JPS5827683A - Corrosion-prevention of metallic device or apparatus - Google Patents

Corrosion-prevention of metallic device or apparatus

Info

Publication number
JPS5827683A
JPS5827683A JP12535381A JP12535381A JPS5827683A JP S5827683 A JPS5827683 A JP S5827683A JP 12535381 A JP12535381 A JP 12535381A JP 12535381 A JP12535381 A JP 12535381A JP S5827683 A JPS5827683 A JP S5827683A
Authority
JP
Japan
Prior art keywords
water
corrosion
gamma
ray source
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12535381A
Other languages
Japanese (ja)
Inventor
Masakiyo Izumitani
泉谷 雅清
Eiji Kashimura
樫村 栄二
Akira Minato
湊 昭
Norio Shimizu
清水 範夫
Katsumi Osumi
大角 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12535381A priority Critical patent/JPS5827683A/en
Publication of JPS5827683A publication Critical patent/JPS5827683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To inhibit corrosion of a metallic device or apparatus, while eliminating or suppressing the activity of metal-corrosion microbes in water with a simplified means, by irradiating the water, in which the metal-corrosive microbes grow, accommodated in the metallic device or apparatus with gamma-rays. CONSTITUTION:A sealed gamma-ray source part 6 is provided at the down stream side of a circulating pump 2 but at the upper stream side of a cooler 3, and a Co- 60 ray source entirely covered with plastics is arranged in the gamma-ray source part 6. As cooling water, desalinated water prepared by passing river water through an ion-exchange resin column is used. Sodium nitrite is added to the water so that initial nitrite ion concentration will be at 2,000ppm. By irradiation with gamma-rays from the sealed gamma-ray source part 6, the activity of nitrobacterium can be esily eliminated or suppressed, so that corrosion of a metallic device or apparatus can be inhibited.

Description

【発明の詳細な説明】 本発明は、金属腐食性の微生物が生育しうる水を使用す
る金属製の機器、装置の腐食防止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing corrosion of metal equipment and devices that use water in which metal-corrosive microorganisms can grow.

冷却装置、水流ポンプ等、水と接触して使用する機器、
装置には多種のものがあり、その代表的な例には、再循
環水型冷却装置がある。
Equipment that comes into contact with water, such as cooling equipment and water pumps,
There are many types of devices, a typical example of which is a recirculating water cooling device.

これら機器、装置の構成材料には、通常炭素鋼が使用さ
れており、また水目体による炭素鋼の腐食を防止する目
的で、酸化剤として亜硝酸塩を腐食抑制に用いている例
が多(・。
Carbon steel is usually used as the constituent material of these devices and devices, and in many cases nitrite is used as an oxidizing agent to prevent corrosion of carbon steel by water bodies (・.

水としては、河川水、地下水又Gマ水道水をそのまま、
あるいはそれらをイオン交換樹脂に通した、いわゆる脱
塩水を使用しているのが通常である。
For water, use river water, ground water, or tap water as is.
Alternatively, it is common to use so-called demineralized water that has been passed through an ion exchange resin.

ところが、これらの使用水中には、鉄)(クチリア(水
中で鉄を酸化することによってエネルギーを得て生活す
る細菌)とか、亜硝酸イオンを硝酸イオンに酸化する作
用を持つ微生物(以下、該微生物をニトロノ(クチリア
と称する)力;存在し、そのために構成材料である金属
特に炭素鋼が腐食し、甚だしい場合には応力腐食割れを
発生していた。
However, the water used in these applications contains iron) (cutilia (bacteria that live by obtaining energy by oxidizing iron in water) and microorganisms that have the ability to oxidize nitrite ions into nitrate ions (hereinafter referred to as microorganisms). Nitrono (referred to as Cutilia) force exists, which corrodes the metals that are the constituent materials, especially carbon steel, and in severe cases causes stress corrosion cracking.

従来はその対策として、再循環水型装置の場合には、使
用水の大部分又は全部を入替える方式、及び/又は殺菌
剤としてアジ化ナトリウムを添加する方式が採用されて
いた。
Conventionally, as a countermeasure for this problem, in the case of a recirculating water type device, a method of replacing most or all of the water used and/or a method of adding sodium azide as a disinfectant have been adopted.

しかし、前者の方式では、多量の水を消費したり、その
入替え中、その装置を使用しているプラント操業を停止
しなければならないという欠点がある。また後者の方式
は、アジ化ナトリウムは次第に消費され、適正濃度を保
つためには、常時、水を分析、監視しなければならない
という欠点があり、しかして監視頻度を少なくするため
に、アジ化す) IJウムを多量に添加すると、腐食抑
制剤として亜硝酸塩を使用している場合には、アジ化ナ
トリウムが還元剤であるために、酸化剤である亜硝酸イ
オンと反応して、両者共その効力を失って、かえって腐
食が促進されるという欠点もある。
However, the former method has drawbacks such as consuming a large amount of water and requiring the plant operation in which the device is used to be stopped while replacing the water. In addition, the latter method has the disadvantage that sodium azide is gradually consumed and the water must be constantly analyzed and monitored to maintain the appropriate concentration. ) If a large amount of IJum is added, if nitrite is used as a corrosion inhibitor, sodium azide is a reducing agent, so it will react with the nitrite ion, which is an oxidizing agent, and both will be It also has the disadvantage that it loses its effectiveness and instead accelerates corrosion.

本発明の目的は、上述した従来技術の欠点をなくし、金
属腐食性の微生物の活性を排除又は抑制することにより
、該微生物が生育し5ろ水を使用する金属製の機器、装
置の簡便な腐食防止方法を提供するにある。
The object of the present invention is to eliminate the drawbacks of the prior art described above, eliminate or suppress the activity of metal-corrosive microorganisms, and thereby improve the convenience of metal equipment and equipment in which these microorganisms grow and use effluent. To provide a corrosion prevention method.

すなわち本発明を概説すれば、本発明は、金属腐食性の
微生物が生育しつる水を使用する金属製の機器、装置に
おいて、該使用水にγ線照射を行うことを特徴とする、
金属製の機器、装置の腐食防止方法に関する。
That is, to summarize the present invention, the present invention is characterized in that, in metal equipment and devices that use water in which metal-corrosive microorganisms grow, the used water is irradiated with gamma rays.
Concerning methods for preventing corrosion of metal equipment and devices.

本発明は、腐食抑制剤として亜硝酸塩を添加した水を使
用する機器、装置の炭素鋼材料の腐食が、水中のニトロ
バクテリアによって生成する硝酸イオンによること、及
びニトロバクテリアの活性がγ線照射により容易に排除
又は抑制できることを見出し、更に研究を進めた結果、
一般に水中で生育する金属腐食性の微生物が、γ線照射
により容易に排除又は抑制できることを確認して、本発
明を完成した。
The present invention discloses that the corrosion of carbon steel materials in equipment and devices that use water with nitrite added as a corrosion inhibitor is caused by nitrate ions produced by nitro bacteria in the water, and that the activity of nitro bacteria is reduced by γ-ray irradiation. As a result of further research and discovering that it can be easily eliminated or suppressed,
The present invention was completed by confirming that metal-corrosive microorganisms that generally grow in water can be easily eliminated or suppressed by γ-ray irradiation.

なお、腐食抑制剤として亜硝酸塩を使用している場合に
は、その亜硝酸イオンの防食効果は損われず、微生物の
活性のみを防除することができることも確認した。
It was also confirmed that when nitrite is used as a corrosion inhibitor, the anticorrosive effect of nitrite ions is not impaired and only the activity of microorganisms can be controlled.

放射線の殺菌作用は一般に知られているが、そのうち、
α線及びβ線は容易に遮へいされ、特に本発明の対象で
ある水中の微生物の防除用には適さず、γ線が好ましい
The bactericidal effect of radiation is generally known, but
α rays and β rays are easily shielded and are not particularly suitable for controlling microorganisms in water, which is the object of the present invention, and γ rays are preferred.

γ線の線源は、密封型、非密封型のいずれであってもよ
いが、一般には系外に排出される水の処理を考慮すれば
、密封型線源が好ましい。
The γ-ray source may be either a sealed type or an unsealed type, but in general, a sealed type source is preferable in consideration of the treatment of water discharged outside the system.

使用する核種及び照射線量は場合によって異なる。すな
わち、水量、循環量、水温及び微生物の個数等により、
必要な照射線量が異なる。
The nuclide used and the irradiation dose vary depending on the case. In other words, depending on the amount of water, circulation amount, water temperature, number of microorganisms, etc.
The required irradiation dose is different.

したがって、実施するに際しては、その機器、装置に適
した核種及び照射線量を個々に決定する必要がある。し
かしながら、一般に微生物の死滅に要する照射線量は、
105〜2X106レプといわれる。しかして生体組織
の場合には、ルプ〉1Rなので、上記程度が必要という
ことになるが、本発明においては、微生物が活動を停止
していればよいので、一般的には、10〜100Rで十
分である。また、γ線源とじては、種々の核種があるが
、入手の容易さ、及び長時間使用が可能であるという点
からみて、半減期5.2年のCo−60が最適である。
Therefore, when implementing such methods, it is necessary to individually determine the nuclide and irradiation dose suitable for the equipment and equipment. However, in general, the radiation dose required to kill microorganisms is
It is said to be 105 to 2X106 reps. However, in the case of living tissue, the above level is required since the level is >1R, but in the present invention, it is sufficient that the microorganisms have ceased activity, so generally, the level is 10 to 100R. It is enough. In addition, there are various types of nuclides as gamma ray sources, but Co-60, which has a half-life of 5.2 years, is optimal from the viewpoint of easy availability and long-term use.

しかして、Co−60はミ 13.2 R/時++ m
cie−6であるので、前述の照射線量より、時間さえ
経過すれば、1 mci程度の線源でよいが、死減量付
近まで考慮すると、i Ci程度までの線源を用いるの
が好適である。
Therefore, Co-60 is 13.2 R/hr++ m
Since the radiation dose is 1 mci, it is sufficient to use a radiation source of about 1 mci compared to the above-mentioned irradiation dose, as long as time passes, but when considering the near dead weight, it is preferable to use a radiation source of about 1 mci. .

なお、γ線の場合には、他の物質を放射化する作用はな
いので、放射能汚染の心配はない。
Note that gamma rays do not have the effect of activating other substances, so there is no need to worry about radioactive contamination.

但し、γ線による水の一部分解によって生成するH2O
2及びラジカルが、本発明の場合には、微生物の防除に
作用していることは、十分推測されることである。
However, H2O generated by partial decomposition of water by γ rays
It is fully inferred that 2 and radicals act to control microorganisms in the case of the present invention.

なおまた、ニトロバクテリアは、7Io℃以上では少な
くとも活動を停止するので、40 ’C以上の水温の水
を使用する機器、装置では、ニトロバクテリアによる腐
食について考慮する必要はない。更に、ニトロバクテリ
アは、亜硝酸イオン濃度が、500 ppm以上でも活
動を停止するが、普通、再循環水型冷却装置では、亜硝
酸塩を、亜硝酸イオンとして50〜2001)pm添加
しているので、腐食が生起する。
Furthermore, since nitrobacteria at least cease to be active at temperatures above 7IoC, there is no need to consider corrosion caused by nitrobacteria in equipment and devices that use water at a temperature of 40'C or above. Furthermore, nitrobacteria cease to be active even if the nitrite ion concentration exceeds 500 ppm, but normally in recirculating water cooling systems, nitrite is added in the form of nitrite ions at a concentration of 50 to 2001) pm. , corrosion occurs.

殺菌剤として硫酸銅も考えられが、鉄含有装置では、イ
オン化傾向からみて防食上好ましくない。
Copper sulfate is also considered as a disinfectant, but in iron-containing equipment, it is not preferred from the viewpoint of corrosion protection due to its ionization tendency.

その他、殺菌剤等の薬剤の使用は、排水処理の点から好
ましいものでないことは明らかである。
It is clear that the use of other chemicals such as disinfectants is not preferable from the viewpoint of wastewater treatment.

水を使用する代表的な例は、既述のように、再循環水型
冷却装置であるので、以下、これを例にして本発明を具
体的に説明する。
As mentioned above, a typical example that uses water is a recirculating water type cooling device, so the present invention will be specifically explained below using this as an example.

添付図面の第1図は、従来公知の再循環水型冷却装置の
概略系統図である。
FIG. 1 of the accompanying drawings is a schematic diagram of a conventionally known recirculating water type cooling device.

この装置は、冷却すべき対象である被冷却体1、冷却水
を循環する循環ポンプ2、冷却水中の熱を系外に排除す
る冷却器3及びこれらを連結する配管5から構成され、
冷却水は被冷却体1、循環ポンプ2冷却器6を通り、再
び被冷却体1に戻り循環している。系統内にあるシール
部からの冷却水の漏えいあるいは調査のため故意に冷却
水の一部を系内から抜き取ったりすることがしばしばあ
るため、通常、系内がらの減少量に見合う冷却水を補給
するためのサージタンク4を備えており、配管を介して
循環系統と連結されている。
This device is composed of an object to be cooled 1, a circulation pump 2 that circulates cooling water, a cooler 3 that removes heat from the cooling water to the outside of the system, and piping 5 that connects these.
The cooling water passes through the object to be cooled 1, the circulation pump 2 and the cooler 6, and returns to the object to be cooled 1 again for circulation. Because it is often the case that a portion of the cooling water is intentionally removed from the system for investigation or for leakage of cooling water from a seal in the system, it is usually necessary to replenish cooling water to compensate for the amount of waste inside the system. The system is equipped with a surge tank 4 for the purpose of cooling, and is connected to a circulation system via piping.

それに対して、第2図は、本発明の1実施の態様として
示す、再循環水型冷却装置の概略系統図である。
In contrast, FIG. 2 is a schematic system diagram of a recirculating water type cooling device shown as one embodiment of the present invention.

ココテ、符号1〜5は、第1図と同じであり、6は、密
封γ線源部を示す。
1 to 5 are the same as in FIG. 1, and 6 indicates a sealed gamma-ray source section.

第3図は、後で詳述するように、使用水中における亜硝
酸イオンと硝酸イオンの濃度の経時変化を表わすために
、時間(日)(横軸)と濃度(ppm) (縦軸)との
関係を示すグラフである。
As will be explained in detail later, Figure 3 shows time (days) (horizontal axis) and concentration (ppm) (vertical axis) to represent changes over time in the concentration of nitrite ions and nitrate ions in the water used. It is a graph showing the relationship.

以下、本発明を実施例によって更に詳細に説明するが、
本発明はこれに限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to this.

実施例 第2図に示した装置を使用した。Example The apparatus shown in FIG. 2 was used.

すなわち、これは、循環ポンプ2の下流側で冷却器乙の
上流側に密封γ線源部6を設置したものである。密封γ
線源部乙にはプラスチックで全面を覆ったCo−60(
1mCi )の線源を配置した。冷却水には河川水をイ
オン交換樹脂塔に通した脱塩水を用い、当初亜硝酸イオ
ンが200 ppmになるように亜硝酸ナトリウムを添
加した。循環量は7m3/時である。循環冷却水の温度
は冷却器3の上流で65℃、下流で30℃である。
That is, in this case, the sealed gamma ray source section 6 is installed downstream of the circulation pump 2 and upstream of the cooler B. Sealing γ
Co-60(
A 1 mCi) source was placed. Desalinated water obtained by passing river water through an ion exchange resin tower was used as the cooling water, and sodium nitrite was added so that the nitrite ion concentration was 200 ppm initially. The circulation volume is 7 m3/hour. The temperature of the circulating cooling water is 65° C. upstream of the cooler 3 and 30° C. downstream.

まず初めに密封線源部6に線源を入れずに冷却水を循環
させ、冷却水の一部を抜き取って冷却水中の亜硝酸イオ
ン及び硝酸イオン濃度の経時変化を調べた。亜硝酸イオ
ンが確実に減少し、硝酸イオンが増大することを確認し
た後、密封線源部6に前述のCo−60密封線源を装着
し冷却水中の亜硝酸イオン及び硝酸イオン濃度のその後
の経時変化を更に調べた。結果を第6図に示す。冷却水
中の亜硝酸イオンは初め緩やかに減少し始めたが2日以
降からは急激に減少した。
First, cooling water was circulated without putting a radiation source into the sealed radiation source section 6, and a portion of the cooling water was extracted to examine changes over time in the concentrations of nitrite ions and nitrate ions in the cooling water. After confirming that nitrite ions are definitely reduced and nitrate ions are increased, the above-mentioned Co-60 sealed radiation source is attached to the sealed radiation source section 6, and the subsequent nitrite ion and nitrate ion concentrations in the cooling water are measured. We further investigated changes over time. The results are shown in Figure 6. Nitrite ions in the cooling water began to decrease slowly at first, but after the second day, they decreased rapidly.

硝酸イオン濃度は亜硝酸イオンの場合と対応するように
、初め緩やかに、後急激に増大した。
The nitrate ion concentration increased slowly at first and then rapidly, corresponding to the case of nitrite ion.

実験開始5日経過時点、すなわち第5図の矢印Aの時点
で密封線源部6に密封線源を装着したところ、亜硝酸イ
オン濃度の減少及び硝酸イオン濃度の増大の割合は緩や
かになり8日目以降は両イオン共その濃度は一定値にな
った。本実施例の結果からγ線照射はニトロバクテリア
の活性を排除するのに効果があることがわかる。
When the sealed radiation source was attached to the sealed radiation source unit 6 after 5 days from the start of the experiment, that is, at the point of arrow A in Fig. 5, the rate of decrease in nitrite ion concentration and increase in nitrate ion concentration became gradual.8 After the first day, the concentrations of both ions became constant. The results of this example show that γ-ray irradiation is effective in eliminating the activity of nitrobacteria.

その他、第2図を一部変更して、サージタンク4に密封
線源を装着しても、同じ結果を得た。
In addition, the same results were obtained even when a part of FIG. 2 was changed and a sealed radiation source was attached to the surge tank 4.

同様にして、他の金属腐食性の微生物の活動を停止する
ことができることを確認した。
It was confirmed that the activities of other metal-corrosive microorganisms could be stopped in the same way.

したがって、本発明方法による効果は、従来法と比べて
、排水処理の点も考慮して、顕著なものである。
Therefore, the effect of the method of the present invention is more remarkable than that of the conventional method, taking into consideration the wastewater treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来公知の再循環水型冷却装置の概略系統図
である。第2図は、本発明の1実施の態様である再循環
水型冷却装置の概略系統図である。第6図は、使用水中
の亜硝酸イオンと硝酸イオンについて、時間と濃度との
関係を示すグラフである。 1:被冷却体、2:循環ポンプ、6:冷却器、4:サー
ジタンク、5:配管、6:密封γ線源部 特許出願人 株式会社日立製作所 代理人中 本  宏 第1図 第 2 図 第3図 日寺内 (日)
FIG. 1 is a schematic diagram of a conventionally known recirculating water type cooling device. FIG. 2 is a schematic diagram of a recirculating water type cooling device that is one embodiment of the present invention. FIG. 6 is a graph showing the relationship between time and concentration of nitrite ions and nitrate ions in the water used. 1: Cooled object, 2: Circulation pump, 6: Cooler, 4: Surge tank, 5: Piping, 6: Sealed γ-ray source Patent applicant Hiroshi Moto, representative of Hitachi, Ltd. Figure 1 Figure 2 Figure 3: Inside the temple (Japanese)

Claims (1)

【特許請求の範囲】 1 金属゛腐食性の微生物が生育しうる水を使用する金
属製の機器、装置において、該使用水にr線照射を行う
ことを特徴とする、金属製の機器、装置の腐食防止方法
。 2 γ線源としてGo−60を特徴する特許請求の範囲
第1項に記載の金属製の機器、装置の腐食防止方法。 3 γ線源として密封線源を特徴する特許請求の範囲第
1項に記載の金属製の機器、装置の腐食防止方法。 4、 該使用水が、亜硝酸塩を腐食抑制剤として添加し
た水である、特許請求の範囲第1項〜第3項のいずれか
に記載の金属製の機器、装置の腐食防止方法。
[Scope of Claims] 1. Metal equipment and equipment that use water in which metal-corrosive microorganisms can grow, characterized in that the used water is irradiated with r-rays. Corrosion prevention method. 2. The method for preventing corrosion of metal equipment and devices according to claim 1, characterized in that Go-60 is used as the γ-ray source. 3. A method for preventing corrosion of metal equipment and equipment according to claim 1, characterized in that the gamma ray source is a sealed radiation source. 4. The method for preventing corrosion of metal equipment and equipment according to any one of claims 1 to 3, wherein the water used is water to which nitrite is added as a corrosion inhibitor.
JP12535381A 1981-08-12 1981-08-12 Corrosion-prevention of metallic device or apparatus Pending JPS5827683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12535381A JPS5827683A (en) 1981-08-12 1981-08-12 Corrosion-prevention of metallic device or apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12535381A JPS5827683A (en) 1981-08-12 1981-08-12 Corrosion-prevention of metallic device or apparatus

Publications (1)

Publication Number Publication Date
JPS5827683A true JPS5827683A (en) 1983-02-18

Family

ID=14908021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12535381A Pending JPS5827683A (en) 1981-08-12 1981-08-12 Corrosion-prevention of metallic device or apparatus

Country Status (1)

Country Link
JP (1) JPS5827683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351273A (en) * 2011-09-23 2012-02-15 河南师范大学 Closed wastewater treatment device utilizing high-energy photon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351273A (en) * 2011-09-23 2012-02-15 河南师范大学 Closed wastewater treatment device utilizing high-energy photon

Similar Documents

Publication Publication Date Title
US4693833A (en) Method of treating radioactive waste water resulting from decontamination
Wang et al. Application of radiation technology to sewage sludge processing: a review
US7622627B2 (en) System and method for chemical decontamination of radioactive material
Fukaya et al. Corrosion mitigation activities performed after the Fukushima Daiichi accident
EP0540201A1 (en) Method of controlling Co-60 radiation contamination of structure surfaces of cooling water circuits of nuclear reactors
KR830002521B1 (en) Decontamination composition suitable for radioactive device
Kimball et al. Tests for a role of H 2 O 2 in X-ray mutagenesis II. Attempts to induce mutations by peroxide
JP2004170278A (en) Chemical decontamination method and system for radioactive chemical
JPS5827683A (en) Corrosion-prevention of metallic device or apparatus
JPS6153680B2 (en)
Kosarek Radionuclide removal from water
ES8608215A1 (en) Improvements in or relating to the ozone oxidation of deposits in cooling systems of nuclear reactors.
KR102378652B1 (en) Decomposition method of oxide layer containing radionuclides
JP3130678B2 (en) Pond water purification device
DE68905504T2 (en) CORROSION INHIBITION OF CLOSED, SECOND COOLING WATER CIRCUITS IN CORE SYSTEMS.
Bird et al. Assessment of the impact of radionuclide releases from Canadian nuclear facilities on non-human biota
JP6970682B2 (en) How to treat wastewater from decontamination work on metal surfaces, use of wastewater treatment equipment and wastewater treatment equipment
JP3874830B2 (en) Decontamination method and decontamination system
JPH0480357B2 (en)
US3658714A (en) Method of decontaminating radioactive wastes
DE4126468C2 (en) Process for treating the primary coolant of a pressurized water reactor
JP2003167093A (en) Cooling water circulating system for facility utilizing nuclear reaction
JP3083629B2 (en) Nuclear power plant
JPS5811788A (en) Preventing method for corrosion
RU2207323C1 (en) Method of disinfection of liquid and domestic jewage with help of x-radiation and device for method embodiment