JPS5828662A - Method and apparatus for quantitative analysis of heavy water - Google Patents

Method and apparatus for quantitative analysis of heavy water

Info

Publication number
JPS5828662A
JPS5828662A JP12600881A JP12600881A JPS5828662A JP S5828662 A JPS5828662 A JP S5828662A JP 12600881 A JP12600881 A JP 12600881A JP 12600881 A JP12600881 A JP 12600881A JP S5828662 A JPS5828662 A JP S5828662A
Authority
JP
Japan
Prior art keywords
sample
heavy water
hydrogen
water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12600881A
Other languages
Japanese (ja)
Other versions
JPH0254510B2 (en
Inventor
Sumio Ogoshi
大越 純雄
Tomiki Takahashi
高橋 富樹
Toshio Sato
俊夫 佐藤
Teizo Morishita
森下 諦三
Shigeyuki Noda
野田 茂行
Tsutomu Tan
丹 務
Hiroshi Noguchi
宏史 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Shoko Co Ltd
Show Pla Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Shoko Co Ltd
Shoko Tsusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shoko Co Ltd, Shoko Tsusho KK filed Critical Agency of Industrial Science and Technology
Priority to JP12600881A priority Critical patent/JPS5828662A/en
Publication of JPS5828662A publication Critical patent/JPS5828662A/en
Publication of JPH0254510B2 publication Critical patent/JPH0254510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Abstract

PURPOSE:To make a quantitative analysis of heavy water with a trace quantity of a sample accurately in a short time, by making the sample of the heavy water carried on reacting and carrying gas of high purity and passing it through a tube packed with an isotope exchange catalyst and then, passing the reaction gas through an adsorbent and detecting separated heavy water. CONSTITUTION:Gaseous H2 refined in ultra high purity through an H2 refining apparatus having a diaphragm made of Pd (alloy) is sent from a gaseous H2 supply source 1 to an analyzing apparatus in which air has been replaced by sending an inactive gas 9 preliminarily and a large part of gaseous H2 is sent to a sample gasifying room 5 through a flow meter 4 as the reaction and conveyance gas of a heavy water sample and also, the remainder is sent to a heavy hydrogen (D) detecting apparatus 8 for the reference purpose. The heavy water sample is weighed in a microsyringe and is poured from an injection opening 5' and then, is sent to the room 5 together with H2. Mixed gas is allowed to react completely in a tube 6 packed with carrier which carries a reaction catalyst of a water-hydrogen or steam-hydrogen isotope reaction such as Pt, Pd and is converted into HD. Then, other components are adsorbed and separated by an adsorbent in a separation column 7 and passed HD is determined in an detection apparatus 8. The heavy water sample similar to natural water is detected with the trace amount of the sample in a short time at most in about five minutes.

Description

【発明の詳細な説明】 本発明は、水中に存在する任意の濃度の重水を定量分析
する方法及びそれに使用する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantitatively analyzing heavy water at any concentration present in water, and an apparatus used therefor.

水素ガス中の重水素濃度を分析する方法としては特許第
942709号(特公昭53−16319)が知られて
いる。しかしこの方法は、水素ガスに対してのみ適用さ
れるべきものであり、この方法を水中の重水濃度測定に
適用するためには、重水試料から定量的にHDを発生さ
せる方法及びその装置を付加する必要がある。
Japanese Patent No. 942709 (Japanese Patent Publication No. 53-16319) is known as a method for analyzing the deuterium concentration in hydrogen gas. However, this method should only be applied to hydrogen gas, and in order to apply this method to measuring the concentration of heavy water in water, it is necessary to add a method and apparatus for quantitatively generating HD from heavy water samples. There is a need to.

従来水から水素を定量的に発生させる方法としては、水
を気化して加熱された亜鉛、タングステン、またはウラ
ニウム等の金属と接触させる水還元法(或は分解法)が
実用されている。しかしこの方法は時間と熟練を要する
にかりでなく、繰返し使用すると金属の還元能が減衰し
、このため一部未反応の水が残ると、生じた水素中のD
濃度は水が全て水素に転化した場合とは異なるという基
本的な欠点を有する(日本化学会編 実験化学講座 1
 基礎技術I(上)468〜472頁1957年 第5
刷、丸善株式会社)。もう一つの方法は、平衡法と呼ば
れるもので、室温付近の一定温度、白金等の触媒の存在
下で閉じた容器の中に採取した試料水引水素ガスとの間
に重水素交換反応 HDO+  H:  i’  H20+  HDを行わ
せ、交換平衡時の水素ガス中の重水素濃度から間接的に
重水濃度を測定しようとするものである。この方法は、
比較的多量の試料(0,5〜5m/りを要するばかりで
なく、゛ り高活性な触媒を使用しても平衡成立には長時間(30
分〜3時間)を要し、 11)残留効果も大きくまた、 ■)、水中の重水素が全て水素ガスに移行するものでな
い ため、重水素の定量感度は、原理的に還元法のに比し劣
ると云う欠点を有する(同上文献 472〜474頁、
日本分析化学会 北海道支部 1979年 夏季研究発
表会 B−12大館、高欄、佐原、昭54年7月)。従
ってこれらの水還元法あるいけ平衡法を前記の重水素定
量分析装置に接続して連続分析を行うことI/i極めて
困難であった。
Conventionally, as a method for quantitatively generating hydrogen from water, a water reduction method (or decomposition method) in which water is vaporized and brought into contact with a heated metal such as zinc, tungsten, or uranium has been put into practice. However, this method not only requires time and skill, but the reducing ability of the metal decreases with repeated use, so if some unreacted water remains, the D
The basic drawback is that the concentration is different from that when all water is converted to hydrogen (Edited by the Chemical Society of Japan, Experimental Chemistry Course 1)
Basic Technology I (Part 1) pp. 468-472 1957 No. 5
Printed by Maruzen Co., Ltd.). Another method is called the equilibrium method, in which the deuterium exchange reaction HDO + H: The purpose is to perform i' H20+ HD and indirectly measure the heavy water concentration from the deuterium concentration in hydrogen gas at exchange equilibrium. This method is
Not only does it require a relatively large amount of sample (0.5 to 5 m/liter), but even if a highly active catalyst is used, it takes a long time (30
11) The residual effect is large, and (1) not all of the deuterium in water is transferred to hydrogen gas, so the sensitivity for deuterium determination is theoretically lower than that of the reduction method. It has the disadvantage of being inferior (Ibid., pp. 472-474,
Japan Society for Analytical Chemistry, Hokkaido Branch, 1979 Summer Research Presentation, B-12 Odate, Takaran, Sawara, July 1979). Therefore, it has been extremely difficult to connect these water reduction methods or equilibrium methods to the deuterium quantitative analyzer for continuous analysis.

本発明者らは、以上に述べたような従来法の欠点を克服
すべく短時間かつ簡単な操作で、任意の濃度の重水微量
試料を分析でき、また長時間に亘り繰り返し分析できる
重水分析法を開発する研究を鋭意重ねた結果 1 重水試料を、反応および搬送用水素ガスに担持させ
、水−水素あるいは水蒸気−水素量同位体交換触媒に接
触させて交換反応を行なわせ、次いで該反応ガスを吸着
剤に通じた後重水素検出装置を通過させることを特徴と
する重水の定量分析法、および 2(イ)高純度水素ガス定量供給装置 (ロ)試料気化室 (ハ)水−水素あるいは水蒸気−水素量同位体交換触媒
を充填したHD発生管 (ニ)吸着剤を充填した分離カラム (ホ)重水素検出装置をその順序に連結した重水の定量
分析装置、 〜 を完成、提供するに至った。
In order to overcome the drawbacks of the conventional methods described above, the present inventors have developed a heavy water analysis method that can analyze a trace amount of heavy water at any concentration in a short time and with simple operations, and that can be repeatedly analyzed over a long period of time. As a result of extensive research to develop A method for quantitative analysis of heavy water characterized by passing through an adsorbent and then passing through a deuterium detection device, and 2. (a) High-purity hydrogen gas quantitative supply device (b) Sample vaporization chamber (c) Water-hydrogen or To complete and provide a quantitative analysis device for heavy water, consisting of: (d) a separation column filled with an adsorbent; and (e) a deuterium detection device connected in that order. It's arrived.

本発明方法によれば、長くとも5分という短時間で天然
水を含む任意の濃度の重水を分析することが可能であり
操作としては従来のと異なり、マイクロ シリンジで 
0.1〜10μl好ましくは0.5〜5μlの微量試料
水を一定量注入するのみであり、この操作を長時間繰り
返すことができる。
According to the method of the present invention, it is possible to analyze heavy water of any concentration, including natural water, in a short time of 5 minutes at most, and unlike conventional methods, it can be performed using a micro syringe.
Only a fixed amount of 0.1 to 10 μl, preferably 0.5 to 5 μl, of a trace amount of sample water is injected, and this operation can be repeated for a long time.

との方法は、触媒を用いる点では、平衡法と類似である
が、平衡法では、分析系とは別の閉じた反応系を用いる
のに対し、本発明方法では流通型の反応系を用いる点で
基本的に異なる。
The method is similar to the equilibrium method in that it uses a catalyst, but the equilibrium method uses a closed reaction system separate from the analysis system, whereas the method of the present invention uses a flow-through reaction system. Basically different in this respect.

即ち、平衡法によるときけ、水−水素間の同位体平衡に
より完全に水中のDttHDとすることは不可能である
が、本発明方法によるときは、水素ガスを反応用および
搬送用ガスとして兼用するので、反応により生じたHD
は速やかに反応系から除かれるため反応は完全に進行し
、実質的に試料中のDは全てHDK転換できる。また反
応装置と重水素分析装置を直結するので迅速な分析を行
うことができ、更に高純度の水素ガスを使用すればt純
物の混入を極力避けられる本発明の流通型および直結型
の特徴を生して重水素検出装置例えば熱伝導度検出器に
おいて熱伝導度検出セルの電流を最高に近φ値まで流す
ことが可能となって、最高の感度を得ることができ、天
然レベルに近い低濃度重水の定量が可能となった。
That is, when using the equilibrium method, it is impossible to obtain DttHD completely in water due to isotopic equilibrium between water and hydrogen, but when using the method of the present invention, hydrogen gas can be used both as a reaction gas and as a carrier gas. Therefore, the HD produced by the reaction
Since D is quickly removed from the reaction system, the reaction proceeds completely, and substantially all of the D in the sample can be converted to HDK. In addition, since the reactor and deuterium analyzer are directly connected, rapid analysis can be performed, and if high-purity hydrogen gas is used, contamination with pure substances can be avoided as much as possible. In a deuterium detection device such as a thermal conductivity detector, it becomes possible to flow the current in the thermal conductivity detection cell to a value close to the maximum φ value, thereby obtaining the highest sensitivity, which is close to the natural level. It has become possible to quantify low concentration heavy water.

この反応に使用出来る触媒は、公知の高活性な水−水素
あるいは水蒸気−水素量同位体交換反応触媒、例えば、
疎水性担体に白金、パラジウム等の貴金属を担持した触
媒(低温活性)、ニッケル・クロミア触媒、鉄系触媒等
(高温活性)があげられる。反応および搬送用水素ガス
は、触媒寿命、吸着剤を充填した分離カラムの寿命、重
水素検出−装置の寿命ならびに検出感度および精度の向
上を考慮するためにパラジウム膜などを通過させた超高
純度水素ガスを使用することが好ましい。搬送用水素ガ
ス中の試料は、触媒層に吸着さ朴過剰の水素ガスと反応
してHDとなり除かれ、未反応のHDOは触媒層中で引
続いて反応が進行し、完全にHDに転化するものと推定
される。
Catalysts that can be used in this reaction include known highly active water-hydrogen or water vapor-hydrogen isotope exchange reaction catalysts, such as
Examples include catalysts in which noble metals such as platinum and palladium are supported on hydrophobic carriers (low temperature active), nickel/chromia catalysts, iron-based catalysts (high temperature active), etc. The hydrogen gas for reaction and transport is ultra-high purity, passed through a palladium membrane, etc., in order to take into account the life of the catalyst, the life of the separation column packed with adsorbent, the life of the deuterium detection equipment, and the improvement of detection sensitivity and accuracy. Preferably, hydrogen gas is used. The sample in the hydrogen gas for transportation is adsorbed on the catalyst layer and reacts with excess hydrogen gas to become HD and removed, and unreacted HDO continues to react in the catalyst layer and is completely converted to HD. It is estimated that

本発明においては、これらの触媒を水−水素あるいは水
蒸気−水素量同位体交換触媒と称し、この充填層をHD
発生管と称する。
In the present invention, these catalysts are referred to as water-hydrogen or water vapor-hydrogen isotope exchange catalysts, and this packed bed is
It is called a generator tube.

この反応が終了したガスは、主として水及び水素の混合
ガスであり、更に試料中に含まれていた微量の酸素、窒
素、二酸化炭素その他のガスが含まれているが、これを
吸着剤、例えば活性炭、ゼオライト、モルデナイト、ア
ルミナ等好ましくは合成ゼオライト、5A、13X等の
層を通すと、水素、HDは実質的に通過するのに対し酸
素、窒素等はこれより遅れて流出し、水、二酸化炭素等
は吸着されてしまうことにより分離される。尚、吸着剤
は200〜300 ’Cに加熱して高純度水素を引続き
通すことによりハ→午れるので取りかえる必要はなく継
続して分析に使用できる。
The gas after this reaction is mainly a mixed gas of water and hydrogen, and also contains trace amounts of oxygen, nitrogen, carbon dioxide, and other gases contained in the sample. When passed through a layer of activated carbon, zeolite, mordenite, alumina, etc., preferably synthetic zeolite, 5A, 13X, etc., hydrogen and HD substantially pass through, while oxygen, nitrogen, etc. flow out later than this, and water, dioxide, etc. Carbon and the like are separated by being adsorbed. The adsorbent is heated to 200 to 300'C and continuously passed with high-purity hydrogen, so that it can be used for analysis continuously without having to be replaced.

重水素検出装置は超音波速度検出器、熱伝導度検出器等
があるが、入手し易く、操作が容易なものとして、熱伝
導度検出器が好ましい。
Although deuterium detection devices include ultrasonic velocity detectors and thermal conductivity detectors, thermal conductivity detectors are preferred because they are easily available and easy to operate.

以上の説明か−ら判る様に、ガスクロマトグラフ装置を
手なおしすれば、本発明の装置に改造出来る。
As can be seen from the above explanation, by modifying the gas chromatograph apparatus, it can be converted into the apparatus of the present invention.

次に図面に従って本発明を更に詳しくするためにその実
施態様を説明する。
Next, embodiments of the present invention will be described in more detail with reference to the drawings.

図面は1、本発明方法を実施するのに好適な本発明装置
の概略説明図であって、搬送用(もしくは展開用)と反
応用を兼ねた水素ガス供給?例えば水素ボンベ参より供
給される水素は減圧バルブ2を経て水素精製装置3に入
る。 この水素精製装置3内にはパラジウム又はパラジ
ウム合金で作られた隔膜があり、水素ガスはこれを透過
することにより超高純度ガスに精製される。精製された
水素ガスは、流量調節器4を経て、その大部分は重水試
料気化室5に送られ残りの水素ガスは重水素流量調節器
4は高純度水素ガス定量供給装置を構成する。
The drawings are 1. A schematic explanatory diagram of an apparatus of the present invention suitable for carrying out the method of the present invention, and is a hydrogen gas supply for both transportation (or development) and reaction. For example, hydrogen supplied from a hydrogen cylinder passes through a pressure reducing valve 2 and enters a hydrogen purification device 3. There is a diaphragm made of palladium or palladium alloy in this hydrogen purification device 3, and hydrogen gas is purified into ultra-high purity gas by passing through this diaphragm. The purified hydrogen gas passes through a flow rate regulator 4, most of which is sent to a heavy water sample vaporization chamber 5, and the remaining hydrogen gas is sent to a heavy hydrogen sample vaporization chamber 5. The deuterium flow rate regulator 4 constitutes a high-purity hydrogen gas quantitative supply device.

重水試料は一定量のマイクロシリンジ中にはかり取られ
重十試料注入口5′を経て、中横試料気化室5に注入さ
れ直ちに水蒸気となり、水素ガスに搬送されて、HD発
生管6に導入される。
A certain amount of the heavy water sample is weighed into a microsyringe, passed through the heavy sample inlet 5', and injected into the middle horizontal sample vaporization chamber 5, where it immediately becomes water vapor, which is then transported by hydrogen gas and introduced into the HD generation tube 6. Ru.

)ID発生管61Ii公知の高活性な水−水素あるいは
水蒸気−水素量交換触媒を充填したカラムであり、使用
触媒に適当な温度に保たれており、導入された水蒸気中
の重水は搬送用の水素ガスH2と反応して重水素化水素
HDとして分離カラム7に送られる。このカラムには吸
着剤が充填されており、0〜b 反応後のHDt/iこの方ラムを殆んど素通りして熱伝
導度検出器8の測定用導入口に送られるのに対し水蒸気
等は分離カラムに吸着されて流出しないし、また水試料
中に微量存在する酸素及び窒素等不一スtfHDより遅
れてカラムから流出する。
) ID generating tube 61Ii This is a column filled with a known highly active water-hydrogen or water vapor-hydrogen amount exchange catalyst, and is maintained at an appropriate temperature for the catalyst used, and the heavy water in the introduced water vapor is used for transportation. It reacts with hydrogen gas H2 and is sent to the separation column 7 as deuterated hydrogen HD. This column is filled with an adsorbent, and the HDt/i after the 0 to b reaction almost passes through the column and is sent to the measurement inlet of the thermal conductivity detector 8, whereas water vapor, etc. It is adsorbed by the separation column and does not flow out, and the trace amounts of oxygen and nitrogen present in the water sample flow out of the column later than the tfHD.

その結果、重水試料中のD&′iHDとして最初にカラ
ムから流出し検出される。
As a result, it first flows out of the column and is detected as D&'iHD in the heavy water sample.

管に充満している空気を不活性ガス、例えばヘリウム好
ましくは窒素で十分置換することが好しい。
Preferably, the air filling the tube is sufficiently replaced with an inert gas, such as helium, preferably nitrogen.

即ち、このHD発生に使用される低温活性触媒は酸水素
反応に対しても高活性であり、室温においてすら反応を
促進するので空気が充満したHD発生管に水素ガスを導
入すると、酸水素反応がはげしく起り、水を生成すると
同時に局部的に多量の熱を発生し触媒の燃焼、焼結等を
誘発し、再賦活は出来るとしても触媒活性に対し損傷を
与える結果となる。同様の現象は分析終了後、搬送用水
素がある。 図面の不活性ガス供給源9およびその導管
はこの目的に使用されるものである。
In other words, the low-temperature active catalyst used for HD generation is highly active for oxyhydrogen reactions and promotes the reaction even at room temperature, so when hydrogen gas is introduced into an air-filled HD generation tube, oxyhydrogen reactions occur. This occurs rapidly, producing water and at the same time locally generating a large amount of heat, inducing combustion and sintering of the catalyst, and even if reactivation is possible, the result is damage to the catalyst activity. A similar phenomenon occurs when hydrogen is used for transportation after analysis is completed. The inert gas supply source 9 and its conduit shown in the drawings are used for this purpose.

量、HD発生管の寸法と温度により影響され、また試料
の急激な気化は圧力を高めこれが熱伝導塵ト 検出セルに伝わり、ゴースジピークとして検出されるが
、上記の諸因子を含むガスクロマトグラフの特性を調整
することにより、天然水に近い重水の分析でもゴースト
ビークの発生をみない分析条件を得ることができる。
The rapid vaporization of the sample increases the pressure, which is transmitted to the heat conduction dust detection cell and detected as a ghost peak, but the characteristics of the gas chromatograph, including the above factors, are affected by By adjusting , it is possible to obtain analytical conditions that do not cause ghost beaks even when analyzing heavy water that is similar to natural water.

lOモル係以上の重水素を含む高濃度重水試料と水素ガ
スとの交換反応では、重水素化水素HDされない。HD
とD2では、熱伝導度が異なるが、水蒸気−水素量反応
平衡における、HD、 D2およびH2の組成は、一定
の反応条件下では重水試料中の重水濃度により一義的に
決まるのでHD + D2−2混合ガスの平均熱漬導度
とH2のとの差によってゝ9でノ 生ずるこの混合ガスのガスクロマトグラムのピーク高さ
あるいは面積は重水濃度と1:1の対応を持つからであ
る。(前記 大館、高欄、佐原の文献参照のこと)。ま
た必要であれば、高濃度重水試料を通常水で10〜1モ
ルチに希釈して本分析法により分析すれば希釈率を考慮
して元の重水濃度を算出できる。
In the exchange reaction between a highly concentrated heavy water sample containing deuterium of 1O molar coefficient or more and hydrogen gas, deuterated hydrogen HD is not generated. HD
and D2 have different thermal conductivities, but the compositions of HD, D2, and H2 in the water vapor-hydrogen amount reaction equilibrium are uniquely determined by the heavy water concentration in the heavy water sample under certain reaction conditions, so HD + D2- This is because the peak height or area of the gas chromatogram of this mixed gas produced in step 9 due to the difference between the average heating conductivity of the two mixed gases and that of H2 has a 1:1 correspondence with the heavy water concentration. (See the above-mentioned literature by Odate, Takanan, and Sahara). Furthermore, if necessary, if a highly concentrated heavy water sample is diluted to 10 to 1 molar with normal water and analyzed by this analytical method, the original heavy water concentration can be calculated taking into account the dilution rate.

実施例 1 図面において、反応および搬送用水素ガス供給源1とし
て市販の純度999チの水素ボンベを水素精製装置3と
して400℃に加熱したパラジウム合金膜をもつ透過装
置を、HD発生管6としてあらかじめ白金を2チ担持し
た粒度60〜80メツシユのスチレン・ジビニルベンゼ
ン共重合体ビーズを充填した内径3M、長さ30ffl
l+のステンレス管を、分離カラム7に吸着剤としてあ
らかじめ活性化した粒度60〜80メツシユのモレキュ
ラーシープ5Aを充填した内径31!I11.長さ2朝
のスしては熱伝導度検出器を用い110Ωの白金抵抗線
をフィラメントとして140mAの電流を流し検出セル
を110℃に保った。反応および搬送用その結果256
 mVの感度を持つ記録計に高さ9111111、溶出
時間・0.7分のシャープなHDピークが検出された。
Example 1 In the drawings, a commercially available hydrogen cylinder with a purity of 999° C. is used as a hydrogen gas supply source 1 for reaction and transportation, and a permeation device with a palladium alloy membrane heated to 400° C. is used as a hydrogen purification device 3, and a permeation device with a palladium alloy membrane heated to 400° C. is used as an HD generation tube 6 in advance. Filled with styrene-divinylbenzene copolymer beads with a particle size of 60 to 80 mesh carrying two platinum particles, inner diameter 3M and length 30ffl.
A stainless steel tube with an inner diameter of 31 mm was filled with Molecular Sheep 5A having a particle size of 60 to 80 mesh, which had been activated in advance as an adsorbent, in the separation column 7! I11. After a two-day period, a thermal conductivity detector was used, and a current of 140 mA was applied using a 110 Ω platinum resistance wire as a filament to maintain the detection cell at 110°C. Reaction and delivery results 256
A sharp HD peak with a height of 9111111 and an elution time of 0.7 minutes was detected by a recorder with mV sensitivity.

実施例 2 実施例1と同一条件下で重水素濃度10%、25チ、5
0q6.75q6.99.8チの重水試料を2μEづつ
各5回注入した。夫々のピーク高さの平均値は、19.
Qllllll、48.5tllll+、97.611
111.147■、195■であり、極めて直線性力(
よいこと力(わかる。
Example 2 Under the same conditions as Example 1, deuterium concentration 10%, 25%, 5%
Heavy water samples of 0q6.75q6.99.8ch were injected five times at 2 μE each. The average value of each peak height is 19.
Qllllll, 48.5tllll+, 97.611
111.147■, 195■, extremely linear force (
Good things have power (I understand.

実施例 3 実施例2と同一条件で重水索漠7j(t49.96pp
m、159.97ppm、170.O7ppm、179
.27ppm(いずれもエフセス濃度)の重水試料を夫
々の濃度につき各10回測定したところ、表1の結果を
得た。これから約5チ以下の測定精度で自然水レベルの
重水を分析できること力(′わ力する。
Example 3 Heavy water desert 7j (t49.96pp
m, 159.97ppm, 170. O7ppm, 179
.. The results shown in Table 1 were obtained when heavy water samples of 27 ppm (all FCEs concentrations) were measured 10 times for each concentration. From now on, it will be possible to analyze heavy water at the level of natural water with a measurement accuracy of about 5 inches or less.

表1 実施例 4゜ 以下の条件を除き実施例1と同一である。Rpち試料気
化室5の温度を180℃とし、HD発生管6は酸化鉄(
Fe2O,)  90 %’Ja上が主成分で外にアル
ミニウム、チタン、カルシウム、lイ素、カリ、銅など
の混合酸化物力Sらなる鉄鉱石を60〜100メツシユ
に粉砕して、石英管(内径3−長さ50■)に充てんし
たものであり、これにあらかじめ反応および搬送用水素
を供給しな力(ら反応温度を920℃まで上昇させ、ま
た分離カラム7の温度を25℃に保った。熱伝導度検出
器8のフィラメントには100Ωのタンク°ステンーレ
ニウム抵抗線を用いこれに200 mAの電流を流し検
出セル温度を110°Cに保った。
Table 1 Example Same as Example 1 except for the conditions of 4° or less. The temperature of the sample vaporization chamber 5 is 180°C, and the HD generation tube 6 is made of iron oxide (
Iron ore consisting mainly of 90% Ja and mixed oxides of aluminum, titanium, calcium, ion, potash, copper, etc. is crushed into 60 to 100 mesh pieces, and then crushed into a quartz tube ( The reaction temperature was raised to 920°C, and the temperature of the separation column 7 was maintained at 25°C. A 100 Ω tank sterenium resistance wire was used as the filament of the thermal conductivity detector 8, and a current of 200 mA was passed through it to maintain the detection cell temperature at 110°C.

に注入した。その結果512 mVの感度を持つ記録計
上に溶出時間0.5分の位置に高さ150mのシャープ
なHDピークが検出された。
injected into. As a result, a sharp HD peak with a height of 150 m was detected at a position with an elution time of 0.5 minutes on a recorder having a sensitivity of 512 mV.

実施例 5 実施例4と同一条件で重水濃度0.5%、1%、2チ、
10俤の重水試料各1μlを5回繰り返えし注入した。
Example 5 Under the same conditions as Example 4, heavy water concentrations were 0.5%, 1%, 2%,
1 μl of each of the 10 heavy water samples was injected five times.

その夫々の平均ピーク高さの面積カウント数は11.7
92.22,836.44,960.222.365で
あった。重水濃度とピーク面積とはよい直線性を示して
いる。
The area count number of each average peak height is 11.7
It was 92.22, 836.44, 960.222.365. The heavy water concentration and peak area show good linearity.

実施例 6 実力例fよ。−9件T7カあえおよ。。わ。Example 6 Example of ability f. -9 cases T7 Kaaeyoyo. . circle.

水を加えて99,249,498ppm、(エフセス濃
度)に調整した試料各1μlを5回繰り返し注入した。
1 μl of each sample, which was adjusted to 99,249,498 ppm (Fcess concentration) by adding water, was repeatedly injected five times.

 その夫々の平均ピーク高さは7o、4.121.6.
201.2,322.4 /jVであった。
Their respective average peak heights are 7o, 4.121.6.
It was 201.2,322.4/jV.

実施例 7゜ HD発生管6として、Ni−Cr (重量比4:1)を
14チ担持した粒度60〜8oメツシユのスチレン・ジ
ビニルベンゼン共重合体ビーズを充填した内径3fil
+長さ100Mのステンレス管を用い、反応温度を15
0℃に保ち、その他の条件を実施例1と同じ条件にして
重水素濃度1チの重水試料を0.5 lit 、 1.
0 μ42.OIl!、 5 μ/、10 Ill夫々
5回注入したところ、その夫々のピーク面積の平均値は
、1.17X10  、’2.116X10’、3.3
52X10 .5.108XlO,9,406X10 
(単位は全てカウント)であった。
Example 7 As the HD generating tube 6, an inner diameter 3fil filled with styrene-divinylbenzene copolymer beads with a particle size of 60 to 8o mesh carrying 14 pieces of Ni-Cr (weight ratio 4:1) was used.
+ Using a stainless steel tube with a length of 100M, the reaction temperature was set to 15
0.5 liter of a heavy water sample with a deuterium concentration of 1 liter was maintained at 0° C. and the other conditions were the same as in Example 1.
0 μ42. OIl! , 5 μ/, 10 Ill was injected 5 times each, and the average values of the respective peak areas were 1.17X10, '2.116X10', and 3.3
52X10. 5.108XlO, 9,406X10
(All units are counts).

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法を実施するのに好適な本発明3・・・
水素精製装置、 5・・・試料気化室、 5′・・・試料注入口、 6・・・HD発生管、 7・・・分離カラム、 訃・・重水素検出装置、 9・・・不活性ガス供給源。 代理人 弁理士菊地精− 第1頁の続き 0発 明 者 野口宏史 東京都中央区銀座四丁目2番11 号光興業株式会社内 ■出 願 人 光興業株式会社 東京都中央区銀座四丁目2番11 号 [有]代 理 人 弁理士 菊地精−
The drawings show the present invention 3... suitable for carrying out the method of the present invention.
Hydrogen purification device, 5... Sample vaporization chamber, 5'... Sample inlet, 6... HD generation tube, 7... Separation column, Death... Deuterium detection device, 9... Inert Gas supply source. Agent: Sei Kikuchi, Patent Attorney - Continued from page 1 0 Inventor: Hiroshi Noguchi, Kou Kogyo Co., Ltd., 4-2-11 Ginza, Chuo-ku, Tokyo Applicant: Kou Kogyo Co., Ltd., 4-2 Ginza, Chuo-ku, Tokyo No. 11 Representative Patent Attorney Sei Kikuchi

Claims (2)

【特許請求の範囲】[Claims] (1)重水試料を、反応および搬送用水素ガスに担持さ
せ、水−水素あるーは水蒸気−水素量同位体交換触媒に
接触させて交換反応を行なわせ、次いで該反応ガスを吸
着剤に通じた後重水素検出装置を通過させることを特徴
とする重水の定量分析法。
(1) A heavy water sample is supported on hydrogen gas for reaction and transportation, and is brought into contact with a water-hydrogen or water vapor-hydrogen isotope exchange catalyst to perform an exchange reaction, and then the reaction gas is passed through an adsorbent. A quantitative analysis method for heavy water, which is characterized by passing it through a deuterium detection device.
(2)(イ)高純度水素ガス定量供給装置(ロ)試料気
化室 (ハ)水−水素、あるいは水蒸気−水素量同位体交換触
媒を充填したHD発生管 に)吸着剤を充填した分離カラム、 (ホ)重水素検出装置 をその順序に連結した重水の定量分析装置。
(2) (a) High-purity hydrogen gas quantitative supply device (b) Sample vaporization chamber (c) Water-hydrogen or water vapor-hydrogen amount HD generation tube filled with isotope exchange catalyst) Separation column filled with adsorbent (e) A heavy water quantitative analysis device in which deuterium detection devices are connected in that order.
JP12600881A 1981-08-13 1981-08-13 Method and apparatus for quantitative analysis of heavy water Granted JPS5828662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12600881A JPS5828662A (en) 1981-08-13 1981-08-13 Method and apparatus for quantitative analysis of heavy water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12600881A JPS5828662A (en) 1981-08-13 1981-08-13 Method and apparatus for quantitative analysis of heavy water

Publications (2)

Publication Number Publication Date
JPS5828662A true JPS5828662A (en) 1983-02-19
JPH0254510B2 JPH0254510B2 (en) 1990-11-21

Family

ID=14924437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12600881A Granted JPS5828662A (en) 1981-08-13 1981-08-13 Method and apparatus for quantitative analysis of heavy water

Country Status (1)

Country Link
JP (1) JPS5828662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180458A (en) * 1983-03-31 1984-10-13 Rikagaku Kenkyusho Quantitative analysis of deuterium in water
JPS59224561A (en) * 1983-06-03 1984-12-17 Agency Of Ind Science & Technol Method and device for quantitative analysis of deuterated compound
US7985597B2 (en) 2002-04-16 2011-07-26 Universitat Bern Process and apparatus for providing a gaseous substance for the analysis of chemical elements or compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127846A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Apparatus for measuring concentration and chemical composition of hydrogen isotope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127846A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Apparatus for measuring concentration and chemical composition of hydrogen isotope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180458A (en) * 1983-03-31 1984-10-13 Rikagaku Kenkyusho Quantitative analysis of deuterium in water
JPS59224561A (en) * 1983-06-03 1984-12-17 Agency Of Ind Science & Technol Method and device for quantitative analysis of deuterated compound
US7985597B2 (en) 2002-04-16 2011-07-26 Universitat Bern Process and apparatus for providing a gaseous substance for the analysis of chemical elements or compounds

Also Published As

Publication number Publication date
JPH0254510B2 (en) 1990-11-21

Similar Documents

Publication Publication Date Title
Chabot et al. Fuel clean-up system: poisoning of palladium-silver membranes by gaseous impurities
JP2912697B2 (en) Isotope composition analysis method and apparatus
EP0052988A1 (en) Analytical method for the determination of nitrogen, carbon, hydrogen and sulfur or chlorine and apparatus therefor
Clark et al. Current methodology for oxygen-15 production for clinical use
Sugiyama et al. Present status of hydrogen isotope separation by CECE process at the NIFS
Yasumori et al. The sensitive gas chromatography of para-, orthohydrogen, hydrogen deuteride and deuterium
US20100310419A1 (en) Method for supplying gas mixtures for an analyzer
JPS5828662A (en) Method and apparatus for quantitative analysis of heavy water
JPH047248B2 (en)
Uda et al. Developments of gaseous water, hydrogen and methane sampling system for environmental tritium monitoring
Orning et al. Oxygen Transfer Between Carbon Dioxide and Carbon Monoxide in the Presence of Carbon
JPS6217196B2 (en)
Suzuki et al. Specific activity of [11C] CO2 generated in a N2 gas target: effect of irradiation dose, irradiation history, oxygen content and beam energy
Loader et al. Rapid catalytic oxidation of CO to CO2–On the development of a new approach to on‐line oxygen isotope analysis of organic matter
Lei et al. Experimental verification of hydrogen isotope enrichment process by dual-column pressure swing and temperature swing adsorption
US3849539A (en) Method of oxygen detection and removal
CN114216952B (en) Method for measuring tritium content in air
CA2427299A1 (en) A method for measuring the concentration of nitrogen in argon by means of ion mobility spectrometry
JPS59224561A (en) Method and device for quantitative analysis of deuterated compound
Mehta et al. On the possible magnetic field dependence of the nickel carbonylation rate
Kudo et al. Preparation of pure tritium for a liquid D2/T2 target of muon-catalyzed fusion experiments
Inoue et al. Performances of an atmospheric tritium sampler and its application
JP2009198350A (en) Method for analyzing carbon dioxide in ammonia-containing gas
Miller et al. Experimental demonstration of the HITEX process for fusion fuel clean-up
Borgognoni et al. Processing test of an upgraded mechanical design for PERMCAT reactor