JPS5828704A - Production of reinforced optical transmitter - Google Patents

Production of reinforced optical transmitter

Info

Publication number
JPS5828704A
JPS5828704A JP12649981A JP12649981A JPS5828704A JP S5828704 A JPS5828704 A JP S5828704A JP 12649981 A JP12649981 A JP 12649981A JP 12649981 A JP12649981 A JP 12649981A JP S5828704 A JPS5828704 A JP S5828704A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
reinforcing member
reinforced
storage groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12649981A
Other languages
Japanese (ja)
Inventor
Yukio Komura
幸夫 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12649981A priority Critical patent/JPS5828704A/en
Publication of JPS5828704A publication Critical patent/JPS5828704A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/449Twisting
    • G02B6/4491Twisting in a lobe structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To set accurately an optical fiber into a coat, by producing a reinforcing member having a storing groove and putting the optical fiber and then a filler into the storing groove. CONSTITUTION:The reinforced fibers 2 are supplied from a fiber feeder 1. The fiber 2 receives the supply of the thermosetting resin 3 from a resin impregnating machine 4 and then passes through the inside of a cylindrical heat molding machine 5 to be formed into a reinforced member 6 having a storing groove on its outer circumference. An optical fiber 9 is stored into the storing groove and moved toward the center hole of a butt strap 11. On the other hand, a fiber material 14 similar to the fiber 2 is led into a resin tank 18 and then impregnated with the liquid thermosetting resin 19. Thus a filler 12 is obtained. The filler 12 reaches the strap 11 and then goes into the storing groove of the member 6 to block the groove.

Description

【発明の詳細な説明】 本発明は光ファイバと強化部材とで構成される強化光伝
送体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a reinforced optical transmission body composed of an optical fiber and a reinforcing member.

光ファイバを強化する手段として繊H1強化樹脂(FR
P)で被覆することはすでに実施されており、この手段
によれば光ファイバの強度が格段に向上する他、FR,
P被覆と光ファイバとの線膨張係数も近似するため、温
度特性が良好といった効果も得られる。
Fiber H1 reinforced resin (FR) is used as a means to strengthen optical fibers.
Coating with P) has already been carried out, and this method not only significantly improves the strength of the optical fiber, but also improves the strength of the optical fiber.
Since the linear expansion coefficients of the P coating and the optical fiber are also similar, the effect of good temperature characteristics can also be obtained.

上記のような効果が得られる強化被覆手段は単心被覆光
ファイバを製造する場合だけでなく、多心被覆光ファイ
バ、光コード、光ケーブルユニット、光ケーブルなど、
各種の光伝送体を製造する場合に広く用いられているが
、複数本の光ファイバを同時にFRP被覆する方法とし
て実施されている従来法ではつぎのよりな問題点が指摘
されている。
Reinforced coating means that can achieve the above effects are used not only for manufacturing single-core coated optical fibers, but also for multi-core coated optical fibers, optical cords, optical cable units, optical cables, etc.
Although it is widely used in manufacturing various optical transmission bodies, the following problems have been pointed out in the conventional method of simultaneously coating a plurality of optical fibers with FRP.

つまり従来法の場合、ロービング状態としたガラス製な
どの補強繊維(複数条)と光ファイバ(複数本)とを−
力方向へ給送しながら各光ファイバの周囲に補強繊維を
縦添えするようにし、この際、各補強繊維はあらかじめ
樹脂液槽に浸漬してこれに液状の熱硬化性樹脂を含浸さ
せておくとか、あるいは上記縦添え後において樹脂液滴
下装置からの液状熱硬化性樹脂を各補強繊維に含浸させ
、そして各光ファイバおよび樹脂含浸の各補強紙ill
が加熱成形器内へ進入する前、これらを目板に通してそ
の相対位置を調整し、しかる後、各光ファイバ、樹脂含
浸の各補強繊維を当該加熱成形器内へ導入して樹脂を加
熱硬化するようにしていたが、上記目板による位置決め
手段はかな9大1かであり、しかも単心の場合とは異な
り光フアイバ数、補強繊維が多いため、FRP被覆中に
おける各光ファイバが所定位置に正確に定1らず、また
、その位置ずれ自体も一定化しないので再現性がなく、
したがって光ファイバの被覆自位置が正確なものを得る
には難度がともなうというよりも無理であった。
In other words, in the case of the conventional method, reinforcing fibers (multiple fibers) made of glass or the like in a roving state and optical fibers (multiple fibers) are
Reinforcing fibers are attached vertically around each optical fiber while being fed in the force direction, and at this time, each reinforcing fiber is immersed in a resin liquid bath in advance to impregnate it with liquid thermosetting resin. Or, after the vertical splicing, each reinforcing fiber is impregnated with a liquid thermosetting resin from a resin droplet dripping device, and each optical fiber and each reinforcing paper impregnated with resin are
Before entering the thermoforming machine, these are passed through a batten to adjust their relative positions, and then each optical fiber and each reinforcing fiber impregnated with resin is introduced into the thermoforming machine and the resin is heated. However, the positioning means using the above-mentioned batten is only 9 or 1, and unlike the case of a single fiber, the number of optical fibers and reinforcing fibers are large, so each optical fiber in the FRP coating has to be placed in a predetermined position. The position is not exactly fixed, and the positional deviation itself is not constant, so there is no reproducibility.
Therefore, it has been more difficult than impossible to obtain an accurate position of the coating on the optical fiber.

もちろん光フアイバ位置が上記のように定まらないと、
実用時における光フアイバ接続作業が面倒となり、また
、上記において製造ラインスピードをアップした場合に
は、光ファイバの位置ずれがより大きくなり、したがっ
て製造能率も低下せざるを得なかった。  ゛ 本発明は光ファイバの外周に樹脂含浸の補強繊維を縦添
えするのでなく、強化部材にあらかじめ形成されている
所定の収納条溝内へ光ファイバを内装し、かつ、その収
納条溝を充填材で閉塞するといった手段を主たる特徴と
して上記従来例の問題点を解消せんとするものである。
Of course, if the optical fiber position is not determined as above,
In practical use, the work of connecting optical fibers becomes troublesome, and when the speed of the production line is increased in the above-mentioned manner, the positional deviation of the optical fibers becomes larger, and therefore the production efficiency inevitably decreases.゛The present invention does not vertically attach resin-impregnated reinforcing fibers to the outer periphery of the optical fiber, but instead inserts the optical fiber into a predetermined storage groove formed in advance on the reinforcing member, and fills the storage groove. This is an attempt to solve the problems of the above-mentioned conventional example, with the main feature being a means of blocking with a material.

以下本発明の方法を図示の実施例により説明する。The method of the present invention will be explained below with reference to the illustrated embodiments.

第1図において、ill (1) Fil・・・・・は
繊維供給機であり、これら繊維供給機ill (]1 
(11・・・・・にはそれぞれ補強繊維(2) (21
(2)・・・・・が巻きもどし供給自在に巻かれている
In Fig. 1, ill (1) Fill... are fiber feeding machines, and these fiber feeding machines ill (]1
(11... are respectively reinforcing fibers (2) (21
(2)... is wound so that it can be unwound and supplied freely.

ここでの各補強繊維(21(2) F2+・・・・・は
ロービング状態のガラス繊維、炭素繊維、金属繊維、溶
融シリカ繊維、セラミック繊維等からなる。
Each of the reinforcing fibers (21(2) F2+...) here consists of glass fibers, carbon fibers, metal fibers, fused silica fibers, ceramic fibers, etc. in a roving state.

上記の各補強繊維(21(21(2)・・・・・は第1
図の繊維供給送から巻きもどされながら所定の一方向へ
給送され、つぎの樹脂含浸手段によりポリエステル、エ
ポキシ、シリコーンなどの熱硬化性樹脂(3)が含浸さ
れる。
Each of the above reinforcing fibers (21 (21 (2)... is the first
The fiber is fed in a predetermined direction while being unwound from the fiber feed shown in the figure, and is impregnated with a thermosetting resin (3) such as polyester, epoxy, silicone, etc. by the next resin impregnating means.

この樹脂含浸手段としては樹脂噴射型または樹脂流下型
(滴下型)とした図示の樹脂含浸機(4)から各補強繊
維(2+ (21(2+・・・・・へ液状とした熱硬化
性樹脂(3)を供与するとか、あるいは各補強繊維+2
1 (21(2)・・・・・を図示しない樹脂液槽内へ
浸漬して通過させる手段が採用される。
The resin impregnation means is a resin injection type or a resin flowing type (dropping type) from a resin impregnation machine (4) shown in the figure. (3) or each reinforcing fiber +2
1 (21(2)...) is immersed in a resin liquid tank (not shown) and passed through it.

こうして樹脂含浸された各補強繊維(21(2) (2
)・・・・・は、内部に所定の成形形状を有する筒形の
加熱成形機(5)内を通過することとなり、これら各補
強繊維(21(21!2)・・・・・はとの加熱成形機
(5)内で熱硬化成形されることにより、第2図に示す
断面形状の強化部材(6)となる。
Each reinforcing fiber (21(2) (2
)... will pass through a cylindrical heating forming machine (5) that has a predetermined molding shape inside, and each of these reinforcing fibers (21 (21! 2)...) The reinforcing member (6) having the cross-sectional shape shown in FIG. 2 is obtained by thermosetting molding in the thermoforming machine (5).

第2図を参照して明らかなように、加熱成形機(5)に
より成形された上記強化プラスチック製の強化部材(6
)は、その表面の長平方向に複数の収納条溝(力t71
 +71・・・・・が形成されている。
As is clear with reference to FIG. 2, the reinforced plastic member (6) molded by the thermoforming machine (5)
) has a plurality of storage grooves (force t71) in the longitudinal direction of its surface.
+71... is formed.

この際の収納条溝(71+71 I力・・・・・は直線
状であっても、蛇行状(蛇行曲率は大きいほどよい)で
あっても、さらに螺旋状(螺旋ピッチは任意でよい)で
あってもよく、これらいずれの場合でも各収納条溝(7
1+7+ +71・・・・・は強化部拐(6)の長平方
向に形成されていることになる。
At this time, the storage groove (71+71 I force...) may be linear, meandering (the larger the meandering curvature is, the better), or even spiral (the spiral pitch may be arbitrary). In any of these cases, each storage groove (7
1+7+ +71... is formed in the long plane direction of the reinforced raid (6).

上記強化部材(6)はこれの成形後においても走行して
おり、この状態にある強化部旧(6)の表面には、光フ
アイバ供給機+81 (81[81・・・・・からの光
ファイバF9) +91 (9)・・・・・が配係され
る。
The reinforcing member (6) is still running even after being molded, and the surface of the old reinforcing part (6) in this state is covered with light from the optical fiber feeder +81 (81 [81...). Fiber F9) +91 (9)... is arranged.

この光フアイバ供給機+81 (81FB+・・・・・
には1次被覆された、あるいはそれ以上の被覆を有する
光ファイバ+9) +9119+・・・・・が巻きもど
し可能に巻かれており、ここから巻きもどされた各光フ
ァイバ19+ +91 +91・・・・・が前記強化部
材(6)の表面へ案内され、これら各党ファイバ+91
 +9) +91・・・・・はガイドローラ00) (
10) 00)・・・・・を介して強化部材(6)の収
納条溝t7) +71 +71・・・・・内へ内挿され
る。
This optical fiber supply machine +81 (81FB+...
An optical fiber +9) +9119+... having a primary coating or a coating with a higher coating is unwound thereon, and each optical fiber 19+ +91 +91... is unwound from this. ... is guided to the surface of the reinforcing member (6), and these respective fibers +91
+9) +91... is the guide roller 00) (
10) 00)... is inserted into the storage groove t7) +71 +71... of the reinforcing member (6).

各収納条溝(7) (71+7+・・・・・内に光ファ
イバi9) +9+(9)・・・・・力月本ずつ入れら
れた後の上記強化部拐(6)は、その進行方向に位置せ
る目板(11)の中心孔(図示せず)を通過することに
なるが、この目板(11)には別の供給系から充填拐(
121F+2) (+2)・・・・・が送られている。
Each storage groove (7) (Optical fiber i9 in 71+7+...) +9+(9)...The reinforced part (6) after being inserted one by one is in its traveling direction. It passes through the central hole (not shown) of the batten (11) located at
121F+2) (+2)... is being sent.

つ捷り第1図において、前記とは別の箇所に配置されて
いる繊維供線機aa3叫・・・・・には既述した補強繊
維(2+ (21(2+・・・・・と同様の繊維制σ弔
04) 04)・・・・・が巻きとられており、ここか
ら巻きもどされた各繊維拐響a勺Q勺・・・・・がガイ
ドローラ051 Q51 Q5)・・・・・、およびガ
イドローラa句Q力を介して樹脂液槽α印肉へ導入され
、同種Q8)内ではこれに収容されているエポキシ、ポ
リエステル、シリコーン等の液状熱硬化性樹脂a印が各
繊維制Q4JσI9a<・・・・・に含浸されて上記充
填材(1り(12)(+21・・・・・がつくられるの
であり、こうしてつくられた各充填月θ21 (12+
 (+21・・・・・はガイドローラ翰ヲ経由して目板
(1υに達し、該目板中心孔の周りにある各通孔(図示
せず)を通過することになる。
In Figure 1, the reinforcing fibers (2+ (21 (2+...) The fiber material 04) 04)... is wound up, and each fiber unwound from there is a guide roller 051 Q51 Q5)... ..., and is introduced into the resin liquid tank α ink pad through the force of the guide roller a, and inside the same type Q8), the liquid thermosetting resin such as epoxy, polyester, silicone, etc. The above-mentioned filler (1ri(12)(+21...) is made by impregnating the fiber material Q4JσI9a<..., and each filling month θ21 (12+
(+21... reaches the batten (1υ) via the guide roller, and passes through each through hole (not shown) around the batten center hole.

なお、ここで各繊維材σ4a弔αΦ・・・・・に樹脂を
含浸させる手段としては前述した樹脂含浸m (41の
ごときものでもよい。
Here, as a means for impregnating each fiber material σ4a αΦ... with resin, the above-mentioned resin impregnation m (41) may be used.

上記において目板(11)の中心孔、その周りの通孔を
通過した強化部制(6)および各充填材(+7I(12
+ (Ia・・・・・は、該目板通過後それぞれ合流す
ることになり、この合流時、各充填材(Ia (+21
 (+21・・・・・は強化部材(6)の収納条溝(7
1+7) +7)・・・・・内に入ってこれらを閉塞状
態とする。
In the above, the reinforcing part (6) passing through the central hole of the batten (11), the through holes around it, and each filler (+7I (12
+ (Ia...) will merge after passing through the batten, and at the time of this merger, each filler (Ia (+21
(+21... is the storage groove (7) of the reinforcing member (6)
1+7) +7)...Go inside and block them.

そして当該閉塞状態を得た強化部材(6)は、上記目板
Ql)の後段にある筒形の加熱硬化機21)を通過する
こととなり、ここで各充填材a’a aa oa・・・
・・は加熱硬化されるとともに強化部材(6)と一体化
され、これによ!ll第3図の断面形状を有する光伝送
体(イ)が得られるのである。
Then, the reinforcing member (6) that has obtained the closed state passes through a cylindrical heat curing machine 21) located after the batten Ql), where each filler material a'a aa oa...
... is heated and hardened and integrated with the reinforcing member (6), thereby! An optical transmission body (a) having the cross-sectional shape shown in FIG. 3 is obtained.

つぎに本発明の方法が採り得る前記以外の実施態様につ
いて説明する。
Next, embodiments other than the above that can be adopted by the method of the present invention will be described.

まず光ファイバf9) (9) +91・・・・・につ
いて、これらは互いに異色とした被覆層を有しているも
のを用いるのがよく、こうした場合には光伝送体(イ)
をつくった後の光フアイバ識別が容易となる。
First, regarding the optical fibers f9) (9) +91..., it is best to use fibers with coating layers of different colors.
This makes it easier to identify the optical fiber after it has been made.

また、前述した収納条溝(71(71[力・・・・・の
うち、任意の位置のものには光ファイバ(9)に代えて
銅線、アルミニウム線、スチール線などの線条体を入れ
ることがあり、また、該収納条溝内に光ファイバ(9)
と線条体(光フアイバ以外のもの)との双方を入れるこ
ともある。
In addition, in place of the optical fiber (9), a filament such as a copper wire, aluminum wire, or steel wire may be used in any position of the storage groove (71) described above. In addition, an optical fiber (9) may be inserted into the storage groove.
In some cases, both the striatum and the striatum (other than optical fibers) are included.

これら線条体は光ファイバ(9)を収納条溝(7)内へ
入れるのと同様の手段によればよく、こうして線条体を
収納条i’i (71内へ介在させた場合には、当該線
条体を基準にして各@+71 (71+71・・・・・
にある光ファイバ+91 (91[91・・・・・の相
対位置が前記着色手段なしに岬」別できるようになり、
さらにこの線条体が電気導体膜であれば給電も可能とな
る〇 一方、収納条溝t71 +71 +71・・・・・内を
閉塞するための充填材(12) Pl (+21・・・
・・とじては樹脂たけでもよく、また、液状とした熱硬
化性樹脂に短繊維(補強繊維(2)と同月質のもの)を
混入させたものであってもよく、こうした充填材0りは
樹脂含浸機(4)と同様の手段で各収納条溝(力(7)
(7)・・・・・内へ充填でき、しかもこれら充填i’
 (12) (12) (+2) ’・・・・・は、そ
の任意の1つを他と異色としたり、各充填材相互を異色
としたり、さらには強化部材(6)に対しても異色とす
ることがある。
These filaments may be inserted by the same means as for inserting the optical fiber (9) into the storage groove (7). , each @+71 (71+71...
The relative position of the optical fiber +91 (91[91...] can be distinguished from the cape without the coloring means,
Furthermore, if this filament is an electrically conductive film, power can be supplied. On the other hand, the filling material (12) Pl (+21...
...The binding material may be made of resin, or it may be made of liquid thermosetting resin mixed with short fibers (of the same quality as the reinforcing fibers (2)). is applied to each storage groove (force (7)) using the same method as the resin impregnation machine (4).
(7) ... can be filled inside, and these filling i'
(12) (12) (+2) '...... makes any one of them a different color from the others, makes each filler a different color, and even makes the reinforcing member (6) a different color. Sometimes.

さらに各収納条溝(71+7) (7)・・・・・が螺
旋状であるとき、強化部材(6)はその長平方向の軸線
を中心にして回転させるのがよく、また該各収納条溝t
7+ +7) (7)・・・・・が蛇行状であるときは
、360゜以内の回転角(回転中心は上記と同じ)で強
化部材(6)を正逆回転させればよく、こうした場合、
上記ノような形状の溝であってもその内部へ光ファイバ
(2)や線条体が嵌めこみゃすくなシ、充填材0渇の溝
入れも容易となる。
Further, when each of the storage grooves (71+7) (7)... is spiral, the reinforcing member (6) is preferably rotated about its elongated axis; t
7+ +7) (7) When... is meandering, it is sufficient to rotate the reinforcing member (6) in forward and reverse directions within a rotation angle of 360° (the center of rotation is the same as above). ,
Even if the groove has the shape described above, it is difficult for the optical fiber (2) or the filament to fit into the groove, and the groove can be easily filled without filling material.

その他、強化部材(6)は加熱成形i +51で半硬化
状態とし、あとは加熱硬化fJ!AI2!刀により完全
な硬化状態としてもよい。
In addition, the reinforcing member (6) is heated to a semi-hardened state with i+51, and then heat-cured with fJ! AI2! It may be completely hardened with a sword.

さらに本発明方法により得られる光伝送体(イ)の断面
形状について説明すると、第4図に示したものでは強化
部材(6)の表面に複数の浅い収納条溝(力t7117
1・・・・・と単数の深い収納条溝(7)′ とが形成
されており、壕だ第5図のものでは強化部材(6)の表
面に複数の浅い収納条溝(7+ +7+ +71・・・
・・と、複数の深い収納条溝t7+’ +7)’ (7
1’  ・・・・・とが交互に設けられている。
Furthermore, to explain the cross-sectional shape of the optical transmission body (A) obtained by the method of the present invention, the one shown in FIG.
1... and a single deep storage groove (7)' are formed, and in the trench shown in Fig. 5, a plurality of shallow storage grooves (7+ +7+ +71) are formed on the surface of the reinforcing member (6). ...
...and multiple deep storage grooves t7+'+7)' (7
1'... are provided alternately.

これらの場合、深い収納条溝t7+’ 17)’ (7
1’・・・・・内には複数の光ファイバ(2)(2)、
あるいは光ファイバ(2)と前記線条体とが収納できる
In these cases, the deep storage groove t7+'17)' (7
1'...There are multiple optical fibers (2) (2),
Alternatively, the optical fiber (2) and the filament can be accommodated.

もちろん全部の収納条溝(71+71 を力・・・・・
、(力′(力′(7)′  ・・・・・内に光ファイバ
+91 +9) +91・・・・・を入れてもよいし、
任意箇所の浅い収納条溝(7)内に線条体を入れてもよ
いが、これら第4図、第5図では、深い収納条溝(71
’ +71’ +7+’  ・・・・・内に光ファイバ
(9)と前記線条体(ハ)とが収納されたものを例示し
である。
Of course, all the storage grooves (71+71)...
, (force ′(force ′(7)′ ...) may be inserted into the optical fiber +91 +9) +91...
Although the filament body may be placed in the shallow storage groove (7) at any location, in these FIGS. 4 and 5, the deep storage groove (71)
'+71'+7+' . . . In this example, the optical fiber (9) and the filament (c) are housed.

なお、深い収納条溝(7)′ 内に複数の光ファイバ+
9)t9L tたは光ファイバ(9)と線条体(ハ)と
を収納するとき、その1本目の収納後、第1回目の充填
材0渇′を入れ、2本目の収納後、第2回目の充填41
1’+13を入れるといったようにこれら充填材a渇a
’a’ を分けて入れるのがよい。
In addition, there are multiple optical fibers inside the deep storage groove (7)′.
9) When storing t9Lt or the optical fiber (9) and the filament (c), after storing the first fiber, add the first filling material, and after storing the second fiber, add the first filling material. Second filling 41
Add these fillers, such as adding 1'+13.
It is better to put 'a' separately.

つぎに各具体例について説明する。Next, each specific example will be explained.

具体例1 補強繊維(2) (2) (2)・・・・・としてはガ
ラス繊維、炭素繊維、アラミツド繊維(商品名ケプラー
)のうちから選ばれた任意の1つとし、熱硬化性樹脂(
3)としてはポリエステル、エポキシ、シリコーンなど
のうちから選ばれた任意の1つとして、外径= 2. 
Oran、収納条溝(7)の数=4ヶ、各収納条溝(7
)の深さ= 1.0 mnの強化部制(6)をつくった
Specific example 1 The reinforcing fiber (2) (2) (2)... is any one selected from glass fiber, carbon fiber, and aramid fiber (trade name Kepler), and thermosetting resin (
3) is any one selected from polyester, epoxy, silicone, etc., and outer diameter = 2.
Oran, number of storage grooves (7) = 4, each storage groove (7)
) depth = 1.0 mn reinforcement system (6) was created.

光ファイバ+9) (9) +91・・・・・とじては
外径125μmの石英系であってこれの外周がシリコー
ン樹脂で1次被覆されたものを用い、これら光ファイバ
+91 +91191・・・・・を熱硬化成形が完了し
ている上記強化部材(6)の各収納条溝t71 +71
 +71・・・・・内へ1本ずつ入れた0 充填材HH(13・・・・・としてはその繊維材U41
Uaa<・・・・・、熱硬化性樹脂119)を上記強化
部拐(6)の場合と同じにして上記収納条溝(71+7
) (7)・・・・・へ入れ、この際、任意1つの充填
材(12)は収納条溝(7)へ入れる前の適当時機に着
色しておき、そして上記所定の充填後、これら充填材(
12)Hαり・・・・・を加熱により硬化させて強化部
材(6)と一体化した0 こうして得られた光伝送体(イ)は期待した通り、機械
的強度、温度特性が優れておシ、各光ファイバ+91 
+91 +9+・・・・・は位置ずれすることなく、所
定位置を確保していた。
Optical fibers +9) (9) +91... are made of quartz-based material with an outer diameter of 125 μm, the outer periphery of which is primarily coated with silicone resin, and these optical fibers +91 +91191...・Each storage groove t71 +71 of the reinforcing member (6) for which thermosetting molding has been completed
+71...0 filler material HH (13... is the fiber material U41 inserted one by one)
Uaa
) (7) ... At this time, any one filling material (12) is colored at an appropriate time before being put into the storage groove (7), and after the above prescribed filling, these Filler (
12) The optical transmitter (a) obtained by curing Hα resin by heating and integrating it with the reinforcing member (6) has excellent mechanical strength and temperature characteristics, as expected. shi, each optical fiber +91
+91 +9+... was secured at a predetermined position without being displaced.

殊に充填材(121(12)(+2)・・・・・の1つ
が着色されていたことにより各光ファイバ+9) (9
) +9)・・・・・の相対位置も難なく把握できた。
Especially since one of the fillers (121 (12) (+2)...) was colored, each optical fiber +9 (9
) +9)... I was able to grasp the relative position of... without difficulty.

もちろん製造ラインスピードは従来例に比べて2〜3割
アンプできている。
Of course, the production line speed is 20 to 30% faster than the conventional example.

具体例2 収納条溝(7)の数を6ケとした以外は具体例1と同一
仕様の強化部拐(6)をつくった。
Concrete Example 2 A reinforced part (6) with the same specifications as Concrete Example 1 was made except that the number of storage grooves (7) was changed to 6.

さらに上記各収納条溝(71+71 +71・・・・・
のうち、5ケには具体例1と同じ光ファイバ191 +
91 +9)・・・・・を入れ、残る1ケには銅線から
なる線条体(ハ)を入れた。
Furthermore, each of the above storage grooves (71+71 +71...
Of these, 5 have the same optical fiber 191 + as in Example 1.
91 +9)... was inserted, and the remaining 1 piece was filled with a striatum (c) made of copper wire.

充填拐(+2) (121(12+についても具体例1
と同じであり(たたし、いずれの充填制も着色なし)、
以下具体例1と同様に処理して所定の光伝送体(ハ)を
得た。
Filling (+2) (121 (Concrete example 1 for 12+)
It is the same as (tatashi, neither filling system is colored),
Thereafter, the same process as in Example 1 was carried out to obtain a predetermined optical transmission body (c).

この具体例2で得られた光伝送体(イ)も具体例】と同
じ好結果が得られた。
The optical transmission body (a) obtained in this specific example 2 also gave the same good results as in the specific example].

−5だ、充填U’ (121(Iり(12)・・・・・
については着色なしであるが、光ファイバ+9) +9
1191・・・・・とは異なる線条体(ト)が介在され
ているため、この線条体(ハ)を基準にして各、光フア
イバ位置が把握でき、しかも当該線条体(ハ)による給
電、電気通信も可能であった。
-5, filling U' (121(Iri(12)...
There is no coloring for optical fiber +9) +9
Since a striatal body (G) different from 1191... is interposed, the position of each optical fiber can be determined based on this striatal body (C). Power supply and telecommunications were also possible.

具体例3 上記具体例1.2では強化部@(6)の加工から光伝送
体(イ)の製造までを一連のタンデムな工程によシ実施
したが、この具体例3では、具体例1.2における強化
部材(6)のみを別工程であらかじめつくっておき、該
強化部材(6)ヲ一方方向へ給送しながらその各収納条
@(力t7) (7)・・・・・へ九フ7 イハ(9)
i3N4) ・・・・・、充填拐(12) (12) 
Q2) −−−= −を入れた後、充填+J’ (12
) (+21 (+2)・・・・・の熱処理だけで所定
の光伝送体(2)を得た。
Concrete Example 3 In the above Concrete Example 1.2, a series of tandem processes were carried out from processing the reinforcing part @ (6) to manufacturing the optical transmission body (a), but in this Concrete Example 3, Concrete Example 1 Only the reinforcing member (6) in step 2 is made in advance in a separate process, and while feeding the reinforcing member (6) in one direction, each of its storage strips @ (force t7) (7)... Nine Fu 7 Iha (9)
i3N4) ..., filling (12) (12)
Q2) After putting −−−= −, filling + J' (12
) (+21 (+2)... A predetermined optical transmission body (2) was obtained only by heat treatment.

この具体例3でも前記各側と同じ好結果が得られた他、
強化部制(6)をあらかじめ製作しておいたため、ライ
ンスピードは大幅にアップした。
In this specific example 3, the same good results as on each side were obtained, and
Because the reinforcement system (6) was created in advance, line speed was significantly increased.

なお、上記のようにして得られた光伝送体(イ)は、多
心被覆光ファイバ、光コード、光ケーブルユニット、光
ケーブルなどとして用いることができる。
The optical transmission body (a) obtained as described above can be used as a multi-core coated optical fiber, an optical cord, an optical cable unit, an optical cable, etc.

以上説明した通り、本発明の方法では表面に長手方向の
収納条溝を有する強化部制を強化プラスチックでつくり
、該強化部制の収納条溝内には光ファイバ、捷たは光フ
ァイバと光フアイバ以外の線条体とを収納し、その後、
該収納条溝内に充填材を入れて当該収納条溝を閉塞する
ことを特徴としているから、収納条溝により光ファイバ
の位置ずれが阻止できるとともに強化部制の硬化、充填
拐の硬化が三箇所に分けて処理できることにより製造ラ
インスピードがアップでき、しかも充填材は収納条溝内
に入れられるため光ファイバを押える部材が外部に突出
せず、したがって得べき光伝送体の外径も小さくできる
As explained above, in the method of the present invention, a reinforced part having longitudinal storage grooves on the surface is made of reinforced plastic, and an optical fiber, a wire or an optical fiber is placed in the storage groove of the reinforced part. The striatum other than the fibers is stored, and then,
Since the storage groove is characterized in that a filling material is placed in the storage groove to close the storage groove, the storage groove can prevent the optical fiber from shifting, and the hardening of the reinforcing member and the filling can be prevented. The production line speed can be increased by being able to process the fibers separately, and since the filler material is placed inside the storage groove, the member that holds the optical fiber does not protrude to the outside, and the outer diameter of the optical fiber to be obtained can therefore be reduced. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の1実施例を示した略示説明図、第
2図は同法においてつくられる強化部材の断面図、第3
図は同法により製造された光伝送体の1例を示した断面
図、第4図、第5図は同法により製造された光伝送体の
他側を示す断面図である。 (1)・・・・・繊維供給機 (2)・・・・・補強繊維 (3)・・・・・熱硬化性樹脂 (4)・・・・・樹脂含浸機 (5)・・・・・加熱成形機 (6)・・・・・強化部材 (7)・・・・・収納条溝 (8)・・・・・光フアイバ供給機 (9)・・・・・光ファイバ ー17−                     
    ^^(1り・・・・・充填制 03・・・・・繊維供給機 (14J・・・・・繊維材 08)・・・・・樹脂液槽 09)・・・・・熱硬化性樹脂 Qυ・・・・・加熱硬化機 (イ)・・・・・光伝送体 (ハ)・・・・・線条体 18−
FIG. 1 is a schematic explanatory diagram showing one embodiment of the method of the present invention, FIG. 2 is a sectional view of a reinforcing member made by the method, and FIG.
The figure is a sectional view showing an example of an optical transmission body manufactured by the same method, and FIGS. 4 and 5 are sectional views showing the other side of the optical transmission body manufactured by the same method. (1)...Fiber feeder (2)...Reinforcement fiber (3)...Thermosetting resin (4)...Resin impregnation machine (5)... ...Thermoforming machine (6) ...Reinforcement member (7) ...Storage groove (8) ...Optical fiber supply machine (9) ...Optical fiber 17-
^^ (1ri...Filling system 03...Fiber feeder (14J...Fiber material 08)...Resin liquid tank 09)...Thermosetting Resin Qυ...Heating curing machine (A)...Light transmission body (C)...Striated body 18-

Claims (1)

【特許請求の範囲】 +11  表面に長手方向の収納条溝を有する強化部材
を強化プラスチックでつくり、該強化部材の収納条溝内
には光ファイバ、または光ファイバと光フアイバ以外の
線条体とを収納し、その後、該収納条溝内に充填拐を入
れて当該収納条溝を閉塞することを特徴とした強化光伝
送体の製造方法。 (2)  複数の収納条溝を有する強化部材を強化プラ
スチックによりつくる特許請求の範囲第1項記載の強化
光伝送体の製造方法。 (3)  強化部材は深浅二様の収納条溝を有している
特許請求の範囲第2項記載の強化光伝送体の製造方法。 (4)  光ファイバは着色されている特許請求の範囲
第1項記載の強化光伝送体の製造方法。 (5)光フアイバ以外の線条体は金属製である特 1− 許請求の範囲第1項記載の強化光伝送体の製造方法。 (6)  光フアイバ以外の線条体は電気溝体製である
特許請求の範囲第1項または第5項記戦の強化光伝送体
の製造方法。 (7)充填制は強化部材のプラスチックと同一のプラス
チックからなる特許請求の範囲第1項記戦の強化光伝送
体の製造方法。 (8)  充填材は強化部材と同一の強化プラスチック
からなる特許請求の範囲第1項記戦の強化光伝送体の製
造方法。 (9)充填材の少なくとも1つは着色されている特許請
求の範囲第1項または第7項または第8項に記載の強化
光伝送体の製造方法。 00)強化部材をつくる工程、強化部材の収納条溝内に
光ファイバを収納する工程、該収納条溝内に充填拐ヲ入
れる工程、さらに強化プラスチック製としたこれら強化
部材、充填材を硬化する工程をタンデムに列べ、該各工
程を連続的に実施する特許請求の範囲第1項記戦の強化
光伝送体の製造方法。
[Claims] +11 A reinforcing member having a longitudinal storage groove on its surface is made of reinforced plastic, and the reinforcing member has an optical fiber, or an optical fiber and a filament other than the optical fiber, in the storage groove of the reinforcing member. 1. A method for manufacturing a reinforced optical transmission body, which comprises storing the fibers in the storage groove, and then filling the storage groove to close the storage groove. (2) A method for manufacturing a reinforced optical transmission body according to claim 1, wherein the reinforcing member having a plurality of storage grooves is made of reinforced plastic. (3) The method for manufacturing a reinforced optical transmission body according to claim 2, wherein the reinforcing member has two deep and shallow storage grooves. (4) The method for manufacturing a reinforced optical transmission body according to claim 1, wherein the optical fiber is colored. (5) The method for manufacturing a reinforced optical transmission body according to claim 1, wherein the filamentous body other than the optical fiber is made of metal. (6) The method for manufacturing a reinforced optical transmission body according to claim 1 or 5, wherein the filamentous body other than the optical fiber is made of an electric groove body. (7) The method for manufacturing a reinforced optical transmission body according to claim 1, wherein the filling system is made of the same plastic as that of the reinforcing member. (8) The method for manufacturing a reinforced optical transmission body according to claim 1, wherein the filler is made of the same reinforced plastic as the reinforcing member. (9) The method for manufacturing a reinforced optical transmission body according to claim 1, 7, or 8, wherein at least one of the fillers is colored. 00) A step of making a reinforcing member, a step of storing the optical fiber in the storage groove of the reinforcing member, a step of inserting a filling material into the storage groove, and further hardening the reinforcing member made of reinforced plastic and the filler. A method for manufacturing a reinforced optical transmission body according to claim 1, wherein the steps are arranged in tandem and each step is performed continuously.
JP12649981A 1981-08-12 1981-08-12 Production of reinforced optical transmitter Pending JPS5828704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12649981A JPS5828704A (en) 1981-08-12 1981-08-12 Production of reinforced optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12649981A JPS5828704A (en) 1981-08-12 1981-08-12 Production of reinforced optical transmitter

Publications (1)

Publication Number Publication Date
JPS5828704A true JPS5828704A (en) 1983-02-19

Family

ID=14936713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12649981A Pending JPS5828704A (en) 1981-08-12 1981-08-12 Production of reinforced optical transmitter

Country Status (1)

Country Link
JP (1) JPS5828704A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634505U (en) * 1986-06-26 1988-01-13
WO1989007778A1 (en) * 1988-02-10 1989-08-24 Fujitsu Limited Optical fiber cable and production thereof
JPH0339914A (en) * 1989-04-14 1991-02-20 Bicc Plc Optical fiber cable
JPH04119839U (en) * 1991-04-11 1992-10-27 株式会社関電工 Temporary ladder for manhole entry
JPH06102444A (en) * 1992-03-31 1994-04-15 American Teleph & Telegr Co <Att> Optical fiber cable and core thereof
JPH06102443A (en) * 1992-03-31 1994-04-15 American Teleph & Telegr Co <Att> Optical fiber cable and optical fiber cable core
JP2681405B2 (en) * 1988-02-10 1997-11-26 富士通株式会社 Optical fiber cable and method of manufacturing optical fiber cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649506B2 (en) * 1977-07-07 1981-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649506B2 (en) * 1977-07-07 1981-11-21

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634505U (en) * 1986-06-26 1988-01-13
WO1989007778A1 (en) * 1988-02-10 1989-08-24 Fujitsu Limited Optical fiber cable and production thereof
JP2681405B2 (en) * 1988-02-10 1997-11-26 富士通株式会社 Optical fiber cable and method of manufacturing optical fiber cable
JPH0339914A (en) * 1989-04-14 1991-02-20 Bicc Plc Optical fiber cable
JPH04119839U (en) * 1991-04-11 1992-10-27 株式会社関電工 Temporary ladder for manhole entry
JPH06102444A (en) * 1992-03-31 1994-04-15 American Teleph & Telegr Co <Att> Optical fiber cable and core thereof
JPH06102443A (en) * 1992-03-31 1994-04-15 American Teleph & Telegr Co <Att> Optical fiber cable and optical fiber cable core

Similar Documents

Publication Publication Date Title
EP0375896B1 (en) Twisted FRP structure and process for manufacturing the same
JP3176390B2 (en) Method of manufacturing reinforced plastic armored cable
EP0018401B1 (en) Strength members for the reinforcement of optical fibre cables
US3033729A (en) Method of continuously making glassreinforced plastic tubing
US20030051795A1 (en) Over-wrapping a primary filament to fabricate a composite material
US4886562A (en) Method of manufacturing reinforced optical fiber
JPS61194276A (en) Composite reinforcing member and method and apparatus for producing the same
JPS5828704A (en) Production of reinforced optical transmitter
DK1191253T3 (en) Method for high speed composite flywheel production
CN111965776A (en) Spiral micro-groove type air-blowing micro-cable, manufacturing equipment and manufacturing method
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JPH08103967A (en) Method and apparatus for manufacturing frp cylinder
JP3724593B2 (en) Method for producing linear fiber reinforced plastic and method for producing fiber reinforced plastic cable
KR102615497B1 (en) Manufacturing system and method for tension core and tension core
JPH0414731Y2 (en)
JPS6111712A (en) Production of frp-coated optical fiber
JPS648803B2 (en)
US3794540A (en) Method of making filament strand wound product
KR20060121147A (en) Frp tension member for drop optical fiber cable
JPH09197214A (en) Production of coated optical fiber ribbon
JPH0483211A (en) Production of tension body
JPH0456810A (en) Production of spacer for optical cable
JPS6026308A (en) Fiber-reinforced optical fiber and its production
US3711351A (en) Method of impregnating inorganic filament strands