JPS5827312B2 - Fluidized bed equipment - Google Patents

Fluidized bed equipment

Info

Publication number
JPS5827312B2
JPS5827312B2 JP10610074A JP10610074A JPS5827312B2 JP S5827312 B2 JPS5827312 B2 JP S5827312B2 JP 10610074 A JP10610074 A JP 10610074A JP 10610074 A JP10610074 A JP 10610074A JP S5827312 B2 JPS5827312 B2 JP S5827312B2
Authority
JP
Japan
Prior art keywords
fluidized bed
coal
particles
gas
coal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10610074A
Other languages
Japanese (ja)
Other versions
JPS5134206A (en
Inventor
宏行 加来
成仁 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10610074A priority Critical patent/JPS5827312B2/en
Publication of JPS5134206A publication Critical patent/JPS5134206A/en
Publication of JPS5827312B2 publication Critical patent/JPS5827312B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 本発明は流動層装置に係り、特に石炭ガス化、石炭燃焼
等に用いられる流動層装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluidized bed apparatus, and particularly to a fluidized bed apparatus used for coal gasification, coal combustion, etc.

従来、発電用燃料、都市ガス用原料あるいは一般家庭用
燃料等として石油系燃料が主として使用されて来た。
Conventionally, petroleum-based fuels have been mainly used as fuel for power generation, raw material for city gas, fuel for general household use, and the like.

しかし石油資源の絶対量に限度があり、また需要の拡大
、急増とあいまって今後石油資源の不足が予測される段
階にある。
However, there is a limit to the absolute amount of oil resources, and combined with the expansion and rapid increase in demand, we are at a stage where it is predicted that there will be a shortage of oil resources in the future.

このような観点から、石炭資源が再び注目され、その再
利用が各界で話題を集めている。
From this perspective, coal resources are once again attracting attention, and their reuse is attracting attention in various circles.

特に石炭の埋蔵量は石油の数十倍にもおよぶといわれて
いるので、資源的には有利な状況にあるといえる。
In particular, coal reserves are said to be several dozen times larger than oil reserves, so it can be said that the country is in an advantageous situation in terms of resources.

わが国においても、エネルギー資源利用の多様化が求め
られており、石炭から無公害燃料を製造する研究が盛ん
にすすめられている。
In Japan as well, there is a need to diversify the use of energy resources, and research into producing pollution-free fuel from coal is actively progressing.

すなわち石炭から合成天然ガスを製造する計画がもつと
も現実的であり、かつ大量のクリーンエネルギーを得る
ためにもつとも手近な方法であるといわれている。
In other words, it is said that the plan to produce synthetic natural gas from coal is both realistic and an easy way to obtain a large amount of clean energy.

現在欧米各国で行なわれている、石炭から合成天然ガス
を得る方法としては、水素化分解法、部分酸化法、ある
いは塩基性媒体を使用する接触法などが挙げられる。
Methods of obtaining synthetic natural gas from coal, which are currently practiced in Western countries, include hydrocracking, partial oxidation, and contact methods using basic media.

これらの方法あるいはこれらの方法を実施するための装
置は、一般に反応率の低いものが多く、シたがって装置
内でのガスの滞留時間を長くとることが必要であった。
Generally, many of these methods or devices for carrying out these methods have low reaction rates, and therefore it is necessary to increase the residence time of the gas within the device.

たとえば米国においては、いわゆるHygasプロセス
が現在開発中であるが、この新らしい方法では滞留時間
を長くとるという観点から、多段流動層を用いた水素化
分解法を利用しようという傾向にある。
For example, in the United States, the so-called Hygas process is currently under development, and this new method tends to utilize a hydrocracking method using multistage fluidized beds from the viewpoint of increasing residence time.

このように石炭のガス化では、一般にガスの滞留時間を
2〜10秒前後にとることが必要であり、この条件を満
足するような流動層反応器を適用する場合、流動層高を
特に高くとり多段にわたる流動層を形成することが必要
となる。
In this way, in coal gasification, it is generally necessary to keep the gas residence time around 2 to 10 seconds, and when applying a fluidized bed reactor that satisfies this condition, the height of the fluidized bed must be set particularly high. However, it is necessary to form a fluidized bed in multiple stages.

しかし層高を高くとると、スラッギング現象が生じやす
く、固体気体接触率が低下し、反応率を低下させる原因
となる。
However, if the bed height is increased, slagging phenomenon tends to occur, which lowers the solid-gas contact rate and causes a decrease in the reaction rate.

また流動層燃焼装置の場合は、流動媒体または石炭粒子
の分散性が悪くなり、燃焼その他の反応効率が低下する
ことになる。
Furthermore, in the case of a fluidized bed combustion apparatus, the dispersibility of the fluidized medium or coal particles becomes poor, resulting in a reduction in combustion and other reaction efficiencies.

本発明の目的は上記に説明したような従来技術にみられ
る問題点に鑑みてなされたもので、流動層高を高くする
ことにともなうスラッキング現象(粒子層がそのままの
形で上下に往復運動する現象)の発生傾向を防止し、安
定な流動状態と高い反応効率を得ることができる改善さ
れた流動層装置を提供するものである。
The purpose of the present invention was made in view of the problems seen in the prior art as explained above. The purpose of the present invention is to provide an improved fluidized bed apparatus that can prevent the tendency of occurrence of the phenomenon (phenomenon) and obtain a stable fluidized state and high reaction efficiency.

本発明は、分散板下から石炭粒子の流動化用ガスを供給
し、分散板上に石炭粒子の流動層を形成する流動層装置
において、流動層の下方およびそれより上方にそれぞれ
微粉炭および粗粒炭の供給口を設けたことを特徴とする
ものである。
The present invention provides a fluidized bed device in which a gas for fluidizing coal particles is supplied from below a dispersion plate to form a fluidized bed of coal particles on the dispersion plate. It is characterized by having a supply port for granulated coal.

さらに具体的には、本発明は、流動層の下方から流動化
用ガスとして微粉炭(40〜100μ程度の大きさの粉
炭)を懸濁させたガスを供給し、またそれより上方の流
動層に粗粒炭または触媒粒子(500〜300μの大き
さ)を供給し、流動化用ガスの見かけ上の密度を高める
ことにより、前記スラッキング現象を防止するようにし
たものである。
More specifically, the present invention supplies gas in which pulverized coal (pulverized coal with a size of about 40 to 100 μm) is suspended as a fluidizing gas from below the fluidized bed, and The slackening phenomenon is prevented by supplying coarse coal or catalyst particles (500 to 300 μm in size) to increase the apparent density of the fluidizing gas.

以下、本発明を、添付の図面を参照しながらさらに詳細
に説明する。
Hereinafter, the present invention will be explained in more detail with reference to the accompanying drawings.

第1図は本発明を石炭ガス化に適用する場合の一実施例
を示す装置系の説明図で、ガス化しようとする石炭粒子
は原料供給系1から反応器3中に供給される。
FIG. 1 is an explanatory diagram of an apparatus system showing an embodiment in which the present invention is applied to coal gasification. Coal particles to be gasified are supplied from a raw material supply system 1 into a reactor 3.

一方流動化用の微細石炭粒子(40〜100μ)は流動
化用原料供給系2から同じく上記反応器3中に供給され
る。
On the other hand, fine coal particles (40 to 100 microns) for fluidization are similarly supplied from the fluidization raw material supply system 2 into the reactor 3.

当該反応器3中では、原料の石炭粒子を流動化させ、ガ
ス化させる。
In the reactor 3, raw material coal particles are fluidized and gasified.

ガス化を助長し、促進するためのガス化剤は、ガス化剤
供給系4を経て供給される。
A gasifying agent for aiding and promoting gasification is supplied via a gasifying agent supply system 4.

当該反応器3中において、流動化され、ガス化された石
炭粒子および生成ガス等は、サイクロン5に送られ、微
細石炭粒子と生成ガスとに分離される。
In the reactor 3, fluidized and gasified coal particles, generated gas, etc. are sent to a cyclone 5, where they are separated into fine coal particles and generated gas.

生成ガスはさらに除しん器6に送られ、生成ガス中に含
まれる固形物等が除去され、外部へ排出される。
The generated gas is further sent to a dust remover 6, where solids and the like contained in the generated gas are removed and discharged to the outside.

以上のように、本発明の方法では、ガス化される石炭粒
子は原料供給系1を経て反応器3に送られ、上記の別の
供給系4から送られるガス化剤、流動化用の微細石炭粒
子等により流動化される。
As described above, in the method of the present invention, the coal particles to be gasified are sent to the reactor 3 via the raw material supply system 1, and the gasifying agent sent from the above-mentioned another supply system 4 and the fine particles for fluidization Fluidized by coal particles, etc.

流動化用の微細石炭粒子はガス化する石炭粒子より重量
がはるかに軽く、当該微細石炭粒子は流動ガスに同伴さ
れる。
The fine coal particles for fluidization are much lighter in weight than the coal particles to be gasified, and the fine coal particles are entrained in the fluidizing gas.

同伴された石炭微粒子は、流動している石炭粒子と衝突
することにより流動化用ガスのみかけ上の密度および粘
度が高められ、流動層内の石炭粒子の滞留時間が増大し
、反応効率が向上するとともに、一般に安定な状態にあ
るといわれる固液流動層と同様な効果を持つことになる
The entrained coal particles collide with the flowing coal particles, increasing the apparent density and viscosity of the fluidizing gas, increasing the residence time of the coal particles in the fluidized bed, and improving reaction efficiency. At the same time, it has an effect similar to that of a solid-liquid fluidized bed, which is generally said to be in a stable state.

ガスに同伴された未反応の微細石炭粒子は前記ですでに
説明したように、上記のサイクロン5で分離され、再び
上記反応器3内の流動層下部に戻され、装置内を循環す
ることになる。
As already explained above, the unreacted fine coal particles entrained in the gas are separated by the cyclone 5, returned to the lower part of the fluidized bed in the reactor 3, and circulated within the apparatus. Become.

なお、微粉炭は、流動層下部に系外から新たに供給して
もよいが、上記のようにサイクロン5で分離された未反
応の微粉炭(回収チャー)を供給することにより石炭の
利用効率が向上する。
Although pulverized coal may be newly supplied to the lower part of the fluidized bed from outside the system, coal utilization efficiency can be improved by supplying unreacted pulverized coal (recovered char) separated by cyclone 5 as described above. will improve.

また微粉炭は流動化用ガス(ガス化剤)に含有させ、分
散板の下から供給することも可能である。
It is also possible to include pulverized coal in a fluidizing gas (gasifying agent) and supply it from below the dispersion plate.

第2図は原料石炭粒子として夕張炭を使用し、流動化用
微粒子を使用しないでガス化反応を進めた場合における
流動層内の圧力損失△Pと、時間との関係を示したもの
である。
Figure 2 shows the relationship between pressure loss ΔP in the fluidized bed and time when Yubari coal is used as the raw material coal particles and the gasification reaction is proceeded without using fluidizing particles. .

すなわち、内径50朋〆、高さ1000mmの大きさか
らなる反応器を適用し、空気によって流動層を形成させ
た場合における流動層内の圧力損失の経時変化を示した
ものであるが、図かられかるように圧力変動がきわめて
大きく、均一な流動層は形成されていないものと考えら
れる。
In other words, the figure shows the change in pressure loss in the fluidized bed over time when a fluidized bed is formed using air using a reactor with an inner diameter of 50mm and a height of 1000mm. As can be seen, the pressure fluctuations were extremely large, and it is thought that a uniform fluidized bed was not formed.

第3図は本発明の方法の特徴である、流動化用微細粒子
を適用して安定な流動層を形成した場合における、流動
層内圧力損失△Pとその時間経過との関係を示したもの
である。
Figure 3 shows the relationship between pressure loss △P in the fluidized bed and its time over time when a stable fluidized bed is formed by applying fine particles for fluidization, which is a feature of the method of the present invention. It is.

第3図と第2図を比較するとよくわかるように、流動化
用微粒子を使用した場合における層の圧力損失△Pの経
時変化はきわめて小さく、安定した流動層が形成されて
いるものと考えられる。
As can be clearly seen by comparing Figures 3 and 2, the change in pressure loss △P in the bed over time when using fluidizing particles is extremely small, and it is thought that a stable fluidized bed is formed. .

上記の説明から理解されるように、本発明によれば、微
粉炭を流動層の下方から、および粗粒炭をそれより上方
に供給することにより、流動化用ガスの見かけ上の密度
を増大させ、流動層の安定化を図るとともに、微粉炭の
滞留時間を増大させ、流動層の高さを極端に高くするこ
となしに、高い反応効率のもとで石炭のガス化反応を進
めることが可能であり、したがって流動層高を高くする
ことによるスラッギング現象の発生傾向を防止し得るの
みでなく、石炭のガス化装置の小形化が可能となった。
As can be understood from the above description, according to the present invention, the apparent density of the fluidizing gas is increased by feeding pulverized coal from below the fluidized bed and coarse coal above it. This makes it possible to stabilize the fluidized bed, increase the residence time of pulverized coal, and proceed with the coal gasification reaction with high reaction efficiency without increasing the height of the fluidized bed extremely. Therefore, it is not only possible to prevent the tendency of the slagging phenomenon caused by increasing the height of the fluidized bed, but also it is possible to downsize the coal gasification apparatus.

特に従来多段にわたる流動層の形成が必要であったもの
が本発明の適用により一段の流動層を形成するのみで、
十分に反応効率を高めることが可能となったものである
In particular, by applying the present invention, it is possible to form a fluidized bed in only one stage, whereas conventionally it was necessary to form a fluidized bed in multiple stages.
This made it possible to sufficiently increase the reaction efficiency.

なお本発明は、石炭ガス化反応器のみならず、流動層燃
焼装置、重質油、石炭コークス等の流動層分解装置等の
一般の流動層反応器へも広く適用が可能である。
The present invention is widely applicable not only to coal gasification reactors but also to general fluidized bed reactors such as fluidized bed combustion equipment, fluidized bed cracking equipment for heavy oil, coal coke, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するガス化装置系の説明図
、第2図は流動化用微細粒子を適用しない場合の流動層
内圧力損失の経時変化を示す線図、第3図は本発明の方
法にしたがい、流動化用微細粒子を適用した場合の流動
層内圧力損失の経時変化を示す線図である。 1・・・・・・原料供給系、2・・・・・・流動化用原
料供給系、3・・・・・・反応器、 4・・・・・・ガス化剤供給系、 5・・・・・・サ イクロン、 6・・・・・・除じん器。
Figure 1 is an explanatory diagram of a gasifier system that implements the method of the present invention, Figure 2 is a diagram showing the change in pressure loss in the fluidized bed over time when fine particles for fluidization are not applied, and Figure 3 is a diagram showing the change in pressure loss over time in the fluidized bed. FIG. 2 is a diagram showing a change in pressure loss in a fluidized bed over time when fine particles for fluidization are applied according to the method of the present invention. 1... Raw material supply system, 2... Raw material supply system for fluidization, 3... Reactor, 4... Gasifying agent supply system, 5. ...Cyclone, 6...Dust remover.

Claims (1)

【特許請求の範囲】[Claims] 1 分散板下から石炭粒子の流動化用ガスを供給し、分
散板上に石炭粒子の流動層を形成する流動層装置におい
て、流動層の下方およびそれより上方にそれぞれ微粉炭
および粗粒炭の供給口を設けたことを特徴とする流動層
装置。
1 In a fluidized bed device that supplies gas for fluidizing coal particles from below the dispersion plate to form a fluidized bed of coal particles on the dispersion plate, pulverized coal and coarse coal are placed below and above the fluidized bed, respectively. A fluidized bed device characterized by having a supply port.
JP10610074A 1974-09-17 1974-09-17 Fluidized bed equipment Expired JPS5827312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10610074A JPS5827312B2 (en) 1974-09-17 1974-09-17 Fluidized bed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10610074A JPS5827312B2 (en) 1974-09-17 1974-09-17 Fluidized bed equipment

Publications (2)

Publication Number Publication Date
JPS5134206A JPS5134206A (en) 1976-03-23
JPS5827312B2 true JPS5827312B2 (en) 1983-06-08

Family

ID=14425089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10610074A Expired JPS5827312B2 (en) 1974-09-17 1974-09-17 Fluidized bed equipment

Country Status (1)

Country Link
JP (1) JPS5827312B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537248A (en) * 2010-09-10 2013-09-30 グレイトポイント・エナジー・インコーポレイテッド Hydrogenation methanation of carbonaceous feedstock.
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015491A (en) * 1983-07-08 1985-01-26 Mitsubishi Heavy Ind Ltd Equipment and method for coal gasification
JPS6048408A (en) * 1984-07-25 1985-03-16 Babcock Hitachi Kk Combustion control method for fluidized-bed combustion device
CN102796568B (en) * 2012-09-06 2015-07-08 刘宗礼 Device and technology for producing blau-gas and carbon monoxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537248A (en) * 2010-09-10 2013-09-30 グレイトポイント・エナジー・インコーポレイテッド Hydrogenation methanation of carbonaceous feedstock.
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Also Published As

Publication number Publication date
JPS5134206A (en) 1976-03-23

Similar Documents

Publication Publication Date Title
US3847563A (en) Multi-stage fluidized bed coal gasification apparatus and process
US2741549A (en) Conversion of carbonaceous solids into volatile products
US3840353A (en) Process for gasifying granulated carbonaceous fuel
CA1150510A (en) Method of gasifying an ash-containing fuel in a fluidized bed
US7811340B2 (en) Multi-stage facility and method for gasifying a feedstock including organic matter
US2680065A (en) Gasification of carbonaceous solids
US4696678A (en) Method and equipment for gasification of coal
US3935825A (en) Coal ash agglomeration device
EP0634470A1 (en) Transport gasifier
US3847566A (en) Fluidized bed gasification process with reduction of fines entrainment by utilizing a separate transfer line burner stage
US4155313A (en) Utilization of solid material containing combustible matter
JPS5827312B2 (en) Fluidized bed equipment
US2579397A (en) Method for handling fuels
US3932146A (en) Process for the fluid bed gasification of agglomerating coals
US3988237A (en) Integrated coal hydrocarbonization and gasification of char
US2588075A (en) Method for gasifying carbonaceous fuels
JPS5921915B2 (en) Hydrogen gasification method
US2527197A (en) Method of producing a carbon monoxide and hydrogen gas mixture from carbonaceous materials
US2681273A (en) Process for making combustible gas
US3968052A (en) Synthesis gas manufacture
US3437561A (en) Agglomerating coal hydrocarbonization process
US3957457A (en) Gasifying coal or coke and discharging ash agglomerates
US2461021A (en) Manufacture of water gas
US4147615A (en) Hot sand-coal-cracking to hydrodistillate fuels
US2807529A (en) Gasification of carbonaceous solids