全に抑圧され、最適な振動子特性が得られる。In particular, when the thickness of the thin film members on both sides increases, the electromechanical coupling coefficient of fundamental vibrations becomes maximum, and even-order higher-order vibrations are completely suppressed, resulting in optimal vibrator characteristics.
薄膜部材33と薄膜部材34が異なる材料からなる場合
にも第4図と同様の変化を示すがこのときには、それぞ
れの薄11部材の厚さがそれぞれの薄膜での音速に対し
て等しい比を有するような厚さの比において基本振動の
電気機械結合係数が最大となり、かつ偶数次の高次振動
が完全に抑圧されるっ例えば薄膜部材33が音速843
0/のシリコン薄膜であり、薄膜部材34が音速596
0/のSi□z薄膜であれば厚さの比1ン が0.71
に尋しいどき33
憂こ基本振動の電気機械結合係数が最大となり、かつ偶
数次の高次振動が完全に抑圧される。The same variation as shown in FIG. 4 is also shown when the thin film member 33 and the thin film member 34 are made of different materials, but in this case, the thickness of each thin film member 34 has an equal ratio to the sound velocity in each thin film. At such a thickness ratio, the electromechanical coupling coefficient of fundamental vibration becomes maximum, and even higher-order vibrations are completely suppressed. For example, when the thin film member 33 has a sonic velocity of 843
0/, and the thin film member 34 has a sound velocity of 596
For a Si□z thin film of 0/2, the thickness ratio 1n is 0.71
The electromechanical coupling coefficient of the fundamental vibration is maximized, and even higher-order vibrations are completely suppressed.
次に当該薄膜の厚さが等しいとき、あるいは薄膜材料が
異なる場合に3いてそれぞれの厚さが音速に対して等し
い比を有するような厚さの比である場合について説明す
る。Next, a case will be described in which the thicknesses of the thin films are the same, or when the thin film materials are different, the ratio of the thicknesses is such that each thickness has an equal ratio to the speed of sound.
第5図は第3図の薄膜部材33.34が等しい厚さの同
一の材料カーらなるか、あるいは巣なる材料力)らなり
それぞれの薄膜部材の厚さの比がぞJLぞれの薄膜での
音速の比に等しい比を有するように形成され赳場合の振
動部位に於ける厚みたて振動の応力分布を示した図であ
り、A、B、C,1)はそれぞれ基本振動、2次、3次
、4次の高次振動についての応力分布イ、口、ハ、二で
ある。第5図憂こおいて41は圧電薄膜、42.43は
薄膜部材、44.45は電極である。薄膜部材42゜4
3のそれぞれの外側で応力は零であり、応力が零の点の
左右で応力の向きは逆である。@5図B及びDかられか
るようにこのような多層構造では第2次、第4次のよう
な偶数次の高次振動に於いて圧電薄膜中すなわち電極の
間の応力の積分は零となり、したがって偶数次の高次振
動は励振されない。また第5図Aかられかるようにこの
ような多層構造では基本振動に於いて圧電薄膜が応力最
大の付近に位置しているため、従来のような圧電薄膜の
一方の面だけに薄膜部材を有する構造瘉こ比べさらには
両面のWi膜の厚さが異なる場合に比べても大きな電気
機械結合係数が得られる。第5図では薄膜部材42.4
3が等しい厚さの同一の材料からなるか、あるいは異な
る材料からなりそれぞれの薄膜部材の厚さの比がそれぞ
れの薄膜での音速の比に等しい比を有する場合を示した
が、第4図に示したように薄膜部材の厚さについて上記
のように限定しない場合でも薄m部材の厚さが比較的近
い範囲では第3図のごとく多層構造とすることにより、
第1図に示した従来の構造(こ比べで偶数次の高次振動
を抑制し、基本振動の電気機械結合係数が大きな薄膜圧
源振動子が得られる。FIG. 5 shows whether the thin film members 33 and 34 in FIG. This is a diagram showing the stress distribution of vertical vibration in a vibrating part formed to have a ratio equal to the ratio of sound speed in The stress distributions for higher-order vibrations of the second, third, and fourth orders are A, C, C, and II. In FIG. 5, 41 is a piezoelectric thin film, 42.43 is a thin film member, and 44.45 is an electrode. Thin film member 42°4
3, the stress is zero outside each point, and the direction of the stress is opposite on the left and right of the point where the stress is zero. @5 As can be seen from Figures B and D, in such a multilayer structure, the integral of stress in the piezoelectric thin film, that is, between the electrodes, becomes zero in even-numbered high-order vibrations such as the second and fourth orders. , therefore even-order higher-order vibrations are not excited. Furthermore, as can be seen from Figure 5A, in such a multilayer structure, the piezoelectric thin film is located near the maximum stress during fundamental vibration, so it is difficult to place a thin film member on only one side of the piezoelectric thin film as in the past. A larger electromechanical coupling coefficient can be obtained compared to the structure of the present invention, and even compared to the case where the Wi films on both sides have different thicknesses. In FIG. 5, the thin film member 42.4
3 is made of the same material with equal thickness, or is made of different materials and the ratio of the thickness of each thin film member is equal to the ratio of sound speed in each thin film. As shown in Fig. 3, even if the thickness of the thin film member is not limited as described above, as long as the thickness of the thin m member is relatively close, a multilayer structure as shown in Fig. 3 can be used.
A comparison with the conventional structure shown in FIG. 1 provides a thin film pressure source vibrator that suppresses even-numbered high-order vibrations and has a large electromechanical coupling coefficient for fundamental vibrations.
次に@6図は上記のような本発明の原理及び特徴をより
詳しく説明するために第3図の構造の薄膜圧゛峨振動子
について、−例として薄膜33及び34が等しい厚さを
有する5iOz薄膜でありて、圧電薄膜35がZnOで
ある場合の電気機械結合係数kを理編式から求めたもの
である。@(lJfこおいて横軸は薄#s33及び34
の厚さのitと圧電薄膜35の厚さtとの比、縦軸は電
気機械結合係数にであり曲線に記した数字は振動の次数
を示す。第6図から明ら力)なように−第3図の構造の
薄膜圧W+振振動においては第2次、第4次などの偶数
次の高次振動はまったく励振されないば71)りでなく
、たとえば/、> 0.2のように圧′#It擲mの上
下の薄膜を厚くした場合の基本伝動の電気機械結合係数
には従来の構造では第2図のように急速に減少するのに
対し、第3図の構造では非電にゆるやかに減少するとい
う特長を有する0圧電薄膜の上下の薄膜の厚さをたとえ
ば/、> 0.2のように厚くすることは特に振動子の
厚さが薄いことが要求される3 00 M)iz以上の
周波数において振動子の機械的強度を高める点で有利で
あり、また特iζシリコン膜を用いるとさらに振動子の
音響的なりオリティ・ファクタQを大きくする点で有利
であるが、本発明による第3図の構造の薄膜圧′flL
振−子では上記のような特長を有する結果、圧′−薄膜
の上下の薄膜の厚さを厚くした場合でも基本振動の電気
機械結合係数が大きく、高次振動による不殻応答の小さ
い薄膜圧111t振動子が笑曵できる〇また圧電薄膜の
上下の薄膜が薄い場合にも、従来の構造では#!4次の
高次振動が強く励振されるのに対し、本発明による第3
図の構造においては第4次の高次振励は完全に抑制され
る。特に第6図において/l〜0.33B付近では第3
次、第5次の一次ui励の電気機械結合係数は共に小さ
く、かつ基本振動の電気機械結合係数は最大となる。し
たがって圧電薄膜の上下の薄膜か薄い場合にも一1Ii
不振動の電気機械結合係数が大きく、高次振動による不
要応答の小さい薄膜圧電振動子が実現できる。Next, in order to explain in more detail the principle and features of the present invention as described above, Figure 6 shows a thin film pressure oscillator having the structure shown in Figure 3. As an example, the thin films 33 and 34 have the same thickness. The electromechanical coupling coefficient k for a 5iOz thin film and the piezoelectric thin film 35 made of ZnO was determined from the rational equation. @ (In lJf, the horizontal axis is thin #s33 and 34
The vertical axis represents the electromechanical coupling coefficient, and the number written on the curve represents the order of vibration. It is clear from Figure 6 that in the thin film pressure W + vibration vibration of the structure shown in Figure 3, even-numbered higher-order vibrations such as the second and fourth orders must not be excited at all71). For example, when the thin films above and below the pressure are made thicker such that /, > 0.2, the electromechanical coupling coefficient of basic transmission decreases rapidly as shown in Figure 2 in the conventional structure. On the other hand, in the structure shown in Fig. 3, increasing the thickness of the thin films above and below the 0 piezoelectric thin film, which has the feature of non-electricity and gradual decrease, to >0.2, especially the thickness of the vibrator. It is advantageous in increasing the mechanical strength of the resonator at frequencies above 300 M)iz, where a thin film is required, and in particular, the use of a silicon film further reduces the acoustic quality factor Q of the resonator. The thin film pressure 'flL of the structure of FIG. 3 according to the present invention is advantageous in terms of increasing
As a result of the pendulum having the above-mentioned features, the electromechanical coupling coefficient of the fundamental vibration is large even when the thickness of the thin films above and below the pressure film is increased, and the thin film pressure has a small inanimate response due to higher-order vibrations. 111t resonator can be used.Also, even if the thin films above and below the piezoelectric thin film are thin, the conventional structure is #! While the fourth-order higher-order vibration is strongly excited, the third-order vibration according to the present invention
In the structure shown in the figure, the fourth-order higher-order vibration is completely suppressed. In particular, in Figure 6, around /l~0.33B, the third
The electromechanical coupling coefficients of the second and fifth primary ui excitations are both small, and the electromechanical coupling coefficient of the fundamental vibration is maximum. Therefore, even if the thin films above and below the piezoelectric thin film are thin,
A thin-film piezoelectric vibrator with a large non-vibrating electromechanical coupling coefficient and a small unnecessary response due to high-order vibration can be realized.
以上のように、本発明に従えば基本振動の電気機械結合
係数が大きく、高次振動による不要応答の小さい薄膜圧
電振動子が実現でき、したがって本発明の薄膜圧電振動
子を用いることにより高周波側の不要応答が小さく、広
い比帯域幅のフィルタ及び制御範囲の広い発振器を提供
することができる。As described above, according to the present invention, it is possible to realize a thin film piezoelectric vibrator with a large electromechanical coupling coefficient for fundamental vibrations and a small unnecessary response due to higher-order vibrations. Therefore, by using the thin film piezoelectric vibrator of the present invention, It is possible to provide a filter with a small unnecessary response, a wide fractional bandwidth, and an oscillator with a wide control range.
以下実施例に従って本発明を具体的に説明T心。The present invention will be specifically described below with reference to Examples.
表向が(100)面であるようなシリコン基板にスパッ
タリング法を用いて0.75μmu)Si02薄膜を形
成した08iQ2薄膜上にCrを下地としてAuを蒸着
した後、フォトリングラフィにより部分電極を形成し、
次にスパッタリング法を用いて5μmOJ ZnO薄w
18形成した。さらにZnO薄膜の上にリフトオフ・に
ょってAIの部分[極を形成した後、スパッタリング法
を用いて0.75/jmO)SiQz薄験を形成した。A 0.75μmu) Si02 thin film was formed on a silicon substrate with a (100) surface using a sputtering method. Au was deposited on the 08iQ2 thin film using Cr as a base, and then partial electrodes were formed by photolithography. death,
Next, a 5 μm OJ ZnO thin layer was formed using a sputtering method.
18 were formed. Further, on the ZnO thin film, a SiQz thin film (0.75/jmO was formed using a sputtering method after forming a pole) was formed by lift-off.
次にシリコン基板の裏向に形成した8isNn薄膜をマ
スクとして振動部位にあたるシリコン基板をエチレンジ
アミン5.rロ力テコール及び水からなるエツチング液
を用いてエツチングし、空孔を形成した。上記の工程に
よって第3図の構造の薄膜圧・−振動子を製造した。こ
り薄膜圧電振動子のインピーダンス特性はW、7図のよ
うであり、インピーダンス特性から求めた基本振動の電
気機械結合係数には第6図の値に一致し、0.08であ
った0また第5図力)られかるように、偶数次の高次振
動は励振され・ず、第3次及び第5次の高次振動が非常
に小さく励振されるのみであったO
〔実施例2〕
表面が(ioo)面であるようなシリコン基板膜を2.
12μmの厚さにエピタキシャル成長させた。Next, using the 8isNn thin film formed on the back side of the silicon substrate as a mask, the silicon substrate corresponding to the vibration site was exposed to ethylenediamine 5. Etching was performed using an etching solution consisting of rotechol and water to form holes. A thin film vibrator having the structure shown in FIG. 3 was manufactured by the above steps. The impedance characteristics of the stiff thin film piezoelectric vibrator are as shown in Figure 7, and the electromechanical coupling coefficient of the fundamental vibration determined from the impedance characteristics matches the value shown in Figure 6 and is 0.08. 5) As can be seen, the even-order higher-order vibrations were not excited, and the 3rd and 5th-order higher-order vibrations were only excited to a very small extent. [Example 2] Surface 2. A silicon substrate film in which is (ioo) plane.
It was epitaxially grown to a thickness of 12 μm.
このシリコン薄膜の上に実施例1と同様の工程で9’
am、厚さ5.amのZnO薄膜、A1%他fJIR
r
に形成し、さらにスパッタリング法を用いて1.5μm
OJ 8i0z tll[e形成した。シリコン、 1
9iQzのi速はそれぞれ8430”/ 、5960”
ンであり、した8 S
かってシリコン薄膜の厚さに対する5i02N[の厚さ
の比は音速の比0.71に等しい。次にシリコン基板の
裏面に形成したS i JIN4薄膜をマスクとして振
動部位にあたるシリコン基板をエチレンジ)′ミン、ピ
ロカテコール及び水からなるエツチング液によって除去
し空孔を形成した。上記のような工程によって第3図の
構造の薄膜圧電振動子を装造した。この*m圧’@fi
i励子のインピーダンス特注は第8図のようであり、イ
ンピーダンス特性から求めた基本振動の電気機械結合係
数に2は第6図の1直に一致し、’ o、o 77であ
った・また第8図かられかるように偶数次の高次振動は
まったく励振されず、第5次の高次振動が小さく励振さ
れ1.g3次の高次振動は励振されるが極めて小さい。9' on this silicon thin film in the same process as in Example 1.
am, thickness 5. am's ZnO thin film, A1% and other fJIR
1.5 μm using sputtering method.
OJ 8i0z tll[e formed. Silicon, 1
The i-speed of 9iQz is 8430"/, 5960" respectively.
The ratio of the thickness of 5i02N to the thickness of the silicon thin film is equal to the ratio of the speed of sound, 0.71. Next, using the S i JIN4 thin film formed on the back surface of the silicon substrate as a mask, the silicon substrate corresponding to the vibration site was removed using an etching solution consisting of ethylenediamine, pyrocatechol, and water to form holes. A thin film piezoelectric vibrator having the structure shown in FIG. 3 was fabricated through the steps described above. This *m pressure'@fi
The custom impedance of the i-exciter is as shown in Figure 8, and the electromechanical coupling coefficient of the fundamental vibration determined from the impedance characteristics is 2, which corresponds directly to 1 in Figure 6, and ' o, o 77. As can be seen from Figure 8, the even-numbered higher-order vibrations are not excited at all, and the 5th-order higher-order vibrations are slightly excited.1. Although g3rd-order higher-order vibrations are excited, they are extremely small.
以上のように本発明に従えば、基本振動の′シ気機械結
合保畝が大きく高次振動による不要応答が小さいという
実用上極めてIL蒙ム特長を有11趨換圧電IjjR動
子が実現でき、したがって本姑明の薄膜圧vIL振動子
を使用することにより一周波間での高次振動による不要
応答が小り<、広い比帯域幅のフィルタ及び制御範囲の
広い発振器を提供できる。As described above, according to the present invention, it is possible to realize a piezoelectric IJJR actuator that has extremely high IL characteristics in practical terms, such as a large mechanical coupling protection ridge for fundamental vibrations and a small unnecessary response due to higher-order vibrations. Therefore, by using Akira Hongo's thin-film-thickness VIL resonator, unnecessary responses due to higher-order vibrations between one frequency are reduced, and a filter with a wide fractional bandwidth and an oscillator with a wide control range can be provided.
tH1図は従来の薄膜圧wL振動子の構造を示す断面図
であり、11はシリコン、水晶などからなる基板、12
はエツチングにょっ°C基板に形成した空孔、13は薄
膜部材、14は圧′区薄膜、15゜16は対向する電極
である。
第2図は第1図の構造の薄膜圧電振動子の一気機械結合
係数にの理論面Mを示す−である。図中の曲線に記した
数字は振動の次数を示す。
第3図は本発明の薄膜圧電−動子の構造を示す断面図で
あり、31はシリコン、水晶などかりなる基板、32は
エツチングによって基板に形成した空孔、33及び34
は薄膜部材、35は圧電薄膜、36.37は対向する電
極である。
!4図は@3図の構造の薄膜圧電振動子について薄膜部
材34の厚さ口4と薄膜1部材33の厚さtssの比t
37 に対する電気機械結合係数に2のtss
変化を示す図である。図中の曲線に記した数字は振動の
次数を示す。
第5図は不発明の薄膜圧電振動子の振動部位における応
力分布した図である。図中のA、B、C。
DIIこおいてイ、口、ハ、二はそれぞれ基本振動、@
2次、第3矢、第4次の振動の応力分布である。
図において41は圧電薄膜、42.43は薄m部材、4
4.45は電極である。
第6図は本発明の薄膜圧電振動子の電気機械結合係数に
2の一輪曲線を示す図。1図中の曲線に記した数字は振
動の次数を示す。
第7図、第8図はそれぞれ・不発明の実施例11実施例
2の薄膜圧電振動子のインピーダンス特性を示した図で
ある。横軸はMH1単位で表わした周波数であり、縦軸
はデシベル単位で表わしたインピーダンスの相対値であ
る。
’42回
71
第3 図
32
第 4 図
へ/133
第5回
イ
第6図
7t
第7図
贋し度数(A/fHz)
第8図
O勿01θ00 灼に 改紗0 25θθ、〜目!
、& (んイH乙)Figure tH1 is a cross-sectional view showing the structure of a conventional thin film wL resonator, in which 11 is a substrate made of silicon, crystal, etc.;
13 is a thin film member, 14 is a pressure zone thin film, and 15° and 16 are opposing electrodes. FIG. 2 shows the theoretical surface M for the instantaneous mechanical coupling coefficient of the thin film piezoelectric vibrator having the structure shown in FIG. The numbers written on the curves in the figure indicate the order of vibration. FIG. 3 is a cross-sectional view showing the structure of the thin film piezoelectric actuator of the present invention, in which 31 is a substrate made of silicon, quartz, etc., 32 is a hole formed in the substrate by etching, 33 and 34
is a thin film member, 35 is a piezoelectric thin film, and 36 and 37 are opposing electrodes. ! Figure 4 shows the ratio t between the thickness 4 of the thin film member 34 and the thickness tss of the thin film 1 member 33 for the thin film piezoelectric vibrator having the structure shown in Figure 3.
37 is a diagram showing a tss change of 2 in the electromechanical coupling coefficient for 37. The numbers written on the curves in the figure indicate the order of vibration. FIG. 5 is a diagram showing the stress distribution at the vibration site of the thin film piezoelectric vibrator according to the invention. A, B, and C in the diagram. DII, A, mouth, Ha, and 2 are the basic vibrations, @
This is the stress distribution of second-order, third-order, and fourth-order vibrations. In the figure, 41 is a piezoelectric thin film, 42.43 is a thin m member, and 4
4.45 is an electrode. FIG. 6 is a diagram showing a single-ring curve of 2 for the electromechanical coupling coefficient of the thin film piezoelectric vibrator of the present invention. The numbers written on the curves in Figure 1 indicate the order of vibration. FIG. 7 and FIG. 8 are diagrams showing the impedance characteristics of the thin film piezoelectric vibrators of Example 11 and Example 2, respectively. The horizontal axis is the frequency expressed in MH1 units, and the vertical axis is the relative value of impedance expressed in decibels. '42 times 71 3rd Figure 32 4th Figure/133 5th A Figure 6 7t Figure 7 False Frequency (A/fHz) Figure 8 01θ00 Burning Altered Shape 0 25θθ,~ eyes!
, & (niih otsu)
Claims (1)
極、薄膜部材の順で形成さイしている多層構造を有する
ことを特徴とする薄膜圧′WIIL振励子。 2、圧電薄膜をはさんで、その上下に形成する薄膜部材
は等しい厚さを有する同一の材料からなることを特徴と
する特許請求の範囲第1項記載の薄膜圧電振動子。 3、圧−薄膜をはさんでその上下に形成する薄膜部材は
それぞれ異なる材料からなり、しかも上下の薄膜の厚さ
の比は、それぞれの薄膜中の音速の比に等しいことを特
徴とする特許d求の範囲第1項記載の薄膜圧電振動子。[Claims] 1. A thin-film WIIL vibrator characterized by having a multilayer structure in which a thin film member and an electrode, a piezoelectric thin film, an electrode, and a thin film member are formed in this order on the thin film member. . 2. The thin film piezoelectric vibrator according to claim 1, wherein the thin film members formed above and below the piezoelectric thin film are made of the same material and have the same thickness. 3. Pressure - A patent characterized in that the thin film members formed above and below the thin film are made of different materials, and the ratio of the thicknesses of the upper and lower thin films is equal to the ratio of sound speeds in the respective thin films. The thin film piezoelectric vibrator according to item 1, wherein the range of d is desired.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12705781A JPS5829211A (en) | 1981-08-13 | 1981-08-13 | Thin film piezoelectric oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12705781A JPS5829211A (en) | 1981-08-13 | 1981-08-13 | Thin film piezoelectric oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5829211A true JPS5829211A (en) | 1983-02-21 |
JPH0356013B2 JPH0356013B2 (en) | 1991-08-27 |
Family
ID=14950523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12705781A Granted JPS5829211A (en) | 1981-08-13 | 1981-08-13 | Thin film piezoelectric oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5829211A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6068711A (en) * | 1983-09-26 | 1985-04-19 | Toshiba Corp | Piezoelectric thin film resonator |
US4642508A (en) * | 1984-03-09 | 1987-02-10 | Kabushiki Kaisha Toshiba | Piezoelectric resonating device |
WO2004038914A1 (en) * | 2002-10-28 | 2004-05-06 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric vibrator, filter using same, and method for adjusting piezoelectric vibrator |
JP2008182512A (en) * | 2007-01-25 | 2008-08-07 | Seiko Epson Corp | Manufacturing method of bulk acoustic vibrator and bulk acoustic vibrator |
JP2011015423A (en) * | 2001-01-24 | 2011-01-20 | Koninkl Philips Electronics Nv | Array of ultrasonic transducers |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4848573U (en) * | 1971-10-08 | 1973-06-26 | ||
JPS4928795A (en) * | 1972-07-14 | 1974-03-14 | ||
JPS5399976U (en) * | 1977-01-17 | 1978-08-12 |
-
1981
- 1981-08-13 JP JP12705781A patent/JPS5829211A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4848573U (en) * | 1971-10-08 | 1973-06-26 | ||
JPS4928795A (en) * | 1972-07-14 | 1974-03-14 | ||
JPS5399976U (en) * | 1977-01-17 | 1978-08-12 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6068711A (en) * | 1983-09-26 | 1985-04-19 | Toshiba Corp | Piezoelectric thin film resonator |
US4642508A (en) * | 1984-03-09 | 1987-02-10 | Kabushiki Kaisha Toshiba | Piezoelectric resonating device |
JP2011015423A (en) * | 2001-01-24 | 2011-01-20 | Koninkl Philips Electronics Nv | Array of ultrasonic transducers |
WO2004038914A1 (en) * | 2002-10-28 | 2004-05-06 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric vibrator, filter using same, and method for adjusting piezoelectric vibrator |
US7414349B2 (en) | 2002-10-28 | 2008-08-19 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric vibrator, filter using the same and its adjusting method |
JP2008182512A (en) * | 2007-01-25 | 2008-08-07 | Seiko Epson Corp | Manufacturing method of bulk acoustic vibrator and bulk acoustic vibrator |
Also Published As
Publication number | Publication date |
---|---|
JPH0356013B2 (en) | 1991-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4456850A (en) | Piezoelectric composite thin film resonator | |
US6556103B2 (en) | Piezoelectric resonator with electrode radius related to resonator thickness and vibration mode, and filter using the same | |
US5307034A (en) | Ultrathin multimode quartz crystal filter element | |
JP2017523645A (en) | Microacoustic device with improved temperature compensation | |
JPS6016010A (en) | Piezoelectric thin film composite oscillator | |
JPH0232807B2 (en) | ||
Kadota et al. | 9.5 GHz Solidly Mounted Bulk Acoustic Wave Resonator using Third Overtone of Thickness Extension Mode in LiNbO 3 | |
JPS58153412A (en) | Piezo-electric thin film composite vibrator | |
JPS5829211A (en) | Thin film piezoelectric oscillator | |
JPH0211043B2 (en) | ||
JPH0365046B2 (en) | ||
JP2000278078A (en) | Piezoelectric resonator | |
JPS60142607A (en) | Piezoelectric thin film composite oscillator | |
JPS58156220A (en) | Thin film piezoelectric filter | |
JPH0748626B2 (en) | Frequency adjustment method for surface acoustic wave device | |
JPS58190115A (en) | Piezoelectric oscillator | |
JPH02295212A (en) | Surface acoustic wave resonator | |
JP2002009579A (en) | Piezo electric resonator and piezoelectric filter using the same | |
JPH0131728B2 (en) | ||
JP2002368573A (en) | Superthin sheet piezoelectric vibrator and production method therefor | |
JP2000332573A (en) | Piezoelectric device | |
Baron et al. | RF oscillators stabilized by temperature compensated HBARs based on LiNbO 3/Quartz combination | |
JPH0993076A (en) | Thickness mode piezoelectric oscillator | |
JPS5824503Y2 (en) | Width-slip crystal oscillator | |
JPS60116217A (en) | Composite resonator |