JPS5827753A - Purification of yellow pigment from "kuchinashi" (japanese jasmine) - Google Patents

Purification of yellow pigment from "kuchinashi" (japanese jasmine)

Info

Publication number
JPS5827753A
JPS5827753A JP12549181A JP12549181A JPS5827753A JP S5827753 A JPS5827753 A JP S5827753A JP 12549181 A JP12549181 A JP 12549181A JP 12549181 A JP12549181 A JP 12549181A JP S5827753 A JPS5827753 A JP S5827753A
Authority
JP
Japan
Prior art keywords
yellow pigment
water
polyphenols
gardenia
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12549181A
Other languages
Japanese (ja)
Other versions
JPS6014044B2 (en
Inventor
Takashi Tomikanehara
冨金原 孝
Toshio Kashiwagi
柏木 敏夫
Takahisa Tezuka
手塚 隆久
Saburo Suzuki
三郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKAMITSU HONSHA KK
Seiko Chemical Co Ltd
Original Assignee
SHIKAMITSU HONSHA KK
Seiko Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIKAMITSU HONSHA KK, Seiko Chemical Co Ltd filed Critical SHIKAMITSU HONSHA KK
Priority to JP12549181A priority Critical patent/JPS6014044B2/en
Publication of JPS5827753A publication Critical patent/JPS5827753A/en
Publication of JPS6014044B2 publication Critical patent/JPS6014044B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

PURPOSE:A yellow pigment solution extracted from fruits of KUCHINASHI is passed through a nonpolar porous polymer resin to effect the adsorption of the pigment, then iridoid glycosides and polyphenols are removed to obtain the titled yellow pigment free from changing to green as well as in color tone. CONSTITUTION:Fruits of KUCHINASHI are extracted with water or an aqueous solvent and the resultant yellow pigment solution is passed through a column filled with a nonpolar porous polymer resin to effect the adsorption of the yellow pigment, then the column is washed with water. Then, an alcohol such as ethanol is passed through to elute iridoid glycoside for removal. Then, the eluate is concentrated to remove the alcohol and passed through a resin that adsorbs only polyphenols, such as polyamide resin, to effect the separation of the polyphenols, thus giving the objective yellow pigments (crosin, crosetin). EFFECT:The product is free from change to green and to dull tone. USE:Coloring of chinese noodles.

Description

【発明の詳細な説明】 本開明は、クチナシ果実から水または水溶性の溶剤を介
して抽出した貞色色素溶液がら、#変させる物質及びく
すんだ色に色変化させる物質の何れか一方、若しくは両
番を除去し、以って、極めて曳好なるクチナシ黄色色素
を得ることが許容化されるように成し九ことを特徴とす
るクチナシ黄色色素の精製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a solution of a dark colored pigment extracted from a gardenia fruit through water or a water-soluble solvent, either of a substance that changes the color or a substance that changes the color to a dull color, or The present invention relates to a method for purifying a gardenia yellow pigment, which is characterized in that it is possible to remove both pigments and thereby obtain a gardenia yellow pigment with extremely good attractability.

クチナシ果実から得られる黄色色素は、日本、台湾、米
国等多くの国々で食品分野の色素として広く利用されて
おり、我国に於ては特に中華めんの着色用として盛んに
使用されている。
Yellow pigments obtained from gardenia fruits are widely used as pigments in the food field in many countries such as Japan, Taiwan, and the United States, and in Japan, they are especially used actively for coloring Chinese noodles.

処で、該色素を用いた中華めんがしばしば緑変すること
があり、この原因について追求が行なわれた結果、例え
ば特公昭52−13971号公報等に示されている如く
、その原因物質はイリドイド配糖体(ゼエボサイド1で
あることが現在確I&gされている。
However, Chinese noodles using this dye often turn green, and as a result of investigating the cause of this, the causative agent was found to be an iridoid complex, as shown in Japanese Patent Publication No. 13971/1983. It is currently confirmed to be a glycoside (zeeboside 1).

一方1発明者らは、緑変の原因がクチナシ果実の新鮮度
にも影響されるのではないかと推測し、次のよっな実績
を行なった。
On the other hand, the inventors speculated that the cause of greening may be influenced by the freshness of the gardenia fruit, and performed the following results.

まず、収穫されたばかりの新鮮なりチナシ果與と、年を
越して夏を過ぎ念前年贋の古いクチナシ果実とを用い、
それぞれ同様の方法で黄色色素を製造し、これらを用い
た二連りのめんを作って七の緑変試験を行なった処、新
鮮なりチナシ果実のものは緑、変を起さないが%占いク
チナシ果実のものは緑変を起すことが確認された元来、
クテナ7の黄色色素は混合物であり、これの吸収曲線を
見ると−233n+n  に最大吸収をもつイリドイド
配糖体(ゼニボサイド)、325nmに最大吸収をもつ
ポリフェノール(クロロゲン酸)、および440nl1
1に最大吸収をもつ黄色色素物質(クロシン、クロセチ
ン)の三つの成分からなっていることが判明する。 上
述した実験に使用した両色素液の吸収曲線をとり、上記
の三成分の各変化を調べなところ、クロジノ、クロセチ
ンの含度KIi的変化がみられ。
First, we use fresh gardenia fruits that have just been harvested and old gardenia fruits that have passed through the summer and have been faked the year before.
We produced yellow pigments using the same method for each, made two sets of noodles using these, and conducted the seven green discoloration tests. It was originally confirmed that gardenia fruits cause green discoloration.
The yellow pigment of Ktena 7 is a mixture, and its absorption curve shows that it contains an iridoid glycoside (zeniboside) that has a maximum absorption at -233n+n, a polyphenol (chlorogenic acid) that has a maximum absorption at 325nm, and 440nl1.
It turns out that it consists of three components: a yellow pigment substance (crocin, crocetin) that has maximum absorption at 1. When the absorption curves of both dye solutions used in the above-mentioned experiment were taken and changes in each of the three components mentioned above were examined, changes in the contents of clodino and crocetin were found to be similar to KIi.

古いクチナシのものはこの成分が半分以下に減少してい
ることが知れ、他の二つの成分には臘的変化が起ってい
ないことが知れ九。 この結果から、めんを緑変させる
原因はイリドイド配糖体にあり(黄色色素物質であるク
ロシン、クロセチンの減少に依りイリドイド配糖体の相
対的増化に&き緑変が生じ九ことは上記実験により明ら
かである$ J −t&−<すんだ色にするクロロゲ/
11!もめんの変色の原因となるように推gされる。 
そこで、イリドイド配糖体やりc1clゲン酸を除去す
る方法について以下のような試験研究を行ない、この結
果に轟き本発明を完成させたものである。
It is known that this component has been reduced to less than half in old gardenias, and no significant changes have occurred in the other two components. From this result, the cause of the green discoloration of noodles is iridoid glycosides (due to a decrease in crocin and crocetin, which are yellow pigment substances, a relative increase in iridoid glycosides & green discoloration occurs, which is explained above). Experiments have shown that $ J -t&-
11! It is believed to cause discoloration of noodles.
Therefore, we conducted the following experimental research on a method for removing iridoid glycosides and c1clgenic acid, and based on these results, we completed the present invention.

クチナシ黄色色素を、無極性にして多孔性の重合体樹脂
(三菱化成製、ダイヤイオンHP−203と、ポリフェ
ノールだけを吸着するボリアきド樹脂(和光純華製%0
−200)を用い、カラムクcI′vトゲラフイーによ
って三区分、即ち、 238fltu  K最大吸収を
有するイリドイド配糖体区分−325nm  K最大吸
収を有するクロロゲン酸区分、および44υnm  K
最大吸収を有するクロシン、クロ七テン区分の三区分に
分け、それぞれを用いて以ドのように中華めんの緑変1
ストを行なった。 但、中華めんには通常「かん水」を
用いているが1本試験に2いては非アルカリ化のために
緑変に要する一時間の短縮化と反応の敏感化を図るため
に「かん水」不添加の中華めんを使用して以下のような
試験を行なった。
Gardenia yellow pigment is made into non-polar and porous polymer resin (manufactured by Mitsubishi Kasei, Diaion HP-203) and boriacid resin (manufactured by Wako Junka, %0) which adsorbs only polyphenols.
-200), and three divisions according to column cI'v togelahui: iridoid glycoside division with 238fltu K maximum absorption, chlorogenic acid division with 325nm K maximum absorption, and 44υnm K
It is divided into three categories, crocin and crocodile, which have the highest absorption, and each is used to investigate the green discoloration of Chinese noodles as shown below.
went on strike. However, although ``kansui'' is usually used for Chinese noodles, in one test, ``kansui'' was not added in order to shorten the time required for greening due to non-alkalinization and to make the reaction more sensitive. The following tests were conducted using Chinese noodles.

使用中華めんの原料配分は、小麦70チ、水30参で、
上記の三区分の色素の使用板をそれぞれOD[[で2.
t)/gとし、これを加えて充分に練りあげ、37′O
の恒温槽に24時間放置し九のちの変色状−を試験した
The raw materials for the Chinese noodles used are 70 g of wheat and 30 g of water.
The plates using the above three categories of dyes were each OD[[2.
t)/g, add this and knead thoroughly to give 37'O
The sample was left in a constant temperature bath for 24 hours, and the discoloration after 9 hours was tested.

その結果、イリドイド配糖体区分は明らかに緑変し、ク
ロロゲン酸区分は緑変現象は起らないが黄色がくすんだ
黄色になり、クロシン、クロセチ7区分だけが全く変色
が起らないで鮮明な黄色を保ってい友。 なj? s色
差針で測定した結果は下記表−1に示す通りである。
As a result, the iridoid glycoside category clearly turned green, the chlorogenic acid category did not cause any green discoloration, but the yellow became dull yellow, and only the crocin and croceti 7 categories showed no discoloration at all. Stay yellow my friend. What? The results measured using the s color difference needle are shown in Table 1 below.

表−1 これに依り、イリドイド配糖体とポリフェノール(クロ
ロゲy 51 )が変色作用を奏することが確gされ1
本発明はこれらの物質を除去するように成したことを特
徴とするものである。
Table 1 Based on this, it was confirmed that iridoid glycosides and polyphenols (chlorogee 51) have a color-changing effect1.
The present invention is characterized in that these substances are removed.

以下1本発明の具体的実施例を詳述する。A specific embodiment of the present invention will be described in detail below.

実施例1 色価3300 、 238rLm(イリドイド配糖体]
/44αnIn(クロシン、クロセチン)の比が1.5
9 のクチナシ抽出液60gをとり、これを約三倍にう
すめると共に一バイア0スーパーセルでろ過し、七のろ
過液をダイヤイオンHp −20を50g充填したカラ
AL3X15aIL)を通すことに依りクチナシ抽出液
中の色素類を吸着させ、このカラムを100mノ の蒸
溜水で洗浄し友のち、15チ(w t )エタノール2
00 mJ を通してイリドイド配機体を溶出させてこ
れを取除き、然る後、95参(wt)エタノール200
 ml  で、クロシン、クロセチンとポリフェノール
の混合物を溶解して回収し、回収液を蒸溜してアルコー
ル分を取除くことに依り精製色素液50gを得な。
Example 1 Color value 3300, 238rLm (iridoid glycoside)
/44αnIn (crocin, crocetin) ratio is 1.5
Take 60g of the gardenia extract from step 9, dilute it to about three times its volume, filter it through a vial 0 super cell, and pass the filtrate from step 7 through Kara AL3X15aIL filled with 50g of Diamond Ion Hp-20 to extract gardenia. The dyes in the solution were adsorbed, the column was washed with 100 m of distilled water, and then 15 wt of ethanol was added.
00 mJ to remove the iridoid body, and then add 95 wt ethanol to 200 mJ.
ml, dissolve and collect a mixture of crocin, crocetin and polyphenols, and distill the collected liquid to remove the alcohol content to obtain 50 g of purified pigment liquid.

得られ九色素液の色価は3800で−238nm(イリ
ドイド配糖体)/440nm(クロシン、クロセチ/)
 の比は0.36  であり、この比の小さいもの程イ
リドイド配楯体が少ないことを意味し、従って、イリド
イド配糖体(238nm)  が除かれていることが分
る。 なお、クロシン、クロセチ/の回収率を計算する
と94.1参であった。 この結果を図示したものが第
2図(A)及び(B)である。
The color value of the nine dye liquid obtained is 3800, -238 nm (iridoid glycoside)/440 nm (crocin, croceti/)
The ratio is 0.36, meaning that the smaller the ratio, the less iridoid shields, and therefore, it can be seen that iridoid glycosides (238 nm) are removed. In addition, when the recovery rate of crocin and croceti was calculated, it was 94.1. This result is illustrated in FIGS. 2(A) and 2(B).

実施例2 実施例1において用い念ものと同じクチナシ抽出色素液
を60gとり、実施例1と同様な処理を施した後に、ポ
リアミド0−20([20g充填し九カラムを通すこと
に依り色素液中のポリフェノールだけを吸着させてこれ
を除き、残りの色素類を回収し九。 クロシン、クロセ
チンの回収率を計算すると88.71であつ友。
Example 2 60g of the same gardenia extract pigment solution as used in Example 1 was taken and treated in the same manner as in Example 1. Only the polyphenols inside were adsorbed and removed, and the remaining pigments were recovered.The recovery rate of crocin and crocetin was calculated to be 88.71.

この結果を図示したものが第1図(4)及び(B)であ
る。
This result is illustrated in FIGS. 1(4) and 1(B).

下記する二つの実施例は、実施例1および実施例2の方
法を組合せて、精製効果を高め北方法である。
The following two examples are the Northern method in which the methods of Example 1 and Example 2 are combined to enhance the purification effect.

実施例3 実施例IKjIPいて用いたものと同じクチナシ抽出色
素液に対し、tず実施例2の処理を行なうことに依り1
色素液中力1らポリフェノールだけを除い九色素液を得
る。 次に、該色素液を、実JIHF11の方法に従っ
てHP−20のカラムを通すと共に1611+(Wt)
エタノールでイリドイド配糖体を溶出除去し、然る後、
95チ(wtlエタノールで、クロシン、クロセチンを
溶解溶出して精製色素液を得九。
Example 3 The same gardenia extracted pigment solution used in Example IKjIP was treated as in Example 2 to obtain 1.
Remove only the polyphenols from the dye solution to obtain a dye solution. Next, the dye solution was passed through a HP-20 column according to the method of JIHF11, and 1611+ (Wt)
Iridoid glycosides were eluted and removed with ethanol, and then
Dissolve and elute crocin and crocetin with 95% wtl ethanol to obtain a purified pigment solution.

得られた精製色素液は、クロシン、クロセチンの回収率
がC−200によるものは88.7憾、HP−20によ
るものけ9’L5チであり一結局、通算すると881’
I(811Lゲ艷K 99.591: )となった、 
なお、この結果を図示し友ものtit第1図(A)乃至
lotである。
The resulting purified pigment solution had a recovery rate of crocin and crocetin of 88.7% using C-200 and 9'L5% using HP-20, resulting in a total recovery rate of 881%.
It became I (811L game K 99.591: ),
The results are illustrated in Figure 1 (A) to Lot.

実施例4 実施例Iにおいて用い念ものと同じクチナシ抽出色素液
に対し、まず、実施例1の7処理を行なうことに依り、
色素液中からイリドイド配糖体を除い友色素液を得る。
Example 4 First, the same gardenia extracted pigment liquid as used in Example I was subjected to the 7 treatments of Example 1.
Iridoid glycosides are removed from the pigment solution to obtain an ophthalmic pigment solution.

 この色素液から蒸#IKよってエタノールを除く、 
この液を用いて、実施例2に従ってC!−200のカラ
ムを通すことに依りポリフェノールを除いた色素精製液
を得念。 この方法に依るクロシン、クロセチ/の回収
率は、HP−20によるものは94.1 参%0−20
0によるものは87チであり、結局1通算すると821
(94,1チ×87鉤となった。 この結果を図示し友
ものは第2図(4)乃至(0)である。
Remove ethanol from this dye solution by steaming #IK.
Using this solution, C! according to Example 2! -200 column to remove polyphenols from the purified dye solution. The recovery rate of crocin and croceti/ by this method is 94.1% by HP-20.
The number due to 0 is 87chi, and in the end, the total is 821.
(The result was 94,1 inch x 87 hooks. This result is illustrated in Figure 2 (4) to (0).

本発明は、クチナシ来実より水または水浴性の溶剤で抽
出され九黄色色素物を原料とし、一つt九は二つの注貞
の異なった樹脂を用いて原料色素を精製する方法に係る
ものである。 即ち%uK、?)とする色素物が良質な
場合(例えば新鮮なりチナシ果実を用いた場合)は、H
P−20feけを用いることに上り緑変を起さない精製
色素が得られる。 しかし、原料とする色素物が良質で
ない場合(例えば古いクチナシ果夷を用い九場合>ri
、o−2uυの樹脂を約処理または後処堀として用いな
いと、緑変が生じない色素の精製結果は保障できないも
のである。
The present invention relates to a method for refining the raw pigment using a yellow pigment extracted from gardenia fruits with water or a water-bathable solvent as a raw material, and using two different types of resin. It is. That is, %uK,? ) is of good quality (for example, when fresh Chinese pear fruit is used), H
By using P-20fe, a purified pigment that does not cause green discoloration can be obtained. However, if the pigment material used as the raw material is not of good quality (for example, if old gardenia fruit is used)
, o-2 uυ resin is not used as a pretreatment or post-treatment layer, it is not possible to guarantee a purification result of a pigment that does not cause greening.

上記の関係を前記第1乃至第4実施例の結果を示す第1
図及び第2図により説明すれば次の通りである。
A first example showing the results of the first to fourth examples shows the above relationship.
The explanation will be as follows with reference to the drawings and FIG.

第2図(4)は原料のクチナシ色素液の吸収曲線を示し
、82図(B)は樹脂としてHP−20を用いて前記実
施例1の方法により精製して得られた色素の吸収曲線で
あり、第2図(4)においては238 flmに最大吸
収を示すイリドイド配機体が明らかに存在しているが、
同図(B) においては2381mのピークはみられな
い、 これは緑変の原因となるイリドイド配糖体か除去
されたことを示している。
Figure 2 (4) shows the absorption curve of the raw gardenia pigment liquid, and Figure 82 (B) shows the absorption curve of the pigment obtained by purification according to the method of Example 1 using HP-20 as the resin. In Fig. 2 (4), there is clearly an iridoid structure that exhibits maximum absorption at 238 flm.
In the same figure (B), the peak at 2381m is not seen, indicating that the iridoid glycosides that cause green discoloration have been removed.

@1図(4)は原料クチナシ色素液の吸収曲線を示し、
第1図(Blは樹脂としてC!−2OL)を用いて上記
実施例2の方法により精製して得られ九色素の吸収曲線
を示し、同図(AI K wいては325 nmに最大
吸収を示すクロロゲン酸のピークが明らかに確認される
が、同図(囲に2いてはこのピークが減少していること
が示されている。
@1 Figure (4) shows the absorption curve of the raw gardenia pigment liquid,
Figure 1 shows the absorption curves of nine dyes obtained by purification according to the method of Example 2 above using Bl (C!-2OL as resin); The peak of chlorogenic acid shown in Figure 2 is clearly confirmed, but the figure (box 2) shows that this peak has decreased.

この物質は先に説明し念ように緑変物質ではないが、ク
チナシ黄色色素(クロシン、クロセチ/)の鮮明な黄色
にくすみを与える物質である第1図(C1は前記割引番
諌が実施例3の方法により、まず0−200の樹脂で前
処理し、次にHP−20の樹脂で処理し九色素の吸収曲
線を示したものであり、一方、@1図(4)は原料色素
液、同図(B)は0−200のみに依る処理後の各吸収
曲線を示したものであり、従って、第1図(C)でわか
るように、23gn+n2よび325n+nで吸収を示
すイリドイド配抛体2よびクロロゲン酸が実施例3の方
法により除かれたことを如実に示している。
As explained earlier, this substance is not a greening substance, but it is a substance that gives dullness to the bright yellow color of gardenia yellow pigments (crocin, croceti/). By method 3, the absorption curves of nine dyes were pretreated with 0-200 resin and then treated with HP-20 resin. , the same figure (B) shows each absorption curve after the treatment based only on 0-200. Therefore, as can be seen in Fig. 1 (C), the iridoid array exhibits absorption at 23gn+n2 and 325n+n. This clearly shows that 2 and chlorogenic acid were removed by the method of Example 3.

第2図(C)は削記実漉例4の方法により、まずHP−
20の樹脂で前処理01次ttcc−200の樹脂で処
理し九色素の吸収曲線を示し念ものであり、一方%@2
図(4)は原料色素液、同図(BlriHP−20のみ
に依る処理後の各吸収面−を示し友ものであり、従って
、82図(Calでゎがるように238 flfflお
よび325  nmで吸収を示すイリドイド配糖体およ
びクロロゲン酸が実施例4の方法により除かれたことを
如夷に示している。
Figure 2 (C) shows the HP-
The absorption curves of 9 dyes pretreated with 0.1-order TTCC-200 resin are illustrated, while %@2
Figure (4) shows the raw dye solution, the same figure (each absorption surface after treatment using only BlriHP-20), and therefore Figure 82 (238 flffl and 325 nm as shown in Cal). It is clearly shown that iridoid glycosides and chlorogenic acids exhibiting absorption were removed by the method of Example 4.

以上詳述した本発明に依れば、緑変させる物質及びくず
んだ色に色変化させる物質の何れが一方%石しくは両者
を除去することに依り、極めてすぐれたクチナシ黄色色
素を提供することができるから、色素nI製方云として
その利用価値はとみに高い。
According to the present invention as detailed above, it is possible to provide an extremely excellent gardenia yellow pigment by removing one or both of the substances that cause greening and the substances that cause color change to dull color. Therefore, its utility value as a method for producing dye nI is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に依る色素精製作用の説明用
たる吸収曲線のグラフである。 特許出願人 株式会社鹿元本社 第i囚 第2図 tコ)−眺3を静*jl炉ひ明晩25B噛へME−痢一
4(C)
FIGS. 1 and 2 are graphs of absorption curves for explaining the dye purification effect according to the present invention. Patent Applicant: Kamoto Headquarters Co., Ltd. No. 1 Prisoner (Fig. 2) - View 3, quiet

Claims (1)

【特許請求の範囲】 (1)  クチナシ来実から水ま九は水溶性の溶剤を介
して抽出した黄色色素溶液を、無極性の多孔性1合体1
tJjlを通すことに依り黄色色素を吸着させ、該黄色
色素を水およびアルコールで分別溶出させることに依り
イリドイド配糖体を除去することを特徴とするクチナシ
黄色色素の精製法。 (2)  クチナシ果奥から水ま九は水溶性の溶剤を介
して抽出した黄色色素溶液を、ポリアミドのaI!ポリ
フェノールのみを吸着する樹脂を通すことに依り、該黄
色色素浴液中のポリフェノールを除去することを特徴と
するクチナシ黄色色素の精製法。 L33  クテナク果実から水または水溶性の溶剤を介
して抽出した黄色色素F1!液を、ポリアミドの即キポ
リフェノールのみを吸着する樹脂を通すことに依りポリ
フェノール除去の色素液を得、然る後、該色素液を無極
性の多孔性重合体樹脂を通すことに依り残存色素を吸着
させ1#吸層され九残存色素を水2よびアルコールで分
別溶出させることに依りイリドイド配糖体を除去するこ
とを特徴とする特許請求の軸囲第1項及び第2墳記載の
クチナシ黄色色素の精製法。 (4)  クチナシ来夷から水ま危は水浴性の溶剤を介
して抽出した黄色色素溶液を、無極性の多孔性重合体樹
脂を通すことに依り黄色色素を吸着させ、該黄色色素を
水およびアルコールで分別溶出させることに依りイリド
イド配硼体を除去した色素液を得、然る後、該色素液を
濃縮してアルコールを除去すると共に、ポリアミドの如
きポリフェノールのみを吸着する樹脂を通すことに依り
ポリフェノールを除去することを特徴とする特許請求の
4@8第1項及び第2項記載のクチナシ黄色色素の精製
法。
[Claims] (1) A yellow pigment solution extracted from the fruit of a gardenia using a water-soluble solvent is mixed into a non-polar porous one.
1. A method for purifying gardenia yellow pigment, which comprises adsorbing yellow pigment by passing it through tJjl, and removing iridoid glycosides by fractionally eluting the yellow pigment with water and alcohol. (2) From the depths of the gardenia fruit, water is extracted using a water-soluble solvent, and a yellow pigment solution is extracted from the polyamide aI! A method for purifying gardenia yellow pigment, which comprises removing polyphenols from the yellow pigment bath by passing it through a resin that adsorbs only polyphenols. L33 Yellow pigment F1 extracted from Kutenak fruit using water or a water-soluble solvent! A dye solution from which polyphenols are removed is obtained by passing the solution through a polyamide resin that adsorbs only polyphenols, and then the remaining dye is removed by passing the dye solution through a non-polar porous polymer resin. Gardenia yellow as described in the first and second claims, characterized in that the iridoid glycosides are removed by adsorbing the iridoid glycosides by adsorbing the adsorbed 9 remaining pigments with water 2 and alcohol. Pigment purification method. (4) For water-dangerous gardenias, a yellow pigment solution extracted through a water bathing solvent is passed through a non-polar porous polymer resin to adsorb the yellow pigment. A dye solution is obtained from which iridoid bodies are removed by fractional elution with alcohol, and then the dye solution is concentrated to remove alcohol and passed through a resin such as polyamide that only adsorbs polyphenols. The method for purifying gardenia yellow pigment according to claim 4 @ 8 items 1 and 2, characterized in that polyphenols are removed.
JP12549181A 1981-08-11 1981-08-11 Purification method of gardenia yellow pigment Expired JPS6014044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12549181A JPS6014044B2 (en) 1981-08-11 1981-08-11 Purification method of gardenia yellow pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12549181A JPS6014044B2 (en) 1981-08-11 1981-08-11 Purification method of gardenia yellow pigment

Publications (2)

Publication Number Publication Date
JPS5827753A true JPS5827753A (en) 1983-02-18
JPS6014044B2 JPS6014044B2 (en) 1985-04-11

Family

ID=14911407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12549181A Expired JPS6014044B2 (en) 1981-08-11 1981-08-11 Purification method of gardenia yellow pigment

Country Status (1)

Country Link
JP (1) JPS6014044B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804872A (en) * 1985-12-12 1989-02-14 Fanuc Ltd. Rotor of a built-in motor
CN102911518A (en) * 2012-11-09 2013-02-06 苏州衷中医药科技有限公司 Method for refining gardenia yellow pigment through solvent extraction
US8800381B2 (en) 2010-05-06 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Test apparatus for a threaded joint for oil country tubular goods
CN104945949A (en) * 2015-06-11 2015-09-30 孙新新 Method for extracting gardenia yellow pigment from cape jasmine
CN104962103A (en) * 2015-06-09 2015-10-07 孙新新 Method for extraction of gardenia yellow pigment from gardenia
JP2017049149A (en) * 2015-09-02 2017-03-09 理研ビタミン株式会社 Quantification method of crocetin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321385B (en) * 2011-09-14 2014-03-26 河南中大生物工程有限公司 Production method for gardenia yellow pigment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804872A (en) * 1985-12-12 1989-02-14 Fanuc Ltd. Rotor of a built-in motor
US8800381B2 (en) 2010-05-06 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Test apparatus for a threaded joint for oil country tubular goods
CN102911518A (en) * 2012-11-09 2013-02-06 苏州衷中医药科技有限公司 Method for refining gardenia yellow pigment through solvent extraction
CN104962103A (en) * 2015-06-09 2015-10-07 孙新新 Method for extraction of gardenia yellow pigment from gardenia
CN104945949A (en) * 2015-06-11 2015-09-30 孙新新 Method for extracting gardenia yellow pigment from cape jasmine
JP2017049149A (en) * 2015-09-02 2017-03-09 理研ビタミン株式会社 Quantification method of crocetin

Also Published As

Publication number Publication date
JPS6014044B2 (en) 1985-04-11

Similar Documents

Publication Publication Date Title
Piattelli et al. Pigments of centrospermae—II.: Distribution of betacyanins
GIUSTI et al. Radish anthocyanin extract as a natural red colorant for maraschino cherries
Gregory et al. Quantitative analysis of carotenoids and carotenoid esters in fruits by HPLC: red bell peppers
Williams et al. High-pressure liquid chromatographic separation of 3-glucosides, 3, 5-diglucosides, 3-(6-Op-coumaryl) glucosides and 3-(6-Op-coumarylglucoside)-5-glucosides of anthocyanidins
FULEKI et al. Quantitative methods for anthocyanins. 3. Purification of cranberry anthocyanins
Strauss et al. 3-oxo-α-ionol, vomifoliol and roseoside in Vitis vinifera fruit
JPS5827753A (en) Purification of yellow pigment from "kuchinashi" (japanese jasmine)
Goodwin Studies in carotenogenesis. 13. The carotenoids of the flower petals of Calendula officinalis
Richards Non-enzymic browning: the reaction between d-glucose and glycine in thedry'state
Dilli et al. Further studies of diethyldithiocarbamate complexes by high-performance liquid chromatography
DE2631695A1 (en) METHOD OF EXTRACTION OF MYCOTOXIN
Cattell et al. Separation of thearubigins on Sephadex LH-20
US4780417A (en) Rapid extraction, separation, and detection method for a separate analysis of free and total sulfites in foods by ion chromatography
CN115813829A (en) Preparation method and application of gardenia extract
CN112473181B (en) Method for removing odor of biological extract
CN108658827A (en) A kind of preparation method of proline crude product
Sadana Carotenoids of loquat (Eriobotrya japonica Lindl.)
JPS63270766A (en) Production of red anthocyanin pigment
CN108559305B (en) Fresh-cut Chinese yam yellow pigment with antioxidant activity and preparation method thereof
Lozovskaya et al. Recovery of anthocyanins from grape pomace extract (Pinot Noir) using magnetic particles based on poly (vinyl alcohol)
CN106905391B (en) Blueberry anthocyanin extraction, separation and purification method
Higuchi et al. Determination of epinephrine in the presence of degradation products
JP2019137818A (en) Red dye contained in passion fruit pericarp and method for producing the same
Kumada et al. Sephadex gel fractionation of humic acids
Banks et al. Phenolic glycosides and pterins from the Homoptera