JPS5827094Y2 - Ignition circuit for internal combustion engines with overheat prevention circuit - Google Patents
Ignition circuit for internal combustion engines with overheat prevention circuitInfo
- Publication number
- JPS5827094Y2 JPS5827094Y2 JP2338879U JP2338879U JPS5827094Y2 JP S5827094 Y2 JPS5827094 Y2 JP S5827094Y2 JP 2338879 U JP2338879 U JP 2338879U JP 2338879 U JP2338879 U JP 2338879U JP S5827094 Y2 JPS5827094 Y2 JP S5827094Y2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- current
- transistor
- internal combustion
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Ignition Installations For Internal Combustion Engines (AREA)
Description
【考案の詳細な説明】
本考案は、マグネトの点火コイルの一次巻線に流れる一
次順電流の導通遮断を、トランジスタによって行なうよ
うlこ構成した内燃機関用点火回路におけるパワートラ
ンジスタの過熱防止に関するものである。[Detailed Description of the Invention] The present invention relates to overheating prevention of a power transistor in an ignition circuit for an internal combustion engine configured to use a transistor to conduct and interrupt the primary forward current flowing through the primary winding of a magneto's ignition coil. It is.
従来、トランジスタ化した内燃機関用点火回路の点火コ
イルの一次側順電流を遮断するとき、該点火回路のパワ
ートランジスタの過熱を防止し、かつ適正な点火時期を
高速回転まで維持するためにマグネトの点火コイルの一
次巻線に流れる一次交流電流の順電流の確立を遅らす如
く作用する逆電流を制限する逆電流制限回路を付加する
とこれにより一次巻線の端子電圧が増大して一次順電流
の遮断が低減を生ずる結果となり、点火コイルの二次側
に、内燃機関の点火に充分な点火エネルギーを発生でき
なくなる問題点があった。Conventionally, when cutting off the forward current on the primary side of the ignition coil of a transistorized ignition circuit for an internal combustion engine, a magneto is used to prevent the power transistor of the ignition circuit from overheating and to maintain proper ignition timing up to high speed rotation. When a reverse current limiting circuit is added to limit the reverse current that acts to delay the establishment of the forward current of the primary alternating current flowing through the primary winding of the ignition coil, this increases the terminal voltage of the primary winding and interrupts the primary forward current. As a result, the secondary side of the ignition coil cannot generate enough ignition energy to ignite the internal combustion engine.
この考案の目的は上述の点を解決するものであって一次
交流電流の順電流をトランジスタ化した内・燃機関用点
火回路に短絡状態で流し、その最大値を内燃機関の始動
回転速度において遮断することによって点火コイルの二
次巻線に内燃機関の点火に充分な火花エネルギーの発生
を確保すると共に一次交流電流の順電流を低減すること
なくその逆電流のみを制限する回路を内燃機関用点火回
路内に設けて該回路におけるパワートランジスタの過熱
を防止し併せて適正な点火時期を維持することにある。The purpose of this invention was to solve the above-mentioned problems by passing a primary alternating current forward current through a transistorized internal/combustion engine ignition circuit in a short-circuited state, and cutting off its maximum value at the starting rotational speed of the internal combustion engine. The ignition circuit for an internal combustion engine ensures generation of sufficient spark energy to ignite the internal combustion engine in the secondary winding of the ignition coil, and limits only the reverse current of the primary alternating current without reducing the forward current. The object of the present invention is to provide the power transistor in a circuit to prevent overheating of the power transistor in the circuit and to maintain proper ignition timing.
以下本考案の一実施例を添付図面によって説明する。An embodiment of the present invention will be described below with reference to the accompanying drawings.
、Tはマグネトの点火コイルで、その鉄心Fに一次巻線
T1及びこれより高巻数比の二次巻線T2を巻装して成
る。, T is a magneto ignition coil, which is made up of an iron core F wound with a primary winding T1 and a secondary winding T2 having a higher turns ratio.
Pは点火プラグで、その絶縁電極は二次巻線T2の巻終
り端子に接続されている。P is a spark plug, and its insulated electrode is connected to the winding end terminal of the secondary winding T2.
点火プラグPの接地電極、−次巻線T1及び二次巻線T
2の巻始め端子は接地されている。Ground electrode of spark plug P, negative winding T1 and secondary winding T
The winding start terminal No. 2 is grounded.
QaはNPN形のパワートランジスタQ2のコレクタと
ベースに、それぞれPNP形のトランジスタQ、のエミ
ッタとコレクタを接続してなる複合接続回路である。Qa is a composite connection circuit in which the collector and base of an NPN power transistor Q2 are connected to the emitter and collector of a PNP transistor Q, respectively.
ReはダイオードD。Re is diode D.
と定電圧ダイオードD2とを順方向を同方向(こ合わせ
て並列接続した整流器Reである。This is a rectifier Re in which a constant voltage diode D2 and a constant voltage diode D2 are connected in parallel in the same forward direction.
前記−次巻線T1の両端子間に、上記複合接続回路Qa
のエミッタEとコレクタCをコレクタC側は順方向を合
せた上記整流器Reを介して、エミッタEが接地側にな
るように挿入接続する。The composite connection circuit Qa is connected between both terminals of the secondary winding T1.
The emitter E and collector C are inserted and connected through the rectifier Re with the collector C side aligned in the forward direction, so that the emitter E is on the ground side.
複合接続回路QaのベースBは、抵抗r1とサーミスタ
r1の直列接続に抵抗r2を並列接続した回路に更に抵
抗r3を直列接続して構成した温度補償抵抗R1と抵抗
R8の直列回路を介して、前記−次巻線T1の接地され
ていない端子に接続する。The base B of the composite connection circuit Qa is connected through a series circuit of a temperature compensation resistor R1 and a resistor R8, which is configured by connecting a resistor r2 in series with a resistor r2 connected in series with a thermistor r1, and further connecting a resistor r3 in series. It is connected to the ungrounded terminal of the secondary winding T1.
PNP形のトランジスタQ3のコレクタをNPN形のト
ランジスタQ4のベースに接続し、更に該トランジスタ
Q3のベースを該トランジスタQ4のコレクタに接続し
て成るサイリスク等価回路ThのアノードA1カソード
K及びゲートGを、それぞれ前記−次巻線T1の接地側
端子、前記温度補償抵抗R1と抵抗R8の接続点及び前
記複合接続回路QaのベースBに接続する。The anode A1 cathode K and gate G of a thyrisk equivalent circuit Th, which is formed by connecting the collector of a PNP type transistor Q3 to the base of an NPN type transistor Q4, and further connecting the base of the transistor Q3 to the collector of the transistor Q4, They are respectively connected to the ground side terminal of the secondary winding T1, the connection point between the temperature compensation resistor R1 and the resistor R8, and the base B of the composite connection circuit Qa.
本考案の回路構成は上述のとおりであり、内燃機関の回
転によって、マグネトの点火コイルTの一次巻線T1の
両端子間には交流電圧が発生する。The circuit configuration of the present invention is as described above, and as the internal combustion engine rotates, an alternating current voltage is generated between both terminals of the primary winding T1 of the magneto's ignition coil T.
−次巻線T1の接地側端子を正電圧とする端子電圧が発
生し始めると、複合接続回路Qaのベース電流が該複合
接続回路QaのベースBを通って温度補償抵抗Rtと抵
抗R8の直列回路をバイアス抵抗として流れ、引続いて
複合接続回路QaのエミッタE・コレクタC間には、ト
ランジスタQ1、パワートランジスタQ2によって大き
く増幅されたコレクタ電流即ち一次巻線T1の一次順電
流が上記整流器Reを通って流れる。- When a terminal voltage that makes the ground side terminal of the next winding T1 a positive voltage starts to be generated, the base current of the composite connection circuit Qa passes through the base B of the composite connection circuit Qa and connects the temperature compensation resistor Rt and the resistor R8 in series. The collector current that flows through the circuit as a bias resistor and is then greatly amplified by the transistor Q1 and the power transistor Q2, that is, the primary forward current of the primary winding T1, flows between the emitter E and the collector C of the composite connection circuit Qa, and the primary forward current of the primary winding T1 flows through the rectifier Re. flows through.
温度補償抵抗R1に流れる上記複合接続回路Qaのベー
ス電流が増大すると、その電圧降下がトランジスタQ4
のベース・エミッタ間電圧VBB4 のしきい値を越
してトランジスタQ4が導通し、従ってトランジスタQ
3が引続いて導通して複合接続回路QaのベースB・エ
ミッタE間を短絡する。When the base current of the composite connection circuit Qa flowing through the temperature compensation resistor R1 increases, the voltage drop increases across the transistor Q4.
Transistor Q4 becomes conductive when the base-emitter voltage VBB4 of
3 continues to conduct, shorting between the base B and emitter E of the composite connection circuit Qa.
かくしてサイリスト等価回路Thは一次巻線T1の一次
順電流の制御回路の作用を行ない複合接続回路Qaのエ
ミッタ・コレクタC間に導通している一次巻線T1の一
次電流を急峻に遮断する。Thus, the thyrist equivalent circuit Th acts as a control circuit for the primary forward current of the primary winding T1, and sharply cuts off the primary current of the primary winding T1 conducting between the emitter and collector C of the composite connection circuit Qa.
この遮断による電磁誘導作用によって、点火コイルTの
高巻数の二次巻線T2には高電圧が誘起し、点火プラグ
Pに火花放電が発生する。Due to the electromagnetic induction effect caused by this interruption, a high voltage is induced in the secondary winding T2 of the ignition coil T with a high number of turns, and a spark discharge occurs in the spark plug P.
内燃機関の始動回転速度n8は一般に低速で、この低回
転速度lこおいて確実に始動させるためには少くとも二
次巻線T2に拾数キロボルトの高音を発生させる必要が
ある。The starting rotational speed n8 of the internal combustion engine is generally low, and in order to reliably start the engine at this low rotational speed l, it is necessary to generate a high-pitched sound of at least a few kilovolts in the secondary winding T2.
このためには−次順電流がその最大値に達した時点で遮
断されるよう、即ちこの最大電流値に対応する複合接続
回路Qaのベース電流IBによる温度補償抵抗R1の電
圧降下Rt・1Bでサイリスク等等価回路Thが導通す
るように予め温度補償抵抗Rtの値が設定されである。For this purpose, it is necessary to cut off the forward current when it reaches its maximum value, that is, the voltage drop Rt·1B across the temperature compensation resistor R1 due to the base current IB of the composite connection circuit Qa corresponding to this maximum current value. The value of the temperature compensation resistor Rt is set in advance so that the thyrisk equivalent circuit Th becomes conductive.
この−次順電流の最大値に対応する一次巻線T1の端子
電圧■1は、この時のトランジスタQ1、パワートラン
ジスタQ2の各ベース・エミッタ間電圧及び各コレクタ
・エミッタ間電圧をVBEI。The terminal voltage (1) of the primary winding T1 corresponding to the maximum value of this forward current is VBEI, which is the base-emitter voltage and collector-emitter voltage of the transistor Q1 and power transistor Q2 at this time.
VBE2 及びVOEI、VOB2とし、整流器Re
の順電圧をvpo とすると、次の平衡式で与えられる
。VBE2 and VOEI, VOB2, rectifier Re
If the forward voltage of is vpo, it is given by the following balanced equation.
V1=(−VBEl)+R1−IB+RoI B=(−
VOEI)−)−VBE2−)−VFO=VOE2+V
F0この式においてRt・IB−VBE4であり、また
整流器Reの順電圧VFOは、一般に定電圧ダイオード
D2の順電圧より小さいダイオードD。V1=(-VBEl)+R1-IB+RoI B=(-
VOEI)-)-VBE2-)-VFO=VOE2+V
F0 In this equation, Rt·IB−VBE4, and the forward voltage VFO of the rectifier Re is generally smaller than the forward voltage of the constant voltage diode D2.
の順電圧で決定され、−次順電流はほとんどダイオード
D。The -order forward current is determined by the forward voltage of diode D.
を通って流れる。従って本回路の各トランジスタ、ダイ
オード及び定電圧ダイオードをシリコン製とすると、
−vBE1+vBE2÷VBE4÷VFOと見做され、
これらの電圧は各しきい値をもち且前等式の各項中で最
も大きい値であるので、結果として一次巻線T1の端子
電圧v1は前等式中最も大きい値である(−VB E
1 )+VB E 4+R(、IBで決定され、整流器
Reの有無の影響を受けることはない。flows through. Therefore, if each transistor, diode, and voltage regulator diode in this circuit are made of silicon, it can be regarded as -vBE1+vBE2÷VBE4÷VFO,
Since these voltages have respective threshold values and are the largest values among the terms in the previous equation, as a result, the terminal voltage v1 of the primary winding T1 is the largest value in the previous equation (-VB E
1)+VB E 4+R(, is determined by IB and is not affected by the presence or absence of the rectifier Re.
換言すれば整流器Reを複合接続回路QaのコレクタC
と一次巻線T1の接地されない端子の間に挿入接続して
も接続しなくても前記始動回転速度n8における一次順
電流の最大値の値は変らない。In other words, the rectifier Re is connected to the collector C of the composite connection circuit Qa.
The maximum value of the primary forward current at the starting rotational speed n8 does not change whether or not it is inserted and connected between the ungrounded terminal of the primary winding T1 and the ungrounded terminal of the primary winding T1.
一次巻線T1の一次順電流の遮断に続いて、その−次逆
電圧が複合接続回路QaのエミッタE・コレクタC間と
整流器Reの直列回路に印加され始めるが、この−次逆
電圧が整流器Reの定電圧ダイオードD のツェナー電
圧V2とパワートラ2
ンシスタQ2のコレクタ開放エミッタ・ベース間電圧V
EB20の和に達する内燃機関の回転速度n□まではこ
の直列回路に一次逆電流は流れない。Following the interruption of the primary forward current of the primary winding T1, the -order reverse voltage begins to be applied between the emitter E and collector C of the composite connection circuit Qa and to the series circuit of the rectifier Re. Zener voltage V2 of voltage regulator diode D of Re and collector-open emitter-base voltage V of power transistor Q2
No primary reverse current flows through this series circuit until the rotational speed n□ of the internal combustion engine reaches the sum of EB20.
パワートランジスタQ2のコレクタ開放エミッタ・ベー
ス間電圧VEB20は10ボルト程度のほぼ一定の値で
あり、従って一次逆電流が流れ始める回転速度n。The collector-open emitter-base voltage VEB20 of the power transistor Q2 has a substantially constant value of about 10 volts, and therefore the rotational speed n at which the primary reverse current begins to flow.
は定電圧ダイオードDzのツェナー電圧■2の大きさに
よって左右され、その内燃機関の回転速度n。depends on the magnitude of the Zener voltage 2 of the constant voltage diode Dz, and the rotational speed n of the internal combustion engine.
からその最高回転速度nmまで一次逆電流は増加して行
く。The primary reverse current increases from 1 to 5 nm to its maximum rotational speed of nm.
一方パワートランジスタQ2はこの一次逆電流値とコレ
クタ開放エミッタ・ベース間電圧VEBO2の積のエミ
ッタ損失を生じ、このエミッタ損失が大きい程パワート
ランジスタQ2は過熱し、この過熱状態で長く使用する
と電流増幅率hFE2の低下、エミッタ遮断電流IEB
02の増大等の性能上の経時変化を生じる。On the other hand, the power transistor Q2 generates an emitter loss equal to the product of this primary reverse current value and the collector-open emitter-base voltage VEBO2, and the larger the emitter loss, the more the power transistor Q2 overheats, and if it is used for a long time in this overheated state, the current amplification factor increases. Decrease in hFE2, emitter cut-off current IEB
This results in changes in performance over time, such as an increase in 02.
従って最高回転速度nmにおいても、パワートランジス
タQ2が過熱に至らない温度まで定電圧ダイオードD2
のツェナー電圧v2を引きあげて一次逆電流を制限しな
ければならない。Therefore, even at the maximum rotational speed nm, the constant voltage diode D2 is kept at a temperature that does not cause the power transistor Q2 to overheat.
The primary reverse current must be limited by raising the Zener voltage v2 of
若し一次逆電流を制限することなく一次巻線T1に流せ
ばこれに続いて流れて遮断される一次順電流の確立が内
燃機関の回転速度が高速iこなる程遅れ、従って内燃機
関の点火時期も遅れて行く結果になるのを、上述のとお
りパワートランジスタQ2の過熱防止のため、定電圧ダ
イオードD2によって一次逆電流を制限することにより
一次順電流の確立の遅れを防止して内燃機関の点火時期
はその中高速度においてはほぼ一定、始動回転速度n5
領域ではこれよりやや遅れ時期になり、定電圧ダイオー
ドD2は内燃機関の全回転速度範囲に互り適正な点火時
期を維持する効果をパワートランジスタQ2の過熱防止
効果と併せ持つことができる。If the primary reverse current is allowed to flow through the primary winding T1 without being restricted, the establishment of the primary forward current that subsequently flows and is cut off will be delayed as the rotational speed of the internal combustion engine increases, and therefore the ignition of the internal combustion engine will be delayed. As mentioned above, in order to prevent the power transistor Q2 from overheating, the primary reverse current is limited by the constant voltage diode D2, thereby preventing a delay in establishing the primary forward current, thereby reducing the timing of the internal combustion engine. Ignition timing is almost constant at medium and high speeds, starting rotation speed n5
In this range, the timing is slightly delayed, and the constant voltage diode D2 can have the effect of maintaining proper ignition timing over the entire rotational speed range of the internal combustion engine, as well as the overheating prevention effect of the power transistor Q2.
整流器Reのダイオードυ。Diode υ of rectifier Re.
の平均整流電流容量は3アンヘア級の小形のもので足り
、またその定電圧ダイオードD2の許容損失(ツェナー
電圧■2×ツェナ電流■2)も1ワット級の小形のもの
で足りるので、整流器Re自体も本点火回路のトランジ
スタ中の最も小形のトランジスタQ3 。The average rectifying current capacity of the rectifier Re can be as small as 3 Anherr class, and the power dissipation of the constant voltage diode D2 (Zener voltage 2 x Zener current 2) can be as small as 1 Watt class. It is also the smallest transistor Q3 among the transistors in this ignition circuit.
Q4に比較してもなお数分の−の寸法で足り、これを本
点火回路に挿入接続しても特に回路全体の構成寸法を増
大するようなことはない。Compared to Q4, the size is still several times smaller than that of Q4, and even if this is inserted and connected to the main ignition circuit, the overall structural size of the circuit will not be particularly increased.
サイリスタ等価回路ThのトランジスタQ3 +Q4
の間には電流正帰還作用が行なわれる。Transistor Q3 +Q4 of thyristor equivalent circuit Th
During this time, a current positive feedback action takes place.
即ち前記温度補償抵抗Rtの電圧降下Rt・IBによっ
てトランジスタQ4のベース電流が流れると、そのコレ
クタ電流が流れる。That is, when the base current of the transistor Q4 flows due to the voltage drop Rt·IB of the temperature compensation resistor Rt, the collector current thereof flows.
このコレクタ電流はトランジスタQ3のベース電流であ
るためトランジスタQ3のコレクタ電流が流れ、トラン
ジスタQ4の最初のベース電流を助長するように作用す
る。Since this collector current is the base current of transistor Q3, the collector current of transistor Q3 flows and acts to promote the initial base current of transistor Q4.
故にトランジスタQ3.Q、間には電流正帰還作用がす
ぐにゆきわたりサイリスク等価回路Thは瞬時にして導
通状態に移行し、複合接続回路QaのベースB・エミッ
タE間を短絡する。Therefore, transistor Q3. A positive current feedback action immediately spreads between Q and Q, and the thyrisk equivalent circuit Th instantly becomes conductive, shorting the base B and emitter E of the composite connection circuit Qa.
このサイリスク等価回路Thの電流正帰還作用により複
合接続回路QaのエミッタE・コレクタC間に流れてい
る一次順電流は極めて微少時間に遮断され、点火コイル
Tの二次巻線T2には内燃機関の点火に充分な火花エネ
ルギーを発生することができる。The primary forward current flowing between the emitter E and the collector C of the composite connection circuit Qa is interrupted in an extremely short time due to the current positive feedback action of the thyrisk equivalent circuit Th, and the secondary winding T2 of the ignition coil T is connected to the internal combustion engine can generate enough spark energy to ignite.
以上の説明から明らかなように、単にダイオードD。As is clear from the above explanation, it is simply a diode D.
と定電圧ダイオードD2の並列接続という極めて簡単に
して小形の構成の整流器Reを、複合接続回路Qaのコ
レクタ電流の通路に挿入接続するという措置によって、
遮断される一次順電流を低減することなく、また優れた
その遮断機能のもとに、低速始動回転速度に必要な二次
電圧を充分に確保すると共に、パワートランジスタQ2
を過熱による経時変化から保護し、内燃機関の点火時期
を適正に維持し、内燃機関用点火回路としてその始動、
運転ともに良好な条件を提供することができる。By inserting and connecting a rectifier Re, which has an extremely simple and compact configuration of a parallel connection of a voltage regulator diode D2 and a voltage regulator diode D2, into the collector current path of the composite connection circuit Qa,
Without reducing the primary forward current to be cut off and with its excellent cutoff function, the secondary voltage required for low starting rotational speed is sufficiently secured, and the power transistor Q2
It protects the internal combustion engine from changes over time due to overheating, maintains the ignition timing of the internal combustion engine properly, and serves as an ignition circuit for the internal combustion engine to start the engine.
Good driving conditions can be provided.
図面は本考案の実施例を示す電気回路図である。
T・・・・・・点火コイル、F・・・・・・鉄心、T1
・・・・・・−次巻線、T2・・・・・・二次巻線、
P・・・・・・点火プラグ、Q、 、Qa 、Q、
・・・・・・トランジスタ、Q2・・・・・・パワート
ランジスタ、Qa・・・・・・複合接続回路、Th、・
・・・・サイリスタ等価回路、C・・・・・・コレクタ
、E・・・・・・エミッタ、B・・・・・・ベース、A
・・・・・・アノード、G・・・・・・ゲート、K・・
・・・・カソード、D。
・・・・・・ダイオード、D2・・・・・・定電圧ダイ
オード、Re・・・・・・整流器、R□ + rl、
r2 、 r3°°°°゛°抵抗、rl・・・・・
サーミスタ、Rt・・・・・・温度補償抵抗。The drawing is an electrical circuit diagram showing an embodiment of the present invention. T...Ignition coil, F...Iron core, T1
・・・・・・−Secondary winding, T2・・・Secondary winding,
P...Spark plug, Q, ,Qa,Q,
...Transistor, Q2...Power transistor, Qa...Composite connection circuit, Th,...
...Thyristor equivalent circuit, C...Collector, E...Emitter, B...Base, A
...Anode, G...Gate, K...
...Cathode, D. ...Diode, D2 ... Constant voltage diode, Re ... Rectifier, R□ + rl,
r2, r3°°°°゛°resistance, rl...
Thermistor, Rt...Temperature compensation resistance.
Claims (1)
して、これとPNP形のトランジスタQ1とNPN形の
パワートランジスタQ2より成る複合接続回路Qaのエ
ミッタEとを接続し、該複合接続回路QaのベースBと
前記−次巻線T1の接地されない端子との間に、温変補
償抵抗Rtと抵抗R8の直接回路を接続し、PNP形の
トランジスタQ2とNPN形のトランジスタQ4より成
るサイリスク等価回路ThのアノードA1ゲートG及び
カソードKを、それぞれ前記−次巻線T1の接地端子前
記複合接続回路QaのベースB及び前記温変補償抵抗R
tと抵抗R6の接続点に接続した回路の前記複合接続回
路QaのコレクタCと前記−次巻線T1の接地されない
端子との間に、ダイオードD。 と定電圧ダイオードDzの並列回路から成る整流器Re
を挿入接続したことを特徴とする過熱防止回路付内燃機
関用点火回路。[Claims for Utility Model Registration] One terminal of the primary winding T1 of the magneto's ignition coil T is grounded, and this and the emitter E of a composite connection circuit Qa consisting of a PNP type transistor Q1 and an NPN type power transistor Q2. A direct circuit of a temperature change compensation resistor Rt and a resistor R8 is connected between the base B of the composite connection circuit Qa and the ungrounded terminal of the secondary winding T1, and a PNP type transistor Q2 and an NPN The anode A1 gate G and cathode K of the silice equivalent circuit Th consisting of a transistor Q4 of the form
A diode D is connected between the collector C of the composite connection circuit Qa and the ungrounded terminal of the negative secondary winding T1. A rectifier Re consisting of a parallel circuit of a constant voltage diode Dz
An ignition circuit for an internal combustion engine with an overheat prevention circuit, characterized in that an overheat prevention circuit is inserted and connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2338879U JPS5827094Y2 (en) | 1979-02-24 | 1979-02-24 | Ignition circuit for internal combustion engines with overheat prevention circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2338879U JPS5827094Y2 (en) | 1979-02-24 | 1979-02-24 | Ignition circuit for internal combustion engines with overheat prevention circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55123671U JPS55123671U (en) | 1980-09-02 |
JPS5827094Y2 true JPS5827094Y2 (en) | 1983-06-11 |
Family
ID=28859904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2338879U Expired JPS5827094Y2 (en) | 1979-02-24 | 1979-02-24 | Ignition circuit for internal combustion engines with overheat prevention circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5827094Y2 (en) |
-
1979
- 1979-02-24 JP JP2338879U patent/JPS5827094Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55123671U (en) | 1980-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3938491A (en) | Switching circuit for ignition system | |
US3901205A (en) | Stabilized and transistorized ignition system for internal combustion engines | |
JPS5828422B2 (en) | Ignition circuit for internal combustion engine | |
US3599618A (en) | Transistor ignition system with ballast compensation | |
US4343273A (en) | Ignition system with overrun prevention | |
JPS5827094Y2 (en) | Ignition circuit for internal combustion engines with overheat prevention circuit | |
US2984766A (en) | Ignition system | |
US4448182A (en) | Ignition system for internal combustion engines | |
US4270510A (en) | Ignition system for an internal combustion engine | |
JPS6329178Y2 (en) | ||
JP3133164B2 (en) | Ignition device for internal combustion engine | |
JPS61294167A (en) | Ignitor for internal-combustion engine | |
US3285234A (en) | Ignition system with inductor connected between breaker points and semiconductor device | |
US4509496A (en) | Ignition circuit for internal combustion engine having alternately operable high and low speed control devices | |
JPS5943504Y2 (en) | internal combustion engine ignition system | |
JPH0119071B2 (en) | ||
JPH0115702B2 (en) | ||
JPS6323581Y2 (en) | ||
JPS5941669A (en) | Capacitor discharge type ignition system in internal-combustion engine | |
JPS5827093Y2 (en) | Ignition system for internal combustion engines | |
JPH0444854Y2 (en) | ||
JPS6032384Y2 (en) | Non-contact ignition device for internal combustion engines | |
JPS5949373A (en) | Non-contact ignition device for internal-combustion engine | |
JPS58220961A (en) | Contactless ignition system for internal combustion engine | |
JPS61129466A (en) | Ignitor for internal-combustion engine |