JPS5827442B2 - Hizumi Soku Teiki - Google Patents
Hizumi Soku TeikiInfo
- Publication number
- JPS5827442B2 JPS5827442B2 JP3312572A JP3312572A JPS5827442B2 JP S5827442 B2 JPS5827442 B2 JP S5827442B2 JP 3312572 A JP3312572 A JP 3312572A JP 3312572 A JP3312572 A JP 3312572A JP S5827442 B2 JPS5827442 B2 JP S5827442B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- bridge
- output
- capacitive
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Description
【発明の詳細な説明】
本発明はひずみ測定器、特に搬送波増幅器を使用する動
ひずみ測定器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a strain measuring instrument, and more particularly to a dynamic strain measuring instrument using a carrier wave amplifier.
一般にひずみ測定器の検出部にはホイートストンブリッ
ジが使用される。Generally, a Wheatstone bridge is used in the detection section of a strain measuring instrument.
この検出ブリッジに電圧を供給する方式としては直流電
圧方式および交流電圧方式があり、交流電圧方式には搬
送波すなわち正弦波方式および方形波方式がある。Methods for supplying voltage to this detection bridge include a DC voltage method and an AC voltage method, and the AC voltage method includes a carrier wave, ie, a sine wave method, and a square wave method.
現在多用されているのは正弦波方式であるがこの方式は
検出ブリッジの初期不平衡分を補償するために抵抗釦よ
び容量の不平衡分を交互に調整する必要がある。Currently, the sine wave method is widely used, but in this method it is necessary to alternately adjust the unbalance of the resistor button and capacitor in order to compensate for the initial unbalance of the detection bridge.
又、方形波方式および直流電圧方式では容量不平衡分を
調整する必要はない。Further, in the square wave method and the DC voltage method, there is no need to adjust the capacitance unbalance.
しかし、正弦波方式は検出ブリッジの初期不平衡分を調
整する際に手数が掛る点を除けばひずみ測定器として必
要な利得および安定度並びにSN比が最も優れている。However, the sine wave method has the best gain, stability, and signal-to-noise ratio necessary for a strain measuring instrument, except for the fact that it takes time to adjust the initial unbalance of the detection bridge.
これがため、容量不平衡の調整を、手数をかけずに自動
的に行うことができる場合には正弦波方式の用途は1す
捷す広範囲となる。Therefore, if the capacitance unbalance can be adjusted automatically without any trouble, the sine wave method can be used in a much wider range of applications.
一般に搬送波周波数が高い正弦波交流電圧をブリッジの
電源に使用するひずみ測定器ではひずみゲージを挿入し
た入力ブリッジに抵抗釦よび容量の不平衡分が生ずるた
め、これら抵抗ち−よび容量不平衡分の双方の平衡調整
を行う必要がある。In general, in strain measuring instruments that use a sinusoidal AC voltage with a high carrier frequency as the bridge power supply, an unbalanced portion of the resistance button and capacitance occurs in the input bridge into which the strain gauge is inserted. It is necessary to balance both.
従来のひずみ測定器ではこの平衡調整を手動的に行って
いた。In conventional strain measuring instruments, this balance adjustment was performed manually.
しかし、抵抗も・よび容量不平衡分の平衡調整は交互に
行う必要があるため測定準備に多大の時間を費し、従っ
て動ひずみ測定を自動化するのが困難である。However, since it is necessary to alternately adjust the balance of the unbalanced resistance and capacitance, it takes a lot of time to prepare for measurement, and it is therefore difficult to automate dynamic strain measurement.
本発明の目的はかかる容量不平衡分を測定初期は勿論測
定中も絶えず電気的に補償し得るように適切に接続配置
した上述した種類のひずみ測定器を提供せんとするにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a strain measuring instrument of the type described above, which is appropriately connected and arranged so that such capacitance unbalance can be electrically compensated not only at the beginning of the measurement but also continuously during the measurement.
本発明によれば正弦波発生器からの出力電圧を入力電圧
とする検出ブリッジと、該検出ブリッジの出力端子に結
合された入力端子を有し該検出ブリッジの出力信号を増
幅して出力する搬送波増幅回路と、該搬送増幅回路から
の増幅出力電圧を出力変成器を経て受は取り該増幅出力
電圧からひずみ出力信号を取り出して出力させる出力回
路とを具えるひずみ測定器において、各辺を容量素子で
構成しかつその一つの辺の容量素子を電圧に応じて容量
値が変化する電圧応動容量素子として戒る容量ブリッジ
を具え、さらに出力端子を該容量ブリッジの入力端子に
接続しかつ入力端子を前記正弦波発生器に接続して前記
容量ブリッジの入力端子に前記正弦波発生器の出力電圧
に対し90°移相したブリッジ励振電圧を供給する90
0移和回路を具え、さらに前記出力変成器と前記電圧応
動容量素子との間に結合され前記出力回路に供給される
前記増幅出力電圧から前記検出ブリッジに生じた容量不
平衡分に応じた直流帰還電圧を検出して該直流帰還電圧
を前記電圧応動容量素子に供給する容量不平衡分検出回
路を具え、前記容量ブリッジを前記直流帰還電圧に応じ
て前記ブリッジ励振電圧に対し同相又は逆相の帰還出力
電圧を該容量ブリッジの出力端子に生ずるように構成す
ると共に該帰還出力電圧によって前記検出ブリッジの容
量不平衡分を補償するように該容量ブリッジの出力端子
を該検出ブリッジの出力端子及び前記搬送波増幅回路の
入力端子間に結合して成ることを特徴とする。According to the present invention, there is a detection bridge whose input voltage is an output voltage from a sine wave generator, and a carrier wave which has an input terminal coupled to an output terminal of the detection bridge and amplifies the output signal of the detection bridge and outputs the amplified signal. In a strain measuring instrument comprising an amplifier circuit and an output circuit that receives the amplified output voltage from the carrier amplifier circuit via an output transformer and outputs a strain output signal from the amplified output voltage, each side is connected to a capacitor. A capacitive bridge is constructed of a capacitive element, and the capacitive element on one side is a voltage-responsive capacitive element whose capacitance value changes depending on the voltage, and the output terminal is connected to the input terminal of the capacitive bridge, and the input terminal 90 connected to the sine wave generator to supply the input terminal of the capacitive bridge with a bridge excitation voltage phase-shifted by 90° with respect to the output voltage of the sine wave generator.
a 0-shift sum circuit, further comprising a direct current coupled between the output transformer and the voltage responsive capacitive element to generate a direct current from the amplified output voltage supplied to the output circuit in accordance with the capacitance unbalance generated in the detection bridge. a capacitance unbalance detection circuit that detects a feedback voltage and supplies the DC feedback voltage to the voltage-responsive capacitance element; The output terminal of the capacitive bridge is connected to the output terminal of the sensing bridge and the sensing bridge so that a feedback output voltage is generated at the output terminal of the capacitive bridge, and the feedback output voltage compensates for the capacitance unbalance of the sensing bridge. It is characterized in that it is coupled between input terminals of a carrier wave amplification circuit.
図面につき本発明を説明する。The invention will be explained with reference to the drawings.
第1図に示す本発明ひずみ測定器では搬送波増幅回路の
前段に入力変成器を設ける。In the strain measuring instrument of the present invention shown in FIG. 1, an input transformer is provided before the carrier amplification circuit.
すなわち搬送波増幅器1の入力側を入力変成器2の2次
巻線W2に接続し、入力変成器2の1次巻線W1aおよ
びWlbの1端(内側端)を抵抗不平衡分補償ブリッジ
3の出力端子に接続し、1次巻線W1aおよびWlbの
他端(外側端)を検出部を構成するホイートストンブリ
ッジ4の出力端子に接続する。That is, the input side of the carrier amplifier 1 is connected to the secondary winding W2 of the input transformer 2, and one end (inside end) of the primary windings W1a and Wlb of the input transformer 2 is connected to the resistive unbalance compensation bridge 3. The other ends (outside ends) of the primary windings W1a and Wlb are connected to the output terminal of the Wheatstone bridge 4 constituting the detection section.
このブリッジ4は例えば2辺を固定抵抗、他の2辺を可
変抵抗すなわちひずみゲージ4a、4bで構成してゲー
ジ回路とする。This bridge 4 is configured, for example, with fixed resistors on two sides and variable resistors, ie, strain gauges 4a and 4b, on the other two sides to form a gauge circuit.
検出ブリッジ4の入力端子を結合変成器5を経て正弦波
発振器6の第1出力端子に接続する。The input terminal of the detection bridge 4 is connected via a coupling transformer 5 to a first output terminal of a sinusoidal oscillator 6.
又ブリッジ3の入力端子も結合変成器5を経て正弦波発
振器6の第1出力端子に接続する。The input terminal of the bridge 3 is also connected to a first output terminal of a sine wave oscillator 6 via a coupling transformer 5.
更に、搬送波増幅器1の出力端子を出力変成器7の1次
巻線W1 に接続し、その1方の2次巻線W2aを抵抗
弁位相検波回路8および低帯域通過フィルタ9を経てひ
ずみ測定器の出力端子10に接続する。Furthermore, the output terminal of the carrier wave amplifier 1 is connected to the primary winding W1 of the output transformer 7, and one of the secondary windings W2a is connected to the distortion measuring instrument through the resistance valve phase detection circuit 8 and the low band pass filter 9. Connect to the output terminal 10 of.
伺、検波回路8及びフィルタ9は出力回路を構成する。The detector circuit 8 and filter 9 constitute an output circuit.
又出力変成器7の他方の2次巻線%bを容量分位相検波
回路11を経て低帯域通過フィルタ12に接続し、その
出力端子を電圧応動容通素子駆動回路13の入力端子に
接続する。Further, the other secondary winding %b of the output transformer 7 is connected to the low band pass filter 12 via the capacitive phase detection circuit 11, and its output terminal is connected to the input terminal of the voltage responsive conductive element drive circuit 13. .
冑、これら検波回路11、フィルタ12及び駆動回路1
3は容量不平衡分検出回路を構成する。helmet, these detection circuit 11, filter 12 and drive circuit 1
3 constitutes a capacitance unbalance detection circuit.
又、入力変成器2の他の1次巻線W1c を容量不平衡
分補償ブリッジ14の出力端子に接続し、この容量ブリ
ッジ14の入力端子を900移和回路15の1方の出力
端子に接続する。Further, the other primary winding W1c of the input transformer 2 is connected to the output terminal of the capacitance unbalance compensation bridge 14, and the input terminal of this capacitance bridge 14 is connected to one output terminal of the 900 transfer sum circuit 15. do.
90’移相回路15の入力端子を正弦波発振器6の第2
出力端子に接続し、90°移相回路15の他方の出力端
子を容量分位相検波回路11の他方の入力端子に接続す
る。90' The input terminal of the phase shift circuit 15 is connected to the second input terminal of the sine wave oscillator 6.
The other output terminal of the 90° phase shift circuit 15 is connected to the other input terminal of the capacitive phase detection circuit 11.
又正弦波発振回路6の第3出力端子を抵抗弁位相検波回
路8の他方の入力端子に接続する。Further, the third output terminal of the sine wave oscillation circuit 6 is connected to the other input terminal of the resistance valve phase detection circuit 8.
更に本例では容量ブリッジ14の4辺をそれぞれ容量辺
とし、特にそのうちの1辺を電圧に応じて容量値が変化
する電圧応動容量素子14a例えば可変容量ダイオード
等で構成する。Further, in this example, each of the four sides of the capacitive bridge 14 is used as a capacitive side, and in particular, one side of the capacitive bridge 14 is constituted by a voltage responsive capacitive element 14a, such as a variable capacitance diode, whose capacitance value changes depending on the voltage.
この電圧応動容量素子14aを電圧応動素子駆動回路1
3の出力端子に接続する。This voltage responsive capacitive element 14a is connected to the voltage responsive element drive circuit 1.
Connect to output terminal 3.
この容量ブリッジ14には90°移相回路15を経て9
00移和された正弦波電圧を供給する。This capacitance bridge 14 is connected to a 90° phase shift circuit 15 via a 90°
00 shifted and summed sinusoidal voltage is supplied.
作動に当り検出部のブリッジ4に容量不平衡分が生ずる
と、その出力側には第3図の曲線aで示すようにブリッ
ジ4に供給する電圧とは90°位相のずれた(進相また
は遅相)電圧波形が現われる。When a capacitance unbalance occurs in the bridge 4 of the detection section during operation, the output side has a phase shift of 90° (phase leading or A slow phase) voltage waveform appears.
これがためこの90°移相電圧波形aを入力変俄器2を
経て搬送波増幅器1で増幅し、その出力電圧を出力変成
器7を介して容量分位相検波回路11に供給し、ここで
容量分のみを位相検波しその出力を低帯域通過フィルタ
12で直流電圧に変換して通常のリニア増幅器で構成さ
れる既知構造の電圧応動容量素子駆動回路13に供給し
、その増幅された出力を電圧応動容量素子14aに帰還
する。Therefore, this 90° phase-shifted voltage waveform a is amplified by the carrier wave amplifier 1 via the input transformer 2, and the output voltage is supplied to the capacitive phase detection circuit 11 via the output transformer 7, where the capacitive component is The phase of the signal is detected, and the output is converted into a DC voltage by a low band pass filter 12 and supplied to a voltage responsive capacitive element drive circuit 13 of a known structure consisting of an ordinary linear amplifier. It is fed back to the capacitive element 14a.
検出ブリッジ4が容量平衡状態にあるときはこの帰還電
圧は基準電圧値を有していてその場合には容量ブリッジ
14の出力電圧は生じない。When the detection bridge 4 is in a capacitance balanced state, this feedback voltage has the reference voltage value, in which case no output voltage of the capacitance bridge 14 occurs.
しかしながら容量不平衡状態が生じ例えば検出ブリッジ
4の出力電圧がこれに供給される入力電圧とは90°遅
相しも・るときは帰還電圧は前述の基準電圧値から増大
し又90°進和してしる場合には減少し従って電圧応動
容量素子14aの容量はこの帰還電圧の変化方向とは逆
の方向にかつその変化量に応じた量だけ変化する。However, if a capacitance unbalance condition occurs and, for example, the output voltage of the detection bridge 4 lags the input voltage supplied to it by 90°, the feedback voltage will increase from the reference voltage value mentioned above, and the feedback voltage will increase by 90° When this happens, the capacitance of the voltage-responsive capacitive element 14a changes in a direction opposite to the direction of change in the feedback voltage and by an amount corresponding to the amount of change.
この場合、この容量ブリッジ14に供給される入力電圧
を900移相回路15によって正弦波発生器6から検出
ブリッジ4に供給される入力電圧に対し90°進相させ
ておく。In this case, the input voltage supplied to the capacitive bridge 14 is advanced by 90° relative to the input voltage supplied from the sine wave generator 6 to the detection bridge 4 by the 900 phase shift circuit 15.
後述する第7図〜第9図からの説明からも明らかなよう
に、帰還電圧が基準電圧値から増大した場合にはこの容
量ブリッジ14の出力電圧はこの容量ブリッジの入力電
圧と同相であり、帰還電圧が基準電圧値から減少した場
合にはこの出力電圧はその入力電圧と逆相となる。As is clear from the explanation from FIGS. 7 to 9, which will be described later, when the feedback voltage increases from the reference voltage value, the output voltage of the capacitor bridge 14 is in phase with the input voltage of the capacitor bridge, If the feedback voltage decreases from the reference voltage value, this output voltage will be in opposite phase to its input voltage.
従って、この容量ブリッジ14から出力される出力電圧
は検出ブリッジ4からの容量不平衡による出力電圧に対
し常に1800移相した関係にある。Therefore, the output voltage output from the capacitance bridge 14 is always in a phase-shifted relationship of 1800 with respect to the output voltage from the detection bridge 4 due to capacitance imbalance.
これがためブリッジ4からの容量不平衡による電圧波形
は容量ブリッジ14からの出力電圧波形によって完全に
補償される。Therefore, the voltage waveform from the bridge 4 due to capacitive imbalance is completely compensated by the output voltage waveform from the capacitive bridge 14.
また検出部のブリッジ4に生ずる抵抗不平衡分は抵抗不
平衡分補償ブリッジ3によって補償する。Further, the resistance unbalance that occurs in the bridge 4 of the detection section is compensated by the resistance unbalance compensating bridge 3.
これがため出力端子10には正しい値の被測定出力電圧
を発生させることができる。Therefore, an output voltage to be measured having a correct value can be generated at the output terminal 10.
この被測定出力電圧を通常のように目的に応じて処理す
る。This measured output voltage is processed as usual depending on the purpose.
第2図は第1図のひずみ測定器の変形例を示す。FIG. 2 shows a modification of the strain measuring instrument shown in FIG.
図中第1図の回路素子と同一部分には同一符号を付して
説明する。In the figure, the same parts as the circuit elements in FIG. 1 are given the same reference numerals and will be explained.
本例ひすみ測定器の構成は容量ブリッジ14を入力変成
器2の1次巻線に接続する代りに2次巻線W2に接続す
る点以外は第1図のひずみ測定器とほぼ同様である。The configuration of the strain measuring instrument in this example is almost the same as that of the strain measuring instrument shown in FIG. 1, except that the capacitive bridge 14 is connected to the secondary winding W2 instead of being connected to the primary winding of the input transformer 2. .
これがため本例ひずみ測定器の作動の説明は省略する。Therefore, a description of the operation of the strain measuring instrument of this example will be omitted.
上述した第1.j、−よび2図に示す例では搬送波増幅
器の入力側に入力変成器を設けたがかかる、入力変成器
は非常に微小な電圧を増幅するため厳重な遮蔽を行う必
要がある。First mentioned above. In the examples shown in Figures 1 and 2, an input transformer is provided on the input side of the carrier amplifier, but since such an input transformer amplifies a very small voltage, it is necessary to provide strict shielding.
かかる入力変成器を省略する場合の例を第4,5および
6図に示す。Examples in which such an input transformer is omitted are shown in FIGS. 4, 5 and 6.
図中第1図の回路素子と同一部分には同一符号を付して
示す。In the figure, the same parts as the circuit elements in FIG. 1 are denoted by the same reference numerals.
第4図に示す例では検出部のブリッジ4に直列に容量不
平衡分補償ブリッジ14を接続し、この容量ブリッジ1
4の他方の出力端子を搬送波増幅器1の入力側に接続す
る。In the example shown in FIG. 4, a capacitance unbalance compensation bridge 14 is connected in series to the bridge 4 of the detection section, and
The other output terminal of 4 is connected to the input side of carrier wave amplifier 1.
また抵抗不平衡分補償ブリッジ3′は分圧器の形状とし
、これを検出ブリッジ4の入力端子間に接続し、分圧器
日出タップを検出ブリッジ4の一方の出力端子に接続す
る。The resistance unbalance compensating bridge 3' is in the form of a voltage divider and is connected between the input terminals of the detection bridge 4, and the voltage divider sun tap is connected to one output terminal of the detection bridge 4.
本例ひすみ増幅器の作動も入力変成器を介挿しない点以
外は第1図につき説明した所とほぼ同様であるためその
詳細な説明は省略する。The operation of the distortion amplifier of this example is also substantially the same as that described with reference to FIG. 1, except that no input transformer is inserted, so a detailed explanation thereof will be omitted.
第5図に示す例では検出部のブリッジ4と搬送波増幅器
1との間に抵抗不平衡分補償ブリッジ3ネーよび容量不
平衡分補償ブリッジ14を並列接続にして配置する。In the example shown in FIG. 5, a resistance imbalance compensation bridge 3 and a capacitance imbalance compensation bridge 14 are connected in parallel between the bridge 4 of the detection section and the carrier wave amplifier 1.
寸た第6図に示す例では検出部のブリッジ4と搬送波増
幅器1との間に抵抗不平衡分補償ブリッジ3および容量
不平衡分補償ブリッジ14を直列接続にして配置する。In the example shown in FIG. 6, a resistance unbalance compensating bridge 3 and a capacitive unbalance compensating bridge 14 are arranged in series between the bridge 4 of the detection section and the carrier wave amplifier 1.
第5トよび6図に示す例においてもその作動は前述した
所と同様であるためその説明は省略する。In the examples shown in FIGS. 5 and 6, the operation is the same as that described above, so a description thereof will be omitted.
次に、容量ブリッジを用いることの目的釦よび効果につ
いて説明する。Next, the purpose button and effect of using the capacitive bridge will be explained.
検出ブリッジ4の容量不平衡による出力電圧は、不平衡
の状態によって、検出ブリッジに供給される電圧に対し
て2700移和される場合と900移相される場合とが
ある。The output voltage due to capacitance unbalance of the detection bridge 4 may be shifted by 2700 or phase shifted by 900 with respect to the voltage supplied to the detection bridge depending on the state of the unbalance.
(検出ブリッジ各辺には様々な浮遊容量が存在するが、
不平衡分は、ある一辺に集約した形で等何曲に表わすこ
とができ、第1図に於て検出ブリッジ4のひずみゲージ
4aを含む辺に並列に容量が接続されたのと等価な場合
には移相は270°となり、ひずみゲージ4bを含む辺
の場合には移相は90°となる)。(There are various stray capacitances on each side of the detection bridge,
The unbalanced portion can be expressed in any number of ways by concentrating it on one side, and the case is equivalent to the case where a capacitor is connected in parallel to the side containing the strain gauge 4a of the detection bridge 4 in Fig. 1. (in the case of the side including the strain gauge 4b, the phase shift is 90°).
したがって、検出ブリッジの容量不平衡による出力電圧
をキャンセルするためには、検出ブリッジに供給される
電圧に対し90°または270゜移相(検出ブリッジ4
の容量不平衡による出力電圧に対してはいずれも180
0移相)した電圧が必要である。Therefore, in order to cancel the output voltage due to capacitance imbalance of the detection bridge, it is necessary to phase shift the voltage supplied to the detection bridge by 90° or 270° (detection bridge 4
For the output voltage due to capacitance unbalance, 180
0 phase shift) is required.
更にそのキャンセル用電圧の振幅は、検出ブリッジの容
量不平衡の大きさに対応して任意に調節できるものでな
ければならない。Furthermore, the amplitude of the canceling voltage must be able to be adjusted arbitrarily in accordance with the magnitude of the capacitance unbalance of the detection bridge.
これら二つの条件を満足する回路は、少くとも一辺に電
圧又は電流によりコントロール可能な素子を含υ容量ブ
リッジ回路で簡単に構成できる。A circuit that satisfies these two conditions can be easily constructed using a υ capacitance bridge circuit that includes an element that can be controlled by voltage or current on at least one side.
本願は、電圧によって容量値をコントロールできる素子
14a(例えば可変容量ダイオードのような電圧応動容
量素子)を一辺とした容量ブリッジ14でキャンセル用
電圧を得ている。In the present application, a canceling voltage is obtained by a capacitive bridge 14 having on one side an element 14a (for example, a voltage responsive capacitive element such as a variable capacitance diode) whose capacitance value can be controlled by voltage.
容量ブリッジを用いる場合には電圧応動容量素子駆動回
路13及び900移相回路15の双方又はいずれか一方
からの直流電圧が加わった測定状態であっても直流分を
カットして交流分だけで検出ブリッジ4の容量不平衡分
を補償できる利点がある。When using a capacitive bridge, even if the measurement state is such that a DC voltage is applied from either or both of the voltage-responsive capacitive element drive circuit 13 and the 900 phase shift circuit 15, the DC component can be cut off and only the AC component can be detected. There is an advantage that the unbalanced capacity of the bridge 4 can be compensated for.
次に容量ブリッジ14につき詳述する。Next, the capacitive bridge 14 will be explained in detail.
今、例として容量ブリッジ140入力電圧であるブリッ
ジ励振電圧が検出ブリッジ40入力電圧に対し90°進
和しているとし、かつ電圧によって容量値をコントロー
ルできる素子の電圧−容量特性が一例として第7図に示
すように変化するものとする。As an example, assume that the bridge excitation voltage, which is the input voltage of the capacitor bridge 140, is the sum of the input voltages of the detection bridge 40 by 90 degrees, and the voltage-capacitance characteristic of an element whose capacitance value can be controlled by voltage is taken as an example. It shall change as shown in the figure.
横軸は駆動回路13からの直流帰還電圧で基準電圧であ
る中心電圧りから±JDだけ変化するとする。The horizontal axis represents the DC feedback voltage from the drive circuit 13, which changes by ±JD from the center voltage, which is the reference voltage.
縦軸は素子14aの帰還電圧のこの変化に対応する容量
変化C♀ACを示す。The vertical axis shows the capacitance change C♀AC corresponding to this change in the feedback voltage of element 14a.
第8図はこの素子14aを一辺とし、他の3辺は容量値
がC2Fである容量素子で構成した容量ブリッジを等何
曲に示した線図である。FIG. 8 is a diagram illustrating a capacitive bridge constructed of capacitive elements having the element 14a on one side and the other three sides having a capacitance value of C2F.
搬送波増幅器1に供給されるべき電圧に対応する容量ブ
リッジからの出力eは、第9図に示すとお−9900移
相回路15からのブリッジ励振電圧Eと逆相または同相
でかつ素子14aの帰還電圧に対応した振幅の電圧が得
られる。The output e from the capacitive bridge corresponding to the voltage to be supplied to the carrier wave amplifier 1 is in opposite phase or in phase with the bridge excitation voltage E from the -9900 phase shift circuit 15, as shown in FIG. 9, and the feedback voltage of the element 14a. A voltage with an amplitude corresponding to the voltage can be obtained.
すなわち、今容量ブリッジ14の出力端子間に負荷RL
(図示していない)が接続されているとし、帰還電圧が
中心電圧から一、4Dだけ変化すると、素子14aの容
量は+、JCだけ変化し、このため容量ブリッジ14で
は電流はEで示す交流源すなわち90゜移相回路15か
ら抵抗Rと素子14aとの接続点、素子14a、負荷R
L、ブリッジの右上側の容量Cを通って900移相回路
15へと流れ、よって出力電圧eは励振電圧Eと逆相と
なる。That is, the load RL is now placed between the output terminals of the capacitive bridge 14.
(not shown) is connected, and if the feedback voltage changes by 1.4D from the center voltage, the capacitance of the element 14a changes by +JC, and therefore, in the capacitance bridge 14, the current is an alternating current indicated by E. source, that is, the 90° phase shift circuit 15, the connection point between the resistor R and the element 14a, the element 14a, and the load R.
L, and flows through the capacitor C on the upper right side of the bridge to the 900 phase shift circuit 15, so that the output voltage e has the opposite phase to the excitation voltage E.
又逆に帰還電圧が+JDだけ変化して素子の容量が−J
Cだけ変化すると電流は90°移相回路15から抵抗R
と素子14aとの接続点、ブリッジの左上側の容量、負
荷RL、ブリッジの右下側の容量Cを通って90°移相
回路15へ流れ、よって出力電圧eは励振電圧Eと同相
となる。Conversely, the feedback voltage changes by +JD, and the capacitance of the element decreases by -J.
When only C changes, the current flows from the 90° phase shift circuit 15 to the resistor R.
It flows to the 90° phase shift circuit 15 through the connection point between and element 14a, the capacitance on the upper left side of the bridge, the load RL, and the capacitance C on the lower right side of the bridge, so that the output voltage e becomes in phase with the excitation voltage E. .
帰還電圧がjjDだけ変化することは検出ブリッジ4の
出力電圧が入力電圧に対し90°進相しているのである
から、容量ブリッジ14の出力電圧が励振電圧と逆相と
なることは検出ブリッジ4の出力電圧に対しても逆相と
なり、又帰還電圧が+、(Dだけ変化することは検出ブ
リッジ4の出力電圧が入力電圧に対し90°遅相してい
るのであるから、容量ブリッジ14の出力電圧が励振電
圧と同相となることはこの検出ブリッジ4の出力電圧に
対して逆相となることを意味し、従って容量不平衡分を
打消すことか出来る。The fact that the feedback voltage changes by jjD means that the output voltage of the detection bridge 4 is 90 degrees ahead of the input voltage, so the fact that the output voltage of the capacitive bridge 14 is in reverse phase with the excitation voltage means that the detection bridge 4 The output voltage of the detection bridge 4 is also in reverse phase with respect to the output voltage, and the fact that the feedback voltage changes by +, (D means that the output voltage of the detection bridge 4 is delayed by 90 degrees with respect to the input voltage. The fact that the output voltage is in phase with the excitation voltage means that it is in reverse phase with respect to the output voltage of the detection bridge 4, so that the capacitance unbalance can be canceled out.
な釦帰還電圧は検出ブリッジ4の容量不平衡の状態に対
応し、容量不平衡がないときは中心電圧D、前記ひずみ
ゲージ4aを含む辺に並列の場合には直流帰還電圧D+
、(D、ひずみゲージ4bを含む辺に並列の場合には電
圧、JDとなり、容量不平衡に応じた帰還電圧の変動上
JDに応じて対応した出力e(+JC)及びe(−JC
)が得られる。The button feedback voltage corresponds to the state of capacitance unbalance of the detection bridge 4, and is the center voltage D when there is no capacitance unbalance, and the DC feedback voltage D+ when it is parallel to the side including the strain gauge 4a.
, (D, if it is parallel to the side including the strain gauge 4b, the voltage is JD, and due to the fluctuation of the feedback voltage according to the capacitance imbalance, the corresponding outputs e(+JC) and e(-JC
) is obtained.
尚、上述の説明に釦いてはブリッジ励振電圧の90°進
相の場合につき説明したが、90°遅相と選定すること
も出来る。In the above explanation, the case where the bridge excitation voltage is 90° phase-advanced has been explained, but it is also possible to select a 90° phase-lag.
その場合には帰還電圧の増減方向は前者の場合と逆方向
とすればよい。In that case, the direction of increase/decrease in the feedback voltage may be opposite to that in the former case.
上述した所から明らかなように本発明によれば容量ブリ
ッジの1辺を電圧応動容量素子で構成しこれに容量不平
衡分を帰還することにより測定中も絶えず容量不平衡分
を補償することができる利点がある。As is clear from the above, according to the present invention, by configuring one side of the capacitive bridge with a voltage responsive capacitive element and feeding back the capacitance unbalance to this, it is possible to constantly compensate for the capacitance unbalance even during measurement. There are advantages that can be achieved.
本発明は上述した例にのみ限定されず幾多の変更を加え
ることができる。The present invention is not limited to the above-mentioned example, but can be modified in many ways.
第1図は本発明ひずみ測定器の一例の接続配置を示すブ
ロック図、第2図は第1図の変形例の接続配置を示すブ
ロック図、第3図は本発明ひずみ測定器の作動説明用波
形図、第4,5むよび6図は本発明ひずみ測定器の他の
例の接続配置を示すブロック図、第7,8および9図は
本発明に用いる容量ブリッジの説明に供する線図である
。
1・・・搬送波増幅器、2・・・入力変成器、3.3’
・・抵抗不平衡分補償ブリッジ、4・・・検出ブリッジ
、4a、4b・・・ひずみゲージ、5・・・結合変成器
、6・・・正弦波発振器、7・・・出力変成器、8・・
・抵抗分位相検波回路、9・・・低帯域通過フィルタ
10・・・出力端子(ひずみ測定器)、11・・・容量
分位相検波回路、12・・・低帯域通過フィルタ、13
・・・電圧応動容量素子駆動回路、14・・・容量不平
衡分補償ブリッジ、14a・・・電圧応動容量素子、1
5・・・900移相回路。Fig. 1 is a block diagram showing the connection arrangement of an example of the strain measuring instrument of the present invention, Fig. 2 is a block diagram showing the connection arrangement of a modification of Fig. 1, and Fig. 3 is for explaining the operation of the strain measuring instrument of the present invention. Waveform diagrams, Figures 4, 5 and 6 are block diagrams showing connection arrangements of other examples of the strain measuring instrument of the present invention, and Figures 7, 8 and 9 are diagrams for explaining the capacitive bridge used in the present invention. be. 1...Carrier amplifier, 2...Input transformer, 3.3'
... Resistance unbalance compensation bridge, 4... Detection bridge, 4a, 4b... Strain gauge, 5... Coupling transformer, 6... Sine wave oscillator, 7... Output transformer, 8・・・
・Resistance component phase detection circuit, 9...Low band pass filter
10... Output terminal (distortion measuring instrument), 11... Capacitance phase detection circuit, 12... Low band pass filter, 13
... Voltage responsive capacitive element drive circuit, 14... Capacitance unbalance compensation bridge, 14a... Voltage responsive capacitive element, 1
5...900 phase shift circuit.
Claims (1)
ブリッジと、該検出ブリッジの出力端子に結合された入
力端子を有し該検出ブリッジの出力信号を増幅して出力
する搬送波増幅回路と、該搬送波増幅回路からの増幅出
力電圧を出力変成器を経て受は取り該増幅出力電圧から
ひずみ出力信号を取り出して出力させる出力回路とを具
えるひずみ測定器に耘いて、各辺を容量素子で構成しか
つその一つの辺の容量素子を電圧に応じて容量値が変化
する電圧応動容量素子として戒る容量ブリッジを具え、
さらに出力端子を該容量ブリッジの入力端子に接続いつ
入力端子を前記正弦波発生器に接続して前記容量ブリッ
ジの入力端子に前記正弦波発生器の出力電圧に対し90
0移相はグ1ノッジ励振電圧を供給する9cP移相回路
を具え、さらに前記出力変成器と前記電圧応動容量素子
との間に結合され前記出力回路に供給される前記増幅出
力電圧から前記検出ブリッジに生じた容量不平衡分に応
じた直流帰還電圧を検出して該直流帰還電圧を前記電圧
応動容量素子に供給する容量不平衡分検出回路を具え、
前記容量ブリッジを前記直流帰還電圧に応じて前記ブリ
ッジ励振電圧に対し同相又は逆相の帰還出力電圧を該容
量ブリッジの出力端子に生ずるように構成すると共に該
帰還出力電圧によって前記検出ブリッジの容量不平衡分
を補償するように該容量ブリッジの出力端子を該検出ブ
リッジの出力端子及び前記搬送波増幅回路の入力端子間
に結合して成ることを特徴とするひずみ測定器。1 a detection bridge whose input voltage is the output voltage from a sine wave generator; a carrier amplification circuit which has an input terminal coupled to the output terminal of the detection bridge and amplifies and outputs the output signal of the detection bridge; A strain measuring instrument is provided with an output circuit that receives the amplified output voltage from the carrier wave amplification circuit via an output transformer, extracts and outputs a distortion output signal from the amplified output voltage, and each side of the strain measuring instrument is provided with a capacitive element. and a capacitive bridge in which the capacitive element on one side is a voltage-responsive capacitive element whose capacitance value changes depending on the voltage,
Furthermore, when an output terminal is connected to an input terminal of the capacitive bridge, an input terminal is connected to the sine wave generator, and the output voltage of the sine wave generator is 90%
The 0 phase shift circuit includes a 9 cP phase shift circuit that provides a 1-nudge excitation voltage, and is coupled between the output transformer and the voltage responsive capacitive element to detect the amplified output voltage from the amplified output voltage that is supplied to the output circuit. comprising a capacitance unbalance detection circuit that detects a DC feedback voltage corresponding to a capacitance unbalance generated in the bridge and supplies the DC feedback voltage to the voltage responsive capacitance element;
The capacitive bridge is configured to generate a feedback output voltage in phase or in phase with respect to the bridge excitation voltage at the output terminal of the capacitive bridge depending on the DC feedback voltage, and the feedback output voltage causes the capacitive bias of the detection bridge to be generated. A distortion measuring instrument characterized in that the output terminal of the capacitive bridge is coupled between the output terminal of the detection bridge and the input terminal of the carrier wave amplification circuit so as to compensate for the balance component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3312572A JPS5827442B2 (en) | 1972-04-04 | 1972-04-04 | Hizumi Soku Teiki |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3312572A JPS5827442B2 (en) | 1972-04-04 | 1972-04-04 | Hizumi Soku Teiki |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS48101155A JPS48101155A (en) | 1973-12-20 |
JPS5827442B2 true JPS5827442B2 (en) | 1983-06-09 |
Family
ID=12377888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3312572A Expired JPS5827442B2 (en) | 1972-04-04 | 1972-04-04 | Hizumi Soku Teiki |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5827442B2 (en) |
-
1972
- 1972-04-04 JP JP3312572A patent/JPS5827442B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS48101155A (en) | 1973-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0196912B1 (en) | Capacitance bridge | |
US3990005A (en) | Capacitive thickness gauging for ungrounded elements | |
US4093915A (en) | Capacitance measuring system | |
US2459730A (en) | Measuring system with capacttor having characteristics of an infinite capacity | |
JP4726722B2 (en) | Voltage measuring device | |
JP4927632B2 (en) | Voltage measuring device | |
US4206401A (en) | Length measuring system | |
JPS6237440B1 (en) | ||
US4599560A (en) | AC excited transducer having stabilized phase sensitive demodulator circuit | |
US3783374A (en) | Capacitance difference detector circuit | |
CA1119252A (en) | Capacitive pick-off circuit | |
JPH0465330B2 (en) | ||
JPS5827442B2 (en) | Hizumi Soku Teiki | |
US4559507A (en) | Controlled hybrid microcircuit oscillator | |
US5131281A (en) | Strain sensing apparatus | |
US3435317A (en) | Differential output circuit for capacitive pickoffs and the like | |
US4528498A (en) | Frequency compensating current circuit for a current comparator capacitance bridge | |
Miller | Precision resistance measurement using very low-frequency alternating current | |
JP3701510B2 (en) | Toner density sensor | |
US5051687A (en) | Transimpedance circuit | |
US4554513A (en) | Replica circuit | |
SU1717947A1 (en) | Strain gauge | |
SU1219971A1 (en) | Alternating current bridge for low-reading resistance thermometer | |
Borchardt et al. | Pseudo− bridge: a different way to compare resistances | |
JPS5834331A (en) | Temperature measuring device |