JPS5827728B2 - electric car control device - Google Patents

electric car control device

Info

Publication number
JPS5827728B2
JPS5827728B2 JP52151650A JP15165077A JPS5827728B2 JP S5827728 B2 JPS5827728 B2 JP S5827728B2 JP 52151650 A JP52151650 A JP 52151650A JP 15165077 A JP15165077 A JP 15165077A JP S5827728 B2 JPS5827728 B2 JP S5827728B2
Authority
JP
Japan
Prior art keywords
parallel
series
control device
electric vehicle
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52151650A
Other languages
Japanese (ja)
Other versions
JPS5486116A (en
Inventor
澄夫 永淵
修三 岩国
緊一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP52151650A priority Critical patent/JPS5827728B2/en
Publication of JPS5486116A publication Critical patent/JPS5486116A/en
Publication of JPS5827728B2 publication Critical patent/JPS5827728B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)

Description

【発明の詳細な説明】 本発明は複数個の電動機を有する電気車の直並列あるい
は並直列渡りを改良した電気車制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric vehicle control device that improves the series-parallel or parallel-series connection of an electric vehicle having a plurality of electric motors.

複数個の電動機を有する電気車においては、電動時に電
動機2群の直並列側のをすることが多い。
In an electric vehicle having a plurality of electric motors, the series and parallel sides of two groups of electric motors are often operated during electric operation.

また複巻電動機を用いた電気車では回生ブレーキ中並直
列戻し制御し、回生ブレーキが有効に作用する速晩範囲
を広くするようにしているものも多い。
Furthermore, in many electric vehicles using compound-wound motors, parallel-series return control is performed during regenerative braking to widen the speed and night range in which regenerative braking is effective.

本発明の目的は直並列渡りあるいは並直列渡りのうち、
特に渡りの際の電機子電流の値が大きく変化する回生ブ
レーキ中の並直列渡りに適用して効果の太きい、電動時
の直並列渡りに適用してもよい電気車制御装置を提供す
るにある。
The purpose of the present invention is to select between series-parallel or parallel-series
To provide an electric vehicle control device which is particularly effective when applied to parallel-to-series crossing during regenerative braking, where the value of armature current changes greatly during crossing, and which can also be applied to series-to-parallel crossing during electric operation. be.

従来、複数個の複巻電動機を使用した回生ブレーキ付電
気車においては、複数個の電動機を2群に分け、回生ブ
レーキ中に2群の電動機を高速では並列に、低速では直
列に接続する。
Conventionally, in an electric vehicle with regenerative brakes using a plurality of compound motors, the plurality of motors are divided into two groups, and during regenerative braking, the two groups of motors are connected in parallel at high speeds and in series at low speeds.

この場合回生中に並列から直列に接続換えを行なうに際
して、起動時に用いる起動抵抗器を流用することがよく
行なわれている。
In this case, when changing the connection from parallel to series during regeneration, it is common practice to reuse the starting resistor used at starting.

上記2群の電動機を並列から直列に切換える操作として
は、先ず並列状態の終期において2群の電動機回路Iこ
並列に抵抗器を接続し、しかる後2群の電動機回路と前
記抵抗器を直列接続し、続いて抵抗器を順次短絡して行
く。
To switch the above two groups of motors from parallel to series, first, at the end of the parallel state, a resistor is connected in parallel to the motor circuit I of the second group, and then the motor circuit of the second group and the resistor are connected in series. Then, short-circuit the resistors one after another.

この場合並直列切換えの前後における回生ブレーキ力に
殆んど差を生じないようにすることが望ましく、そのた
めには並列から直列へ切換える前後で、電機子電流が殆
んど変化しないような抵抗値に調整された後に、並列回
路を構成していた接触器を開放してやればよい。
In this case, it is desirable to have almost no difference in regenerative braking force before and after switching from parallel to series, and to do so, the resistance value must be such that the armature current hardly changes before and after switching from parallel to series. After the adjustment has been made, the contactors forming the parallel circuit can be opened.

このため既に、この渡りの円滑な制御のために、指令ブ
レーキ力の大小によって抵抗器が若干短絡されてから並
列回路を構成していた接触器を開放するようにした装置
や、電機子電流と抵抗器に流れる電流が等しくなったと
き開放するようにした装置などが提案されている。
For this reason, in order to smoothly control this crossing, devices have already been developed in which the resistor is slightly shorted depending on the magnitude of the commanded brake force, and then the contactor forming the parallel circuit is opened, and the armature current is Devices have been proposed that open when the currents flowing through the resistors become equal.

しかし回生ブレーキは、つねに指令ブレーキ力に等しい
回生ブレーキ力が作用するといえず、特に架線K ll
r、が高くなると回生ブレーキ力が制限され、空気ブレ
ーキを付加するようにした装置では、指令ブレーキ力(
こよって並列四路構成用接触器の開放時期を制降口した
のでは充分といえない。
However, with regenerative braking, it cannot be said that the regenerative braking force that is equal to the commanded braking force always acts.
As r becomes higher, the regenerative braking force is limited, and in devices that add air brakes, the commanded braking force (
Therefore, it cannot be said that it is sufficient to control the opening timing of the contactor for parallel four-way configuration.

また電機子電流と抵抗器に流れる電流か等しくなったと
きに開放する方法は、電動時の直並列側(財)用に使用
されている例があるが、電流検出器が大形となり易く高
価である。
In addition, the method of opening when the armature current and the current flowing through the resistor become equal is sometimes used for series-parallel side (goods) in electric motors, but the current detector tends to be large and expensive. It is.

本発明は上述したような従来装置の欠点を除去し、小形
軽量の電気車。
The present invention eliminates the drawbacks of the conventional devices as described above and provides a small and lightweight electric vehicle.

制御装置が得られるようにしたものである。A control device can be obtained.

以下本発明を図面にもとづいて説明する。The present invention will be explained below based on the drawings.

第1図〜第4図は複巻電動機に用いた回生ブレーキ中の
主回路接続図であり、第1図は電動機2群の並列状態、
第2図は電動機2群を並列から直列に切りかえるために
まず電動機と並列に抵抗器を接続した状態、第3図は電
動機2群直列となりしかも抵抗器が挿入されている状態
、第4図は抵抗器が短絡され電動機2群直列に回生ブレ
ーキが有効に作用している状態を示す。
Figures 1 to 4 are main circuit connection diagrams during regenerative braking used in compound motors, and Figure 1 shows two groups of motors in parallel,
Figure 2 shows a state in which a resistor is first connected in parallel with the motor in order to switch the two groups of motors from parallel to series, Figure 3 shows a state in which two groups of motors are connected in series and a resistor is inserted, and Figure 4 shows a state in which a resistor is inserted. This shows a state in which the resistor is short-circuited and regenerative braking is effectively applied to two groups of motors in series.

第1図〜第4図においてI) Nはパンタグラフ、Ml
、F2.Slはそれぞれ電動機第1群の電機子、直巻界
磁、分巻界磁であり、M2.F2.S2はそれぞれ電動
機第2群の電機子、直巻界磁4分巻界磁である。
In Figures 1 to 4, I) N is a pantograph, Ml
, F2. Sl are the armature, series-wound field, and shunt-wound field of the first group of the motor, respectively, and M2. F2. S2 is the armature of the second group of the motor, a series winding field, and a quarter winding field, respectively.

R,1,R2は抵抗器で、その抵抗値はカム軸制御器、
電磁接触器、電空接触器等で制御される。
R,1,R2 are resistors whose resistance values are the camshaft controller,
Controlled by electromagnetic contactors, electropneumatic contactors, etc.

S。P、Gは接触器、PRは分巻界磁調整器である。S. P and G are contactors, and PR is a shunt field regulator.

回生ブレーキ中に電動機群の並直列切換を行うには、先
ず最初接触器P、Gが閉じSが開いて電動機2群が並列
接続されているときに(第1図)、接触8iSを閉じて
抵抗器R1とR2の直列1司路を電動機群に並列接続す
る(第2図)。
To perform parallel-series switching of motor groups during regenerative braking, first, when contactors P and G are closed and S is open and the two motor groups are connected in parallel (Fig. 1), contact 8iS is closed. One series path of resistors R1 and R2 is connected in parallel to the motor group (FIG. 2).

しかるとき実質的な回生電流は減少するが、回生ブレー
キ力は変らない。
In this case, the actual regenerative current decreases, but the regenerative braking force remains unchanged.

次jこ接触器P、Gを開いて電動機2群を抵抗器R1,
R,2を介して直列接続しく第3図)、その後抵抗器R
1,R2を順次短絡して最後に抵抗値を零とする(第4
図)。
Next, open the contactors P and G and connect the motor 2 group to the resistor R1,
(Fig. 3), then connect the resistor R
1, R2 are short-circuited in sequence and the resistance value is finally set to zero (4th
figure).

本発明は電動機2群の並直列切換えに際し、抵抗器Ri
、R72が適当な減少値に達した時期に接触器P 、
Gを開く制御に関するものである。
In the present invention, when switching between two groups of motors in parallel, the resistor Ri
, when R72 reaches an appropriate reduction value, the contactor P,
This is related to the control to open G.

次に前記時期について説明する。Next, the above period will be explained.

第5図、第6図は回生ブI/−キ中における速度と電機
子電流の関係を示す特性曲線であり、電車線電圧は一定
とする。
5 and 6 are characteristic curves showing the relationship between speed and armature current during regenerative braking, assuming that the overhead line voltage is constant.

同図中A、Bは電動機2群が並列接続しているときの特
囲曲線で、曲線Aは分巻界磁電流が最大、曲線Bは分巻
界磁電流が小なる場合である。
In the figure, A and B are characteristic curves when two groups of motors are connected in parallel, curve A is the case where the shunt field current is maximum, and curve B is when the shunt field current is small.

また曲線C,Dは並列接続で回生ブレーキ力が−・定の
ときの特性曲線であり、曲線Cはブレーキ状態、曲線り
はブレーキ状態の特性である。
Further, curves C and D are characteristic curves when the regenerative braking force is constant in parallel, and the curve C is the characteristic of the brake state, and the curved line is the characteristic of the brake state.

箒6図の曲線E、F、Gは直列接続したときの特性で、
曲線E ? F + (Jの順に抵抗器R1,R2の合
計抵抗値が小である。
Curves E, F, and G in the broom diagram 6 are the characteristics when connected in series,
Curve E? F + (The total resistance value of resistors R1 and R2 is small in the order of J.

いま例えば第6図において、電機子電流が11又は■2
のブレーキ状態にあるとき、電動機群を並列から直列に
接続すると(第3図)、電機子電流は前記合計抵抗値に
従って第6図の曲線E 5 F 2 (J−ヒの電流値
に急変しなければならない。
For example, in Fig. 6, the armature current is 11 or ■2.
When the motor group is connected from parallel to series (Fig. 3), the armature current suddenly changes to the current value of curve E 5 F 2 (J-hi) in Fig. There must be.

もし■1から曲線Eの電流に減少すれば減少量は少ない
が、■1から曲線Eの電流値に減少す11jf減少量力
炊きすぎて好ましくない。
If the current value decreases from ■1 to the current value of curve E, the amount of decrease will be small, but if the current value decreases from ■1 to the current value of curve E, the amount of decrease in 11jf will be too strong, which is not preferable.

■1の場合は曲線F又はGの電流値に変化するように合
成抵抗値を選定しておくのがよい。
(2) In the case of 1, it is preferable to select the combined resistance value so that the current value changes to the curve F or G.

一ヒ記合威抵抗値は起動抵抗器の抵抗器の全部あるいは
一部を短絡したものである。
The combined resistance value is the value when all or part of the starting resistor is shorted.

通常最初は最大値でその後順次短絡して行く。Usually, it is at the maximum value at first, and then it is short-circuited one after another.

このため所要の値まで抵抗器が短絡されたときに、接触
器P、Gを開いてやれはよい。
Therefore, it is better to open the contactors P and G when the resistor is shorted to the required value.

第1図〜第4図には特に図示していないが、通常電気車
の制御のために少なくとも電機子または直巻界磁部分の
電流検出器があるが1.このほかに第2図の接触器Sの
部分の電流を検出する検出器を追加し、この検出器の検
出値が電機子電流検出器の検出値と等しくなったときに
、接触RBP 、Gを開く方法である。
Although not particularly shown in FIGS. 1 to 4, there is usually a current detector at least in the armature or series field part for controlling electric vehicles.1. In addition, a detector is added to detect the current in the contactor S portion of Fig. 2, and when the detected value of this detector becomes equal to the detected value of the armature current detector, contacts RBP and G are activated. This is how to open it.

この方法は追加の検出器が大きいことと、主回路配線の
引きまわしが増えることなどが欠点である。
This method has disadvantages such as the large size of the additional detector and the increased amount of main circuit wiring.

これに代るものとしてブレーキ指争値などにより、あら
かじめ電機子電流を予測して、指令値の大小によって第
2図の抵抗器R1,R2の一部が短絡された後に接触器
1〕、Gを開くようにした考案があるが、既に述べた如
くσ回生ブレーキのように回生負荷の多少によって架線
電圧が変ったり、架線電圧が上昇したとき、回生電流を
制限したりするときには、この後者の方法ではつねに良
好な並直列切換えが行なわれることを期待できないこと
になる。
As an alternative to this, the armature current is predicted in advance based on the brake command value, and after some of the resistors R1 and R2 in FIG. 2 are short-circuited depending on the magnitude of the command value, the contactor 1 However, as mentioned above, when the overhead line voltage changes depending on the amount of regenerative load, such as with the σ regenerative brake, or when the overhead line voltage rises, this latter method is used to limit the regenerative current. The method cannot always be expected to provide good parallel-to-serial switching.

本発明は上述したような点を解決するもので、もともと
ある電機子電流検出器の検出値の大小によって接触器P
、Gの開放時期を変えるものである。
The present invention solves the above-mentioned problems, and the contactor P
, which changes the opening timing of G.

第7図〜第9図はその制御方法を示す制御回路接続図で
ある。
7 to 9 are control circuit connection diagrams showing the control method.

第7図〜第9図において同一の記号は同一の機器を示し
、SOは電源、C1゜C2,C3,C4はカム軸制御器
CAの接点で図示の斜線を施したカム位置では閉じてい
る。
In Figures 7 to 9, the same symbols indicate the same equipment, SO is the power supply, C1, C2, C3, and C4 are the contacts of the camshaft controller CA, which are closed at the hatched cam position shown in the figure. .

p。a、bはカム軸制御5CAの位置を示し、pは並列
位置、aは直列初段位置、bは直列で抵抗が若干短絡さ
れた位置である。
p. a and b indicate the positions of the camshaft control 5CA, p is the parallel position, a is the first stage position in series, and b is the position where the resistors are connected in series and are slightly short-circuited.

Sc、Pc、Gcは第1図〜第4図の接触器S、P、G
の操作コイルである。
Sc, Pc, and Gc are the contactors S, P, and G in Figures 1 to 4.
This is the operating coil.

CPは電機子電流判別器である。CPaはその電流判別
器に付属する継電器の接点である。
CP is an armature current discriminator. CPa is a contact point of a relay attached to the current discriminator.

TDは限時装置でTDbはその限時装置に付属する継電
器の接点である。
TD is a time limit device, and TDb is a contact point of a relay attached to the time limit device.

Saは接触器Sの連動接点で接触器Sの主接点が閉じた
ときに同時に閉じるいわゆるA接点である。
Sa is an interlocking contact of the contactor S, and is a so-called A contact that closes simultaneously when the main contact of the contactor S closes.

まず第7図について説明する。First, FIG. 7 will be explained.

カム@傭[1却益C−Aが並列段p位置では接点C1は
開、接点C2は閉で接触器P 、 Gは励磁され、本図
には省略されているが第1図の状態にある。
When the cam @1 is in the parallel stage p position, the contact C1 is open, the contact C2 is closed, and the contactors P and G are energized. be.

カム軸制御器CAの進段制御部は図示を省略゛している
が、並直列切替に際しては位置pより位置aの直列位置
へ進められる。
Although the gear advance control section of the camshaft controller CA is not shown in the drawings, it is advanced from the position p to the serial position of the position a during parallel-series switching.

電機子電流判別器の接点CPaが開いていると位置aで
接触器p 、 Gは消磁され、接点CPaが閉じていれ
ば位置aでは接触器P、Gは励磁され続は位置すへ進み
、接点C3が開いたときに始めて接触”lap 5 G
は消磁される。
When the contact CPa of the armature current discriminator is open, the contactors P and G are demagnetized at position a, and when the contact CPa is closed, the contactors P and G are energized at position a, and the connection advances to position. Contact begins when contact C3 opens "lap 5 G
is demagnetized.

電機子電流判別器CPを電機子電流小のとき接点CPa
が開、電機子電流大のとき接点CPaが閉となるよう構
成する。
When armature current discriminator CP is small, contact CPa
is open, and the contact CPa is configured to be closed when the armature current is large.

第8図では判別器CPの接点CPaが閉じている間、接
触器P、Gが励磁され続ける。
In FIG. 8, while the contact CPa of the discriminator CP is closed, the contactors P and G continue to be excited.

電機子電流判別器CPの電機子電流判別値は、カム軸m
lJ御器CAの接点C4の信号が1回与えられたら、あ
る定められた値だけ引き上げるように構成する。
The armature current discrimination value of the armature current discriminator CP is the camshaft m
When the signal at contact C4 of lJ controller CA is applied once, it is configured to be raised by a certain predetermined value.

たとえば個有の判別値を30OAとし電機子電流が30
0A以下であると接点C4の信号が与えられなくても接
点CPaは開となっている。
For example, if the unique discriminant value is 30OA and the armature current is 30OA,
If the current is 0 A or less, the contact CPa remains open even if no signal is applied to the contact C4.

従って接触器P、Gは接点C2が開となったとき消磁さ
れる。
Contactors P and G are therefore demagnetized when contact C2 is opened.

電機子電流が4.0 OAであり、上記ある定められた
値というも0を15OAとすると、カム軸制御器CAが
位置aから1〕に達すると接点C4の信号が電磁子電流
判別器CPに与えられ、判別値は450Aに引き上げら
札これと電機子電流400Aの比較の結果、電機子電流
判別器CPの接点CPaが開き、接触器P 、 Gが消
磁されることになる。
Assuming that the armature current is 4.0 OA, and the above-mentioned predetermined value 0 is 15 OA, when the camshaft controller CA reaches the position 1 from position a, the signal at contact C4 is output to the electromagnetic current discriminator CP. As a result of the comparison between this value and the armature current of 400 A, the contact CPa of the armature current discriminator CP opens and the contactors P and G are demagnetized.

第3図では位置a、 b間で1回のみ接点C4が閉じ
るが、多段の制御器では抵抗短絡の段数をまし、接点C
4で数回開閉されるようにしてもよい。
In Figure 3, contact C4 closes only once between positions a and b, but in a multi-stage controller, the number of resistance short circuits is increased, and contact C4 closes only once between positions a and b.
4 may be opened and closed several times.

また通常カム軸利aiSCAには中間送り接点があるの
で、接触器Sが閉じた後の中間送り接点の閉路1回ごと
に電機子電流判別器CPの引き上げを順次行なうように
することができる。
Further, since the normal camshaft aiSCA has an intermediate feed contact, the armature current discriminator CP can be sequentially pulled up every time the intermediate feed contact is closed after the contactor S is closed.

たとえば上記例で電機子電流300Aだと位置aで接触
器P、G消磁、400Aだと位置aの次の段、500A
だと位置aの2段後、600Aだと位置aの3段後、あ
るいは4段後(600A−300に一300人が15O
Aの丁度2倍なので電機子電流判別器CPが接点CPa
が位置aの3段後で開くか、4段後で開くかのいずれか
となる。
For example, in the above example, if the armature current is 300A, contactor P and G are demagnetized at position a, and if it is 400A, the next stage after position a is 500A.
If it is 2 steps after position a, if it is 600A, it will be 3 steps or 4 steps after position a (1300 people in 600A-300 will be 150
Since it is exactly twice A, the armature current discriminator CP is the contact point CPa.
will open either 3 steps after position a or 4 steps after position a.

)というように変えることかできる。) can be changed as follows.

第9図のものは第7図、第8図の電機子電流判別’15
cPの代りに限時装置TDを用いるものである。
The one in Figure 9 is armature current discrimination '15 in Figures 7 and 8.
A timing device TD is used instead of cP.

電機子電流の値が小さいときは、殆んど時素がなく電機
子電流が太きいと長い時素となるいわゆるプログラマブ
ルクイマと呼ばれるものである。
When the value of the armature current is small, there is almost no time element, and when the armature current is large, there is a long time element, which is what is called a programmable time element.

接触器Sが励磁され接点Saが閉じた後、接点T D
l)がすぐ開くと接触器P 、 Gはカム[軸1451
J函]器CAの接点C2が開いたとき消磁される。
After the contactor S is energized and the contact Sa is closed, the contact T D
l) opens immediately, the contactors P and G are connected to the cam [shaft 1451
J box] is demagnetized when the contact C2 of the box CA is opened.

電機子電流が大きいと接点T D bが開く時期が遅れ
、たとえばカム軸制御器CAが位置すに達した頃に接触
器))、Gが消磁される。
If the armature current is large, the opening of the contact T D b is delayed, for example, when the camshaft controller CA reaches its position, the contactor G is demagnetized.

第9図の方法は接触器■)。Gの釈放時間やカム軸制徂
器CAの回転速さのばらつきが少ない場合に簡単な限時
装置によって目的を達せられるという利点がある。
The method shown in Figure 9 is a contactor ■). This has the advantage that the purpose can be achieved with a simple timer when there are small variations in the release time of G and the rotational speed of the camshaft restrictor CA.

以上回生ブレーキ中の並直列渡りに本発明を適用するも
のとして説明したが、電動中の直並列控りに際し同様に
用いることもできる。
Although the present invention has been described above as being applied to parallel-to-series braking during regenerative braking, it can also be similarly applied to series-to-parallel braking during electric braking.

この場合、接触器Sが閉じてから接触器P、Gを開く代
りに接触器P 、 Gが閉じてから接触器Sを開くとい
う違いがある。
In this case, the difference is that instead of opening the contactors P and G after the contactor S is closed, the contactor S is opened after the contactors P and G are closed.

また実際の回路構成に際して、たとえは接点C2により
直接接触器を制御するか、接点C2の信号を無接点装置
や他の継電器を介して接触器を励磁するようにするかと
いう変更は設計変更の範囲である。
In addition, in the actual circuit configuration, for example, changes such as whether to control the contactor directly by contact C2 or to excite the contactor via a non-contact device or other relay with the signal from contact C2 are required as design changes. range.

以−ヒ詳述したごとく、本発明では従来の指令ブレーキ
力の量判別器と同程度の部品を用いることにより、架線
電圧の変動指令ブレーキ力の変動の両方の要因による電
機子電流の変化に対して良好な乗心地を解保しうる制御
装置を提供しうるものであり、その効果は犬である。
As described in detail below, in the present invention, by using components comparable to conventional commanded brake force quantity discriminators, changes in armature current caused by both fluctuations in overhead line voltage and fluctuations in commanded brake force can be ignored. However, it is possible to provide a control device that can provide a good ride comfort, and its effects are outstanding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は回生ブレーキ中における電動機群の並
直列遮りの各段階における接続図、第5図は電動機群が
並列接続したときの回生ブレーキ電流と速鹿との関係特
性図、第6図は電動機群が直列接続で、直列抵抗挿入時
の関係特性と並列接続最終特性図、第7図〜第9図は本
発明による制御回路接続図である。 Ml 、 M2・・・電機子、Fl 、 T’2”’直
巻界磁、81゜S2・・・分巻界磁、R1,R,2・・
・抵抗器、s、p。 G・・・接触器、FR・・・分巻界磁調整器、C1,C
2゜C3,C4・・・カム軸制御器の接点、Sc 、
Pc 。 Gc・・・接触器の操作コイル、CP・・・電機子電流
判別器、TD・・・限時装置。
Figures 1 to 4 are connection diagrams at each stage of parallel-series interruption of motor groups during regenerative braking. Figure 5 is a characteristic diagram of the relationship between regenerative braking current and speed when motor groups are connected in parallel. FIG. 6 shows the relational characteristics when the motor groups are connected in series and the final characteristics of the parallel connection when a series resistor is inserted, and FIGS. 7 to 9 are control circuit connection diagrams according to the present invention. Ml, M2... Armature, Fl, T'2''' series winding field, 81°S2... shunt winding field, R1, R, 2...
・Resistor, s, p. G... Contactor, FR... Shunt field regulator, C1, C
2゜C3, C4...Camshaft controller contacts, Sc,
Pc. Gc... contactor operation coil, CP... armature current discriminator, TD... time limit device.

Claims (1)

【特許請求の範囲】 1 複数個の電動機を有する電気車において、電動中の
直並列橋絡渡りあるいは回生ブレーキ中の並直列渡りに
際し、電動機電機子電流値のあらかじめ定めた値に対す
る大小を判別する判別器の出力の有無により橋絡渡り用
接触器の開放時期を変化させるようにしたことを特徴と
する電気車制御装置。 2 前記判別器の判別値を、渡り段に達した後のカム軸
進段に応じて順次引き一ヒげて行くことにより、前記判
別語出力がなくなったときに橋絡渡り用接触器を開放す
るようにした特許請求の範囲第1項記載の電気車制御装
置。 3 前記判別器の代りに、電機子電流の値によって時限
が変化する限時装置を用い、渡り段に達した後、前記限
時装置の時限の後に橋絡渡り用接触器を開放するように
した特許請求の範囲第1項記載の電気車制御装置。
[Claims] 1. In an electric vehicle having a plurality of electric motors, the magnitude of the motor armature current value relative to a predetermined value is determined during series-parallel bridge crossing during electric power or parallel-series crossing during regenerative braking. An electric vehicle control device characterized in that the opening timing of a bridging contactor is changed depending on the presence or absence of an output from a discriminator. 2 By sequentially increasing the discrimination value of the discriminator according to the camshaft advancement stage after reaching the transition stage, the bridge crossing contactor is opened when the discrimination word output disappears. An electric vehicle control device according to claim 1, wherein the electric vehicle control device is configured to: 3. A patent in which a timer whose time limit changes depending on the value of the armature current is used in place of the discriminator, and the bridging contactor is opened after the time limit of the timer reaches the crossing step. An electric vehicle control device according to claim 1.
JP52151650A 1977-12-19 1977-12-19 electric car control device Expired JPS5827728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52151650A JPS5827728B2 (en) 1977-12-19 1977-12-19 electric car control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52151650A JPS5827728B2 (en) 1977-12-19 1977-12-19 electric car control device

Publications (2)

Publication Number Publication Date
JPS5486116A JPS5486116A (en) 1979-07-09
JPS5827728B2 true JPS5827728B2 (en) 1983-06-11

Family

ID=15523196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52151650A Expired JPS5827728B2 (en) 1977-12-19 1977-12-19 electric car control device

Country Status (1)

Country Link
JP (1) JPS5827728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090519A (en) * 2010-09-20 2012-05-10 Kurita Kogyo:Kk Rotation system
CN112109562A (en) * 2020-09-18 2020-12-22 台州登尚机电有限公司 Motor control system of alternating current double winding

Also Published As

Publication number Publication date
JPS5486116A (en) 1979-07-09

Similar Documents

Publication Publication Date Title
JPS58198193A (en) Dc motor controller
JPS5827728B2 (en) electric car control device
US2663835A (en) Traction-motor control
US2646540A (en) Motor control system
US2198481A (en) Motor control system
US2748335A (en) Traction-motor control
US2100728A (en) Motor control system
JPS5818842B2 (en) Braking control method for electric cars
US1126163A (en) System of electric-motor control.
US2403048A (en) Electric motor control system
JP2637945B2 (en) Electric vehicle regenerative brake control device
US2274645A (en) Motor control system
US856448A (en) Control system for electric vehicles.
US1839559A (en) Control system
US1791848A (en) Control of direct-current motors
JPH01157203A (en) Speed controller for electric motor car
CA1122679A (en) Transit vehicle motor operation control apparatus and method
US1365323A (en) Control system
US730342A (en) System of motor control.
JPH0360305A (en) Electric vehicle controller
JPS5829301A (en) Controlling circuit for regenerative brake equipment for electric rolling stock
JPH0993726A (en) Method for controlling electric rolling stock
JPS607442B2 (en) Electric vehicle regenerative brake control device
Dover Traction Motor Control (direct Current): An Introductory Treatise on the Principles Involved in the Control of Dc Motors for Trains, Trams, and Railless Vehicles, Including a Simplified Treatment of Multiple Unit Automatic Control and a Complete Discussion of the Control Systems of Electric Battery Vehicles
US1269601A (en) System of control.