JPS5827375A - Forming method for surface electrode of solar battery by spraying method - Google Patents

Forming method for surface electrode of solar battery by spraying method

Info

Publication number
JPS5827375A
JPS5827375A JP56124998A JP12499881A JPS5827375A JP S5827375 A JPS5827375 A JP S5827375A JP 56124998 A JP56124998 A JP 56124998A JP 12499881 A JP12499881 A JP 12499881A JP S5827375 A JPS5827375 A JP S5827375A
Authority
JP
Japan
Prior art keywords
axis
spray nozzle
electrode
nozzle
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56124998A
Other languages
Japanese (ja)
Other versions
JPH0122992B2 (en
Inventor
Yasuhiro Maeda
泰宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hokusan Co Ltd
Original Assignee
Hoxan Corp
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hokusan Co Ltd filed Critical Hoxan Corp
Priority to JP56124998A priority Critical patent/JPS5827375A/en
Publication of JPS5827375A publication Critical patent/JPS5827375A/en
Publication of JPH0122992B2 publication Critical patent/JPH0122992B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To draw a line and form the surface electrode of a desired pattern on the surface of a semiconductor wafer by relatively moving the wafer and a nozzle while injecting metal paste from a spray nozzle toward the surface of the wafer. CONSTITUTION:To form a surface electrode 4 on a semiconductor wafer 1, a spray nozzle 5 having a small bore of a nozzle end 5' is employed by considering the width of the electrode line of the electrode 4 without using a metal mask. The nozzle 5 is directed toward the surface 1' of the wafer 1, the nozzle end 5' is approached to the surface 1', metal paste is injected, and a line is drawn with the paste injected to the electrode 4 of the desired pattern by moving only the nozzle 5 or only the wafer 1 or relatively both.

Description

【発明の詳細な説明】 本発明は太陽電池用半導体ウェハの表面に所望パターン
の表面電極を形成するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a desired pattern of surface electrodes on the surface of a semiconductor wafer for solar cells.

太陽電池は太陽エネルギの活用のため脚光を受けつ\あ
る現在、これを低コストにて量産することが重要課題と
されているが、既に上記ウェハに電極を形成するための
手段としてスクリ−ン印刷法が採択されている0 ところが同法によシ同つエノ1の裏面電極を形成した場
合には、これに用いられる薄手のスクリーンがもつ厚さ
以上に、電極形成のための金属ペーストを塗布すること
ができない難点があジ、一方所定パターンをもった表面
電極を形成するときは、電極部分の面積が同つエノ嘱の
光入射全面積に対し10%程度に過ぎず、従って施した
金属ベース上の90%が無駄に除去消尽されてしまうこ
とになり、また量産のため印刷を繰シ返すことにより使
用スクリーンの保守が必要となるが、このための保守費
用が可成フの額となるなどの欠陥がある。
Currently, solar cells are attracting attention for the utilization of solar energy, and mass production of them at low cost is considered an important issue, but there are already screens as a means of forming electrodes on the wafers mentioned above. However, when forming the back electrode of the same Eno 1 using the printing method, the metal paste used for forming the electrode must be thicker than the thickness of the thin screen used for this process. On the other hand, when forming a surface electrode with a predetermined pattern, the area of the electrode portion is only about 10% of the total light incident area of the same layer, so it is difficult to apply it. 90% of the metal base will be wasted and removed, and the screens used will need to be maintained due to repeated printing due to mass production, but the maintenance costs for this will be as much as possible. There are defects such as.

そこで上記スクリーン印刷法によることなく金属ペース
トのスプレー法による電極形成も既に実施されており、
同法によるときは裏面電極形成に関する限り能率的で量
産に適し、その電極部も満足すべきものが得られるので
あるが、表面電極の形成に際しては、金属マスクの上か
ら金属ペーストを噴出さぜ−るため、当該ペーストが同
マスクにも付着することになシ、従ってこの金属ペース
トが乾いてしまう前に洗浄作業が必要となるだけでなく
、この洗浄により同ペーストが無駄に消費され、しかも
金属マスクはそれほどの耐用性がないため可成りの頻度
で交換しなければならないなどの欠点がある。
Therefore, instead of using the above-mentioned screen printing method, electrode formation has already been carried out using a metal paste spray method.
When this method is used, it is efficient and suitable for mass production as far as back electrode formation is concerned, and a satisfactory electrode part can be obtained, but when forming the front electrode, metal paste must be ejected from above the metal mask. As a result, the paste will not adhere to the same mask, and therefore not only will cleaning work be necessary before the metal paste dries, but this cleaning will waste the paste and will also remove the metal. Masks have the disadvantage of not being very durable and must be replaced quite frequently.

本発明は上記の諸問題に鑑み検討されたもので、その特
徴とするところは、太陽電池用半導体ウニへの表面に向
けて、スプレーノズルカラ金属ペーストを噴出させなが
ら、当該ウェハとスプレーノズルとの相対変移を行ない
、これにより同ウェハの表面に所望パターンの表面電極
を線引きして形成するのである。
The present invention was developed in view of the above-mentioned problems, and its characteristics are as follows: While spraying a blank metal paste from the spray nozzle toward the surface of the semiconductor urchin for solar cells, the wafer and the spray nozzle A desired pattern of surface electrodes is drawn and formed on the surface of the wafer.

これを図面によって、さらに詳記すれば太陽電池用半導
体ウェハ(11に先ず裏面電極(2)を形成するには、
前記従来のスプレー法によればよいが、この場合スプレ
ーノズル(3)として充円錐スプレーノズルを用いるの
がよく、かくて同ノズル(3)のノズル端(3)′ か
ら金属ペーストが円錐状に噴出されて、円板状所望厚さ
の裏面電極(2)が形成される。
This will be described in more detail with reference to the drawings. In order to first form a back electrode (2) on a semiconductor wafer (11) for a solar cell,
The above-mentioned conventional spray method may be used, but in this case, it is preferable to use a full cone spray nozzle as the spray nozzle (3), so that the metal paste is sprayed in a conical shape from the nozzle end (3)' of the nozzle (3). The liquid is ejected to form a disk-shaped back electrode (2) with a desired thickness.

さて本発明では上記半導体ウェハ(1)に表面電極(4
)を形成するため、金属マスクを用いず表面電極(4)
の電極ライン中を考慮してノズル端(5)′を小口径と
し之スプレーノズル(5)が用いられ、この際実際上同
ノズル(5)として直進スプレーノズルを用いるのが望
ましい0 そして当該ノズル(5)を当該ウェハ(1)の表面(1
)′に指向させて、そのノズル端(51′ を同表面(
1)′に近接させて金属ペーストを噴出させると共に、
当該ノズル(5)のみを変移させたシ、また同ウェハ(
1)を移動したり、また両者+5)(11を変移させる
ことにより、所望パターンの表面電極(4)を噴出され
る金属ペーストによって線引きしていくのである。
Now, in the present invention, the surface electrode (4) is attached to the semiconductor wafer (1).
) to form the surface electrode (4) without using a metal mask.
A spray nozzle (5) is used with the nozzle end (5)' having a small diameter in consideration of the inside of the electrode line, and in this case, it is actually desirable to use a straight spray nozzle as the nozzle (5). (5) to the surface (1) of the wafer (1).
)' and its nozzle end (51') on the same surface (
1) While spouting the metal paste close to ',
The case where only the nozzle (5) was moved, and the same wafer (
By moving 1) or by shifting both +5) (11), a desired pattern of surface electrodes (4) is drawn with the ejected metal paste.

そしてこの際スプレーノズル(5)は、第3図のように
上記表面(1)′ と直交状に保持しながら変移させて
いくのが望ましく、電極ライン中そのライン中が大きい
電流収集ラインを線引きするには、他の細線ライン箇所
を線引きするために用いたスプレーノズル(5)をその
ま\用い、これを往復動させて線巾を大きくするように
しても、また、別途噴射口径の大きなスプレーノズル(
5)を用いるなど適宜数種のスプレーノズルを活用する
こともできる。
At this time, it is desirable to move the spray nozzle (5) while holding it perpendicular to the surface (1)' as shown in Figure 3, and draw a large current collection line in the electrode line. To do this, you can use the same spray nozzle (5) that was used to draw other thin lines and move it back and forth to increase the line width. spray nozzle(
It is also possible to use several types of spray nozzles as appropriate, such as using 5).

こ\で第4図は上記スプレーノズル(5ンを変移させて
、表面電極(4)を線引きするのに用い得るスプレーノ
ズル移送機構(6)の−例であり、X軸変移用の駆動モ
ータ(7)によりX軸用螺杆(8)が回転駆動されると
、これに螺合したX軸周螺送子(9)がX軸方向に螺送
され、これにより同螺送子(9)からX軸用螺杆(8)
と直交状態にて突出されたY軸用案内杆翰が、X軸方向
x、x’に移行するようになっており、この際同案内杆
αQの先端に設けたX軸周案内子(Iυが、X軸用螺杆
(8)の側傍にて平行に配設されたX軸周案内杆12に
嵌合されており、上記Y軸用案内杆顛の移行がX軸周案
内杆α擾によってガイドされることになる。
FIG. 4 is an example of a spray nozzle transfer mechanism (6) that can be used to move the spray nozzle (5) and draw the surface electrode (4), and the drive motor for X-axis movement is When the X-axis screw (8) is rotationally driven by (7), the X-axis circumferential screw (9) screwed thereon is screwed in the X-axis direction. From X-axis screw rod (8)
The Y-axis guide rod protrudes perpendicularly to the X-axis direction x, x', and at this time, the X-axis circumferential guide rod (Iυ is fitted into the X-axis circumferential guide rod 12 arranged parallel to the side of the X-axis screw rod (8), and the transition of the Y-axis guide rod is caused by the X-axis circumferential guide rod α. will be guided by.

さらにこのY軸周案内杆a1には、図示の場合2本のス
プレーノズル+51151に夫々固設したY軸用案内子
C13CI3が嵌合されていると共に、同上両ノズル1
51 (5+に設けたY軸用螺送子α◆σ噌が、Y軸変
移用の駆動モータα優によシ回転駆動されるY軸用螺杆
(ト)に螺合され、この際同螺杆(7)はY軸周案内杆
αQの下位にて平行配置となっておシ、かくて上記の駆
動モータα9の駆動によシスダレ−ノズル(5) t5
1はY軸方向Y1Y’ に螺送自在となっているから、
両力=rl!Jモータt7) (I最によってスプレー
ノズルt51 t5+を所望任意の方向に移送制御でき
ることになり、この際所要パターンを画くため所謂数値
制御を用いるなど、所望の電気的制御回路等を用いて自
動化を図り得るよ尚駆動源ニハパルス、サーボモータが
使用できる。
Further, in the illustrated case, Y-axis guide elements C13CI3 fixedly attached to two spray nozzles +51151 are fitted to this Y-axis circumferential guide rod a1, and both nozzles 1
51 (The Y-axis screw α◆σ installed in 5+ is screwed into the Y-axis screw (G) which is rotationally driven by the Y-axis displacement drive motor α, (7) is arranged in parallel below the Y-axis circumferential guide rod αQ, and thus the sysdale nozzle (5) t5 is driven by the drive motor α9.
1 can be screwed freely in the Y-axis direction Y1Y', so
Both powers = rl! J motor t7) (By using I, it is possible to control the movement of the spray nozzles t51 and t5+ in any desired direction. At this time, it is possible to automate the movement using a desired electrical control circuit, such as using so-called numerical control to draw the required pattern. It is possible to use a Nihapulse or servo motor as the driving source.

こ\で具体例を示せばPn接合型太陽電池用半導体ウェ
ハを用い、羊のP型裏面にはアルミニウムペーストを用
い、噴角40°の充円錐ノズルによって直径3インチの
ウェハ全面に、厚さ04〜0.5 teaの裏面電極を
形成し、n型光入射面に対しては銀ペーストを用い、ノ
ズル噴射口径0.2 mの直進スプレーノズルにより線
巾0、3 mの格子状パターン電極を線引きした。
To give a specific example, a semiconductor wafer for a Pn junction type solar cell is used, aluminum paste is used for the P-type back side of the sheep, and a full conical nozzle with a spray angle of 40° is used to spray the entire surface of the wafer with a diameter of 3 inches to a thickness of A back electrode of 0.04 to 0.5 tea was formed, silver paste was used for the n-type light incident surface, and a grid pattern electrode with a line width of 0.3 m was formed using a straight spray nozzle with a nozzle diameter of 0.2 m. I drew a line.

本発明は上記の通りスプレーノズルから噴射される金属
ペーストにより、対象ウェハと当該スプレーノズルとの
相対変移にて表面電極を形成するようにしたから、ノズ
ル噴射口径の選定と同上ウェハとの離間距離等によって
、所望の線中を有するラインを短時間に線引きでき、相
対変位の制御により、どのようなパターンの表面電極で
も同ウェハとスプレーノズルとの位置決めにより形成す
ることができるから、金属ペーストの無駄な消費もなく
、自動制御による量産にも適し、安価に太陽電池を製造
することができる。
In the present invention, as described above, the surface electrode is formed by the relative displacement between the target wafer and the spray nozzle using the metal paste sprayed from the spray nozzle. etc., it is possible to draw a line with a desired line diameter in a short time, and by controlling the relative displacement, any pattern of surface electrodes can be formed by positioning the same wafer and spray nozzle. There is no wasteful consumption, it is suitable for mass production through automatic control, and solar cells can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスプレー法による太陽電池裏面電極の形
成方法を示した正面説明図、第2図は本発明に係る表面
電極形成方法を略示した斜視図、第3図は同正面図、第
4図は同法の実施に用い得るスプレーノズル移送機構の
一例を示した斜視説明図である。 (1)  ・・・・・太陽電池用半導体ウエノ・(I)
′  ・・・・・太陽電池用半導体ウエノ1の表面(4
)  ・・・・・表面電極 (51@・・・・スプレーノズル (6)  ・・・・・スプレーノズル移送機構(7) 
 ・・・・・X軸変移用の駆動モータ(8)  ・・・
・・X軸用螺杆 (9)  ・・・・・X軸用螺送子 OI  ・・・・・Y軸用案内杆 al)  ・・・・・X軸周案内子 02  ・・・・・X軸周案内杆 Q3  ・・・・・Y軸周案内子 σ脣 ・・・・・Y軸用螺送子 0う ・・・・・Y軸変移用の駆動モータ(イ) ・・
・・・Y軸用螺杆 特許出願人 代理人 弁理士  斎 藤 義 雄 第1図      第2図 第31      第4図
FIG. 1 is a front explanatory view showing a method for forming a back electrode of a solar cell using a conventional spray method, FIG. 2 is a perspective view schematically showing a method for forming a front electrode according to the present invention, and FIG. 3 is a front view of the same. FIG. 4 is a perspective explanatory view showing an example of a spray nozzle transfer mechanism that can be used to implement the method. (1) ... Semiconductor ueno for solar cells (I)
′...Surface of semiconductor wafer 1 for solar cells (4
)...Surface electrode (51@...Spray nozzle (6)...Spray nozzle transfer mechanism (7)
... Drive motor for X-axis displacement (8) ...
...X-axis screw rod (9) ...X-axis screw OI ...Y-axis guide rod al) ...X-axis peripheral guide 02 ...X Circumferential guide rod Q3...Y-axis circumferential guide σ℣...Y-axis screw 0... Drive motor for Y-axis displacement (A)...
... Y-axis screw rod patent applicant Yoshio Saito, patent attorney Figure 1 Figure 2 Figure 31 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)  太陽電池用半導体ウェハの表面に向けて、ス
プレーノズルから金属ペーストを噴出させながら、当該
ウェハとスプレーノズルとの相対変移を行ない、これに
より同ウェハの表面に所望パターンの表面電極を線引き
して形成するようにしたことを特徴とするスプレー法に
よる太陽電池表面電極の形成方法。
(1) While spouting metal paste from a spray nozzle toward the surface of a semiconductor wafer for solar cells, relative displacement between the wafer and the spray nozzle is performed, thereby drawing a surface electrode in a desired pattern on the surface of the wafer. 1. A method for forming a solar cell surface electrode by a spray method, characterized in that the electrode is formed by spraying.
(2)  スプレーノズルとして直進ノズルを用いるよ
うにしたことを特徴とする特許請求の範囲第1項記載の
スプレー法による太陽電池表面電極の形成方法。
(2) A method for forming a solar cell surface electrode by a spray method according to claim 1, characterized in that a straight nozzle is used as the spray nozzle.
(3)  スプレーノズルを太陽電池用半導体ウェハに
対し変移させるため、X軸変移用の駆動モータによ多回
転駆動されるX軸用螺杆にX軸周螺送子を螺合し、この
X軸螺送子からX軸用螺杆と直交状に突設したY軸用案
内杆にはスプレーノズルのY軸用案内子を変移自在に嵌
合すると共に、当該案内杆の先端に固設したX軸周案内
子を、X軸用螺杆の横側にあって平行配置としたX軸周
案内杆に変移自在なるよう嵌合し、Y軸変移用の駆動モ
ータによ多回転駆動されるY軸用螺杆をY軸用案内杆の
縦側にあって平行配置となし、当該Y軸用螺杆には前記
スプレーノズルのY軸周螺送子を螺合してなるスプレー
ノズル移送機構が用いられる特許請求の範囲第1項記載
のスプレー法による太陽電池表面電極の形成方法。
(3) In order to move the spray nozzle relative to the semiconductor wafer for solar cells, an The Y-axis guide of the spray nozzle is movably fitted into the Y-axis guide rod, which protrudes from the screw at right angles to the X-axis screw, and the X-axis guide rod is fixed to the tip of the guide rod. The circumferential guide rod is fitted to the X-axis circumferential guide rod, which is arranged parallel to the X-axis screw rod, so as to be freely movable, and is driven by a Y-axis displacement drive motor for multiple rotations. A patent claim in which a spray nozzle transfer mechanism is used, in which a screw rod is arranged parallel to and on the vertical side of a Y-axis guide rod, and a Y-axis circumferential screw of the spray nozzle is screwed to the Y-axis screw rod. A method for forming a solar cell surface electrode by a spray method according to item 1.
JP56124998A 1981-08-10 1981-08-10 Forming method for surface electrode of solar battery by spraying method Granted JPS5827375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124998A JPS5827375A (en) 1981-08-10 1981-08-10 Forming method for surface electrode of solar battery by spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124998A JPS5827375A (en) 1981-08-10 1981-08-10 Forming method for surface electrode of solar battery by spraying method

Publications (2)

Publication Number Publication Date
JPS5827375A true JPS5827375A (en) 1983-02-18
JPH0122992B2 JPH0122992B2 (en) 1989-04-28

Family

ID=14899352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124998A Granted JPS5827375A (en) 1981-08-10 1981-08-10 Forming method for surface electrode of solar battery by spraying method

Country Status (1)

Country Link
JP (1) JPS5827375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015845A1 (en) * 1991-03-07 1992-09-17 Mobil Solar Energy Corporation Method and apparatus for forming contacts
JP2011071157A (en) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd Device and method for forming electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121748A (en) * 1975-04-18 1976-10-25 Toshiba Corp Device for removing dirty things on insulated spacer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121748A (en) * 1975-04-18 1976-10-25 Toshiba Corp Device for removing dirty things on insulated spacer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015845A1 (en) * 1991-03-07 1992-09-17 Mobil Solar Energy Corporation Method and apparatus for forming contacts
US5151377A (en) * 1991-03-07 1992-09-29 Mobil Solar Energy Corporation Method for forming contacts
JPH05506753A (en) * 1991-03-07 1993-09-30 エイエスイー・アメリカス・インコーポレーテッド Method and apparatus for forming contacts
AU648406B2 (en) * 1991-03-07 1994-04-21 Schott Solar, Inc. Method and apparatus for forming contacts
JP2011071157A (en) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd Device and method for forming electrode

Also Published As

Publication number Publication date
JPH0122992B2 (en) 1989-04-28

Similar Documents

Publication Publication Date Title
US8916772B2 (en) Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing
CN209109750U (en) Wet type laser cleaning system
DE112010000963T5 (en) Method and apparatus for machining a thin film layer of a workpiece
CN104043617A (en) Laser cleaning equipment for oil stain on metallic surface
JPH05506753A (en) Method and apparatus for forming contacts
CN208033201U (en) The cleaning device of battery pole piece coating
CN108346744B (en) A kind of laser processing improving perovskite solar battery effective area
CN110690300B (en) Laser-induced transfer printing method for electrode grid line of photovoltaic solar cell
CN103170751A (en) Method for cutting ceramics by optical fiber lasers
CN104668675B (en) A kind of electrode with micro cone tower array end face and processing method thereof and application
JPS5827375A (en) Forming method for surface electrode of solar battery by spraying method
KR101029095B1 (en) In-situ laser scribing apparatus
CN206264568U (en) A kind of solar battery sheet silk-screen printing processing unit (plant)
US20230101622A1 (en) Method for blackening an electrical conduit
CN206951505U (en) Two-sided extrusion apparatus for coating based on microporous substrate
CN109127231A (en) Tool lifting appliance cleaning plant
CN104494310A (en) 3D printing system used for solar cell grid wire manufacturing, and control method thereof
Gebhardt et al. Laser contact opening of high efficient Solar cells: on the fly laser processing of PERC solar cells
CN102248305A (en) Equipment and process method for high speed precision laser drilling on crystalline silicon
CN113306320A (en) Solar cell metal grid spray printing forming method and device for laser in-situ film opening
CN205308651U (en) A marching type spraying device for solar -thermal power generation speculum
CN207982489U (en) A kind of scaling powder application device and welding equipment
JPS57180460A (en) Electrostatic coating method
CN204504432U (en) A kind of electrode with micro-cone tower array end face
CN206153715U (en) Accurate controlling means of stringer scaling powder spraying