JPS5828832A - Electron beam exposure - Google Patents

Electron beam exposure

Info

Publication number
JPS5828832A
JPS5828832A JP12618681A JP12618681A JPS5828832A JP S5828832 A JPS5828832 A JP S5828832A JP 12618681 A JP12618681 A JP 12618681A JP 12618681 A JP12618681 A JP 12618681A JP S5828832 A JPS5828832 A JP S5828832A
Authority
JP
Japan
Prior art keywords
electron beam
rectangular
depicted
section
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12618681A
Other languages
Japanese (ja)
Inventor
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12618681A priority Critical patent/JPS5828832A/en
Publication of JPS5828832A publication Critical patent/JPS5828832A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To approximate as much as possible the shape of figure depicted by the electron beam exposure to the shape originally depicted by positively utilizing that a size of rectangular form can be changed which is the characteristic of the variable rectangular electron beam exposing apparatus so as to make smaller the level difference at the connecting point of the rectangulars of rectangular electron beam at the circumference of a large size figure and to make smaller the deterioration of linearity at the circumference of a large size figure resulting from thermal change of quality of electron beam sensible material. CONSTITUTION:A figure is exposed by adjusting the shape of cross-section of electron beam so that the periphery of figure is depicted with the electron beam shaped into the rectangular cross-section having the small side and the inner part of figure is depicted with the electron beam shaped into the rectangular cross-section having the longer side. A size of rectangular electron beam used for depicting the periphery of a figure is set to 1/3 of the dimensions of the maximum rectangular electron beam.

Description

【発明の詳細な説明】 この発明は電子線露光方法に係り、特に半導体集積回路
の微細化、高密度化のだめの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam exposure method, and more particularly to a method for manufacturing devices for miniaturizing and increasing the density of semiconductor integrated circuits.

ウェハ上によシ高密度に素子を集積する上で重要な事柄
は、素子の寸法をよシ小さくシ、素子を高密度に集]a
することである。従4にの毘学露尤技術を用いた方法に
」:って形成する素その寸/F2は2ミクロンから1ミ
クロンに近づいてきた。11i、子ビーム露光1支健丁
では、】ミク11ンlキ丈Fのザブミクロン曜幅捷でバ
タン形成することができる。半導体集積回路の素子バタ
ンで市快な1(柄は、・クメン付法とともに、バタンの
旧線性もル」νである。1夕11えば1.0ミクロンの
勝幅をもつしいバタンか、どころどころで02ミクロン
の段差1だ1i−a:]付T?rシている場合には、素
子を形成する−にでの11合せ精度もその0.2ミクロ
ンぶんだけ余裕をもだせなければならないし、−、V子
の11(、気的特性にも悪い影響全方える。
The important thing in integrating elements on a wafer at a high density is to reduce the size of the elements and to integrate the elements at a high density.
It is to be. According to the method using the bigaku-ro-yi technique described in Chapter 4, the size/F2 of the formed element has approached 1 micron from 2 microns. 11i, with 1 branch of secondary beam exposure, it is possible to form a bang with a 11-inch length F Zabmicron width-width tool. Semiconductor integrated circuit element slams are popular. (The pattern is, along with the ``kumen'' method, the old linearity of the bangs is also ``. However, if there is a step difference of 0.2 microns, 1i-a:], if there is a T?r, the alignment accuracy of the electrodes that form the element must also have a margin of 0.2 microns. -, V-ko's 11 (, there is a negative effect on the temperament characteristics as well.

従来用いられている断面形状が丸彰の電子ビームを用い
るα子線露光装置(A、、J 、5peth etal
+J、Vac、Sci、Technol、、Vo112
,1975.l’、1235)に比べて、露光時間の短
縮化を可能にした1任変矩形直子ビーム露光装置が後藤
氏(特許出願公告昭53−20391号公報、昭53−
2.0393号公報)によって開発されたが、後者は矩
形を接続して長いパタンを形成する方法を用いるので、
矩形と矩形との接続部分において段差ができやすく、パ
タンの直線性と□いう点からは、前者に劣っている。
Alpha-beam exposure equipment (A, J, 5peth etal
+J, Vac, Sci, Technol,, Vo112
, 1975. Mr. Goto (Patent Application Publication No. 1983-20391, 1983-
2.0393), but the latter uses a method of connecting rectangles to form a long pattern, so
Steps are likely to occur at the connection between rectangles, and the former is inferior to the former in terms of pattern linearity and □.

可変矩形電子ビーム露光装置によるパタン描画において
、矩形と矩形との接続部分の直接性が良くならない原因
としては、第1に正確な直交性と平行性をもつ長方形又
は正方形の矩形電子ビームを形成することが困ψ1tな
こと。第2に矩形電子ビームの辺の方向と、′電子ビー
ムの偏向系の軸の方向とを一致させることが困難なこと
。第3に矩形電子ビームの辺の方向と試料ステージ移動
系の軸の方向とを一致させることが困難なことである。
When drawing a pattern using a variable rectangular electron beam exposure device, the reasons why the directness of the connecting parts between rectangles is not improved are as follows: First, it is necessary to form a rectangular or square rectangular electron beam with accurate orthogonality and parallelism. That's a very difficult thing to do. Second, it is difficult to match the direction of the sides of the rectangular electron beam with the direction of the axis of the electron beam deflection system. Thirdly, it is difficult to match the direction of the sides of the rectangular electron beam with the direction of the axis of the sample stage movement system.

例えば、矩形電子ビームの辺の方向と、電子ビームの偏
向系の軸の方向とを一致させる方法としては、電子ビー
ム露光装置の露光試料近傍に設けた大きな基準パタンで
、その基準バタンの長い辺をもつ端部を電子ビームで走
査した場合に得られる反射電子信号を用いる方法がある
。上記試料表面上のパタンの端部を矩形電子ビームで走
査し、横軸を時間軸、縦軸を反射電子強度とした場合の
反射電子信号図jするをみながら、矩形’11):子ビ
ームの’、)Jの方向を、走査方向に対して回転し、反
射′r11′、子信号図形が一番急な1″rち+りをも
つ31:うにす7.)。この過程で操作nの熟練朋が心
安になる。その時の矩形面子ビーノ・のWの方向d1上
記基飴パタン端1ηIXの長い辺の向きと一致している
。基準パタンl’i15部の辺の同きは、′Li、C子
ビーム偏向糸とにj−股に一致していないので、さらに
一定の角度だけ矩形電子ビームの辺の方向を回転しなけ
れはならない。その追加する角+Wは、実際にパタンを
1藷光しないとわからない量であるから、補iTE晴を
決めるのにイ「11LI[か露光実験をしなければなら
ない。この1(76程でも操作者の熟練度を必要とする
。熟練した操作が1是時間調整すれば、電子ビームの矩
形と矩形の接続部の段差は、はとんど測定できないぐら
いに小さくすることは可能であるが、通常の調整では、
20ミクロンの長さをもつ矩形どうしの目2続部で0.
2ミクロン程度の段差が生じるのが紡:ii&である。
For example, one way to match the direction of the sides of a rectangular electron beam with the direction of the axis of the electron beam deflection system is to use a large reference pattern provided near the exposed sample of an electron beam exposure system, and use a large reference pattern on the long side of the reference pattern. There is a method that uses reflected electron signals obtained when scanning an edge with an electron beam with an electron beam. While looking at the backscattered electron signal diagram when the end of the pattern on the sample surface is scanned with a rectangular electron beam, the horizontal axis is the time axis, and the vertical axis is the backscattered electron intensity, the rectangular '11): Child beam ',) The direction of J is rotated with respect to the scanning direction, and the reflection 'r11' and the child signal figure have the steepest 1"r + 31: Unisu7.). In this process, the operation Those skilled in the art of n will feel at ease.At that time, the direction of the W of the rectangular surface d1 matches the direction of the long side of the base candy pattern end 1ηIX above.The same side of the standard pattern l'i15 is as follows. 'Li and C beam deflection threads do not match the j-crotch, so the direction of the sides of the rectangular electron beam must be further rotated by a certain angle.The added angle +W actually changes the pattern. Since it is a quantity that cannot be understood without one exposure, in order to determine the supplementary iTE exposure, it is necessary to carry out an exposure experiment of 11 LI [or so. However, by adjusting the time, it is possible to reduce the step between the rectangles of the electron beam to the point where it is almost impossible to measure it, but with normal adjustment,
0.0.
A step difference of about 2 microns occurs when spinning: ii&.

この問題を解決するには、最大1に子ビーム矩形寸法の
大きさを小さくする方法がある。酸太市、子ビーム矩形
寸法を2.5ミクロンにした米国IBM社の′・4子ビ
ーム露光装置EL−1がそれである(You−rke 
、 II 、 S 、 etal −*’1.’ech
 、1)i gest of ’76 IIi3DM 
To solve this problem, there is a method of reducing the size of the child beam rectangle to a maximum of 1. This is IBM's EL-1 quadruple beam exposure system, which has a rectangular beam size of 2.5 microns.
, II, S, etal -*'1. 'ech
, 1) i gest of '76 IIi3DM
.

PP431−445 )、、最大矩形寸法を小さくすれ
ばするほど1ril子ビ一ム露光粂件は丸形電子ビーム
の場合に近くなり、同一の面積を露光するのに・電子ビ
ームショット数が増大する。その結果露光時間はどんど
ん増し、矩形電子ビーム露光装置の特徴はなくなる。
PP431-445), As the maximum rectangular dimension is made smaller, the exposure time for one ril beam becomes closer to that of a round electron beam, and the number of electron beam shots increases to expose the same area. . As a result, the exposure time increases rapidly, and the characteristics of the rectangular electron beam exposure apparatus disappear.

オだ1、大きな矩形+に子ビームで大きな図形を描画す
る場合に、仮に描画する電子ビームの断面形状や描画位
置が所定の精度で納っていたとしても、大きな図形の周
辺部の直線性が矩形電子ビームの断面形状とは別の原因
により悪くなる場合があり、その結果、電子ビームの矩
形寸法の大きさに制限力筒口えられることがある。この
ことは、電子ビームが入射されパターン形成される感電
子ビーム材を支持する基板材の熱伝導率が悪い場合に、
電子ビーム矩形寸法が大きいと、感電子ビーム材が熱変
質を受けることが原因になっている。
1) When drawing a large figure on a large rectangle with a child beam, even if the cross-sectional shape and drawing position of the electron beam to be drawn are within the specified accuracy, the linearity of the peripheral part of the large figure may deteriorate due to a cause other than the cross-sectional shape of the rectangular electron beam, and as a result, the limiting force may be limited to the rectangular dimension of the electron beam. This means that if the thermal conductivity of the substrate material supporting the electron beam-sensitive material on which the electron beam is incident and patterned is poor,
If the electron beam rectangular size is large, the electron beam sensitive material undergoes thermal deterioration.

5一 本発明は、大きな図形の周辺部に於ける′重子ビーム矩
形の矩形と矩形の1妾続部の段差をより小さくできるよ
うに、1だ感′「に子ビームイ]の熱変″ffjに起因
する大きな1図形の周辺部の直線性の′FK化をより小
さくできるように、可変矩形電子ビーム露光装置の特徴
である矩形の大きさを変化できるξとを積極的に利用し
、電子ビーム露光によって描画形成する図形の形状を描
画した捷まの形状に可能な限り近づけられるよりよいも
のにさぜるととを目r内としている。
51 The present invention is designed to reduce the difference in level between the rectangle of the double beam rectangle and the first concatenation part of the rectangle in the peripheral area of a large figure by thermal change of the double beam. In order to further reduce the ′FK change in the linearity of the peripheral part of a large figure caused by The goal is to make the shape of the figure drawn by beam exposure as close as possible to the shape of the drawn strips.

以下、本発明を具体的な実施例に基いて図面を参照しな
がら説明する。第1図(al (1)l (c)各図は
従来の露光方法による場合の可変鋤形ビームによる描画
の例である。第1図(a)は、大きな図形を最大矩形寸
法りでまず分割描画し、余った部分を適当な太さの矩形
で描画する分割例を、ビーム矩形形状が傾いていたすせ
ず、また、感電子ビーム材が熱変質を受けない理想的な
場合について示したものである。最大矩形寸法りの矩形
ビームでなるべく描画しようとするのは、描画時間をな
るべく短縮6− し/こいからである。第1図(hlは、ビーム矩形形状
が頗いていた場合に、上記第1図(atがどのようにバ
タン形成されるかを示しだものである。
Hereinafter, the present invention will be explained based on specific embodiments with reference to the drawings. Figure 1 (al (1) l (c)) Each figure shows an example of drawing using a variable plow beam using the conventional exposure method. An example of division in which the beam is drawn in sections and the remaining portion is drawn in a rectangular shape of an appropriate thickness is shown in the ideal case where the beam rectangular shape is tilted and the electron-sensitive beam material is not subject to thermal deterioration. The reason why we try to write as much as possible with a rectangular beam with the maximum rectangular dimension is to shorten the writing time as much as possible. FIG. 1 above shows how the baton is formed.

矩形と矩形との接続部に段差ができ図形周辺の直線性が
悪くなっている。第1図(clは、感電子ビーム材が熱
変質を受けた場合に1上記第1図(alがどのようにバ
タン形成されるかを示したものである。
There is a step at the connection between the rectangles, and the linearity around the figure is poor. FIG. 1 (cl) shows how the above-mentioned FIG. 1 (al) is formed when the electron beam-sensitive material undergoes thermal alteration.

ひとつひとつの大きな1d子ビーム照射矩形が丸味をも
ってしまうので、図形周辺のM練性が悪くなっている。
Since each large 1d child beam irradiation rectangle has a rounded shape, the machining properties around the figure are poor.

第2図(al(blは、本発明の実施例による可変矩形
ビームの描画の例である。図形周辺部を描画する′目イ
子ビームの矩形の寸法を最大電子ビーム矩形寸法の3分
の1にし、図形内部は借大矩形’ML子ビームで描画し
ている。この実施例では、第1図(l〕)で示した矩形
の傾きに起因する矩形と矩形の接続部の段差量が少くと
も3分の1に減少している。
Figure 2 (al (bl) is an example of writing with a variable rectangular beam according to an embodiment of the present invention. 1, and the inside of the figure is drawn using a borrowed large rectangle 'ML child beam.In this example, the amount of step difference between the rectangles due to the inclination of the rectangles shown in Fig. 1 (l) is It has decreased by at least one-third.

本発明を実施すると、仮にその条件が理想からかなり外
れており、第1図(clで示しだように感心子ビーム材
が熱で変質してしまうような条件であったとしても、r
チ、2図にI)の場合でkl’ lゾIII’、周辺部
の′11L子ビームJ且)1ネ而1青は第1図fc)の
、場合の13分の1になり第2Iンl+111のJ場合
では図形周辺部の市1子ビーム矩形面積に9分の1にな
るので、感’N’C子ビーム材の図形周辺部における熱
変質111″そのものが大幅に減少することと相俟って
その効果i1: 、ni 栄的に大きくなり、光分な精
度で所定の図形を形成できる。
When the present invention is implemented, even if the conditions are far from ideal and the sensitizer beam material is altered by heat as shown in Figure 1 (cl), the r
H, in Fig. 2, in case I), kl' l zo III', '11L child beam J in the peripheral part, and) 1 ne, then 1 blue is 1/13th of the case fc) in Fig. 1, and the 2nd I In the case of J with 1 + 111, the rectangular area of the Ichi 1 beam at the periphery of the figure is reduced to 1/9th, so the thermal deterioration 111'' itself in the periphery of the figure of the sensitive N'C beam material is greatly reduced. Together, the effect i1: , ni becomes larger and a predetermined figure can be formed with a precision of a light minute.

図形内部は最大矩形寸法で描画し7ているので、当然そ
の部分の感’ra子ビーム材は熱愛1171をうける。
Since the inside of the figure is drawn with the maximum rectangular size, the sensitizer beam material in that area naturally receives a lot of love.

しかし実用上要求される感電子ビーム材の図形形状とし
ては、第2図に示した図形の外周F’;Iiで決゛土る
図形である場合がほとんどであるので問題は々い。
However, in most cases, the shape of the electron-sensitive beam material required for practical use is determined by the outer periphery F';Ii of the shape shown in FIG. 2, which poses many problems.

以上の説明、一時に実施例に対する説、明にも・いては
、説明を工1体(ヒし浬j’lfrを助けるために、)
F!、、、定の露光図形および可変矩形′市子ビームの
r(’fi ++lr+方法について説明してきた。
The above explanation is for the sake of explanation, and also for the sake of clarity.
F! , , the r('fi ++lr+ method of a fixed exposure figure and a variable rectangular Ichiko beam has been described.

例えば第1同各図と第2同各図r(於いて、縦(1″も
ともは太電子ビーム矩形寸法よりも大きな図形を考えた
が、かガらずしも一辺父kJ二辺以−]二が最大電子ビ
ーム矩形・十法」=りも大きくない図形に対しても本発
明は有効である。例えば、感心子ビーム材が熱変質を受
ける′1[を子ビーム矩形寸法が、L1゛に光装置が許
す最大矩形寸法よりも小さい場合にも本発明の′[4を
子ビーム露光方法は有効である。大事々ととt」:、必
要とする図形の周辺+liを感心子ビーム材が熱変質で
大きくバタンくずれを起こさない大きさの矩形″+に子
ビームで描画し、図形内部をできるだけ大きな矩形)−
61子ビームで描画することにある。
For example, in Figure 1 and Figure 2 (r), the length (1") was originally considered to be larger than the thick electron beam rectangular dimension, but it does not have to be larger than one side and kJ two sides. The present invention is also effective for shapes that are not as large as the maximum electron beam rectangle. Even if L1' is smaller than the maximum rectangular dimension allowed by the optical device, the 4 beam exposure method of the present invention is effective. Draw a rectangle with a child beam on a rectangle ``+'' that is large enough to prevent the beam material from fading significantly due to thermal deterioration, and make the inside of the figure as large a rectangle as possible)
The purpose is to write with 61 beams.

図形内部をできるだけ大きな矩形゛電子ビームで描画す
る理由は、電子ビーム描画時間をなるべく短縮したいか
らである。この図形内部の処理方法に1S(1する事情
は、電子ビーム矩形が傾斜していたり、直交性が悪い場
合の電子ビーム露光方法に関しても同様である。第2図
に於いて、図形周辺部の矩形寸法を仮に3分の1にした
が、これも説明を具体的にしたためであり、図形周辺部
の直線性の要51りの度合いに応じて矩形寸法の縦横の
長さを決めることitもちろんである。
The reason why the inside of the figure is drawn using a rectangular electron beam as large as possible is that it is desired to shorten the electron beam drawing time as much as possible. The reason for applying 1S (1S) to the processing method for the inside of this figure is the same for the electron beam exposure method when the electron beam rectangle is tilted or the orthogonality is poor. Although the rectangular dimensions have been temporarily reduced to one-third, this is also to make the explanation more specific, and it goes without saying that the vertical and horizontal lengths of the rectangular dimensions should be determined according to the degree of linearity of the peripheral area of the figure. It is.

9−9-

【図面の簡単な説明】[Brief explanation of drawings]

第1iヅI fal fhl (clの各図計、4.、
: y;?明の)J法’、(Illいる必要性を説I9
1するために示i〜たσr:東の可変J口形′lF1子
ビームの露光方法の説、四回でJ)る1、・fl、1図
(;l)のlJ1最太矩ハそ「電子ビームの大きさであ
る。14′r、2図(atと第21′閃(t))は、本
発明の実か11圀を示した説明図である。 H1−
1st izuI fal fhl (cl diagrams, 4.,
:y;? 9) Explaining the necessity of
1, I ~ σr: East's theory of the exposure method of the variable J-shaped aperture 'lF1 beam, four times J) 1, · fl, the thickest rectangle of lJ1 in Figure 1 (;l) is This is the size of the electron beam. Figure 14'r, 2 (at and 21' flash (t)) is an explanatory diagram showing the eleventh aspect of the present invention. H1-

Claims (1)

【特許請求の範囲】[Claims] 可変矩形状の断面をMする電子ビームを用いる電子ビー
ム蕗元方法において、描画図形の周辺部を描画するには
小さい辺長の矩形断面に成形した電子ビームで描画し、
描画図形の内部を描画するには大きな辺長の矩形断面に
成形した電子ビームで活画するように、該電子ビームの
断面形状を調整して露光することを%徴とする電子ビー
ム露光方法。
In the electron beam Fukimoto method using an electron beam with a variable rectangular cross section of M, in order to draw the peripheral part of the drawing figure, draw with an electron beam shaped into a rectangular cross section with a small side length,
An electron beam exposure method in which the cross-sectional shape of an electron beam is adjusted so that the inside of a figure to be drawn is exposed with an electron beam formed into a rectangular cross-section with a large side length.
JP12618681A 1981-08-12 1981-08-12 Electron beam exposure Pending JPS5828832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12618681A JPS5828832A (en) 1981-08-12 1981-08-12 Electron beam exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12618681A JPS5828832A (en) 1981-08-12 1981-08-12 Electron beam exposure

Publications (1)

Publication Number Publication Date
JPS5828832A true JPS5828832A (en) 1983-02-19

Family

ID=14928815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12618681A Pending JPS5828832A (en) 1981-08-12 1981-08-12 Electron beam exposure

Country Status (1)

Country Link
JP (1) JPS5828832A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106828A (en) * 1981-12-18 1983-06-25 Fujitsu Ltd Electron beam exposure method
JPS59229819A (en) * 1983-06-13 1984-12-24 Hitachi Ltd Electron beam patterning apparatus
JPS60196941A (en) * 1984-02-29 1985-10-05 Fujitsu Ltd Electron beam exposure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106828A (en) * 1981-12-18 1983-06-25 Fujitsu Ltd Electron beam exposure method
JPS59229819A (en) * 1983-06-13 1984-12-24 Hitachi Ltd Electron beam patterning apparatus
JPS60196941A (en) * 1984-02-29 1985-10-05 Fujitsu Ltd Electron beam exposure

Similar Documents

Publication Publication Date Title
KR930002575B1 (en) Charged particle beam exposure method
US4636968A (en) Method of positioning a beam to a specific portion of a semiconductor wafer
JPH0536595A (en) Electron beam exposure method
US5283440A (en) Electron beam writing system used in a cell projection method
JPH025010B2 (en)
JP3274212B2 (en) Electron beam detector and electron beam drawing apparatus using the same
JP3295855B2 (en) Charged particle beam exposure method
JPH09199389A (en) Drawing method by electron beam
JPS5828832A (en) Electron beam exposure
US5432314A (en) Transparent mask plate for charged particle beam exposure apparatus and charged particle beam exposure process using the transparent mask plate
KR0152128B1 (en) Electron beam drawing apparatus and method of drawing with such apparatus
EP0153864B1 (en) A method of electron beam exposure
US4737646A (en) Method of using an electron beam
GB1587852A (en) Electron beam apparatus
US6638665B2 (en) Method and apparatus for designing EB mask
JP3080006B2 (en) Electron beam exposure correction method
KR100437817B1 (en) A method of exposure for making of a semiconductor device
US6974649B2 (en) Stencil mask for electron beam projection lithography and fabrication method
KR20000077410A (en) Electron beam exposure method
JP2910439B2 (en) Electron beam exposure method
JPS644337B2 (en)
JP2835109B2 (en) Charged beam drawing method
JP2892068B2 (en) Charged beam drawing method
KR20000031110A (en) Exposure mask
JP2871617B2 (en) Electron beam exposure method